blob: 85aae22e5d83ed82df6fd85e57e01072ee4f3543 [file] [log] [blame]
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Endian Buffer Types</title>
<link href="styles.css" rel="stylesheet">
</style>
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td>
<a href="../../../index.html">
<img src="../../../boost.png" alt="Boost logo" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle">
<b>
<font size="6">Endian Buffer Types</font> </b>
</td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b>
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="arithmetic.html">Arithmetic Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="buffers.html">Buffer Types</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="choosing_approach.html">Choosing Approach</a></b></td>
</tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Example">Example</a><br>
<a href="#Limitations">Limitations</a><br>
<a href="#Feature-set">Feature set</a><br>
<a href="#Types">Enums and typedefs</a><br>
<a href="#Class_template_endian">Class template <code>endian_buffer</code></a><br>
&nbsp;&nbsp;&nbsp;
<a href="#Synopsis">Synopsis</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Members">Members</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Non-member-functions">Non-Members</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Design">Design</a><br>
<a href="#C++0x">C++11</a><br>
<a href="#Compilation">Compilation</a></td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>The internal byte order of arithmetic types is traditionally called <b><i>endianness</i></b>. See
the
<a href="http://en.wikipedia.org/wiki/Endian" name="endianness">Wikipedia</a> for
a full
exploration of <b><i>endianness</i></b>, including definitions of <i><b>big
endian</b></i> and <i><b>little endian</b></i>.</p>
<p>Header <b><code>boost/endian/buffers.hpp</code></b>
provides <code>endian_buffer</code>, a portable endian integer binary buffer
class template with control over
byte order, value type, size, and alignment independent of the platform&#39;s native
endianness. Typedefs provide easy-to-use names
for common configurations.</p>
<p>Use cases primarily involve data portability, either via files or network
connections, but these byte-holders may
also be used to reduce memory use, file size, or network activity since they
provide binary numeric sizes not otherwise available.</p>
<p dir="ltr">Class <code>endian_buffer</code> is aimed at users who wish
explicit control over when endianness conversions occur. It also serves as the
base class for the <code><a href="arithmetic.html">endian_arithmetic</a></code>
class template, which is aimed at users who wish fully automatic endianness
conversion and direct support for all normal arithmetic operations.</p>
<h2><a name="Example">Example</a></h2>
<p>The <b><code>example/endian_example.cpp</code></b> program writes a
binary file containing four-byte, big-endian and little-endian integers:</p>
<blockquote>
<pre>#include &lt;iostream&gt;
#include &lt;cstdio&gt;
#include &lt;boost/endian/buffers.hpp&gt; // see <a href="#Synopsis">Synopsis</a> below
#include &lt;boost/static_assert.hpp&gt;
using namespace boost::endian;
namespace
{
// This is an extract from a very widely used GIS file format.
// Why the designer decided to mix big and little endians in
// the same file is not known. But this is a real-world format
// and users wishing to write low level code manipulating these
// files have to deal with the mixed endianness.
struct header
{
big_int32_<code>buf_</code>t file_code;
big_int32_<code>buf_</code>t file_length;
little_int32_<code>buf_</code>t version;
little_int32_<code>buf_</code>t shape_type;
};
const char* filename = &quot;test.dat&quot;;
}
int main(int, char* [])
{
header h;
BOOST_STATIC_ASSERT(sizeof(h) == 16U); // reality check
h.file_code = 0x01020304;
h.file_length = sizeof(header);
h.version = 1;
h.shape_type = 0x01020304;
// Low-level I/O such as POSIX read/write or &lt;cstdio&gt;
// fread/fwrite is sometimes used for binary file operations
// when ultimate efficiency is important. Such I/O is often
// performed in some C++ wrapper class, but to drive home the
// point that endian integers are often used in fairly
// low-level code that does bulk I/O operations, &lt;cstdio&gt;
// fopen/fwrite is used for I/O in this example.
std::FILE* fi = std::fopen(filename, &quot;wb&quot;); // MUST BE BINARY
if (!fi)
{
std::cout &lt;&lt; &quot;could not open &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
if (std::fwrite(&amp;h, sizeof(header), 1, fi)!= 1)
{
std::cout &lt;&lt; &quot;write failure for &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
std::fclose(fi);
std::cout &lt;&lt; &quot;created file &quot; &lt;&lt; filename &lt;&lt; '\n';
return 0;
}
</pre>
</blockquote>
<p>After compiling and executing <b><code>example/endian_example.cpp</code></b>,
a hex dump of <code>test.dat</code> shows:</p>
<blockquote>
<pre>01020304 00000010 01000000 04030201</pre>
</blockquote>
<p>Notice that the first two 32-bit integers are big endian while the second two
are little endian, even though the machine this was compiled and run on was
little endian.</p>
<h2><a name="Limitations">Limitations</a></h2>
<p>Requires <code>&lt;climits&gt;</code> <code>CHAR_BIT == 8</code>. If <code>CHAR_BIT</code>
is some other value, compilation will result in an <code>#error</code>. This
restriction is in place because the design, implementation, testing, and
documentation has only considered issues related to 8-bit bytes, and there have
been no real-world use cases presented for other sizes.</p>
<p>In C++03, <code>endian_buffer</code> does not meet the requirements for POD types
because it has constructors, private data members, and a base class. This means
that common use cases are relying on unspecified behavior in that the C++
Standard does not guarantee memory layout for non-POD types. This has not been a
problem in practice since all known C++ compilers lay out memory as if <code>
endian</code> were a POD type. In C++11, it is possible to specify the
default constructor as trivial, and private data members and base classes no longer disqualify a type from being a POD
type. Thus under C++11, <code>endian_buffer</code>
will no longer be relying on unspecified behavior.</p>
<h2><a name="Feature-set">Feature set</a></h2>
<ul>
<li>Big endian| little endian | native endian byte ordering.</li>
<li>Signed | unsigned</li>
<li>Unaligned | aligned</li>
<li>1-8 byte (unaligned) | 1, 2, 4, 8 byte (aligned)</li>
<li>Choice of value type</li>
</ul>
<h2>Enums and t<a name="Types">ypedefs</a></h2>
<p>Two scoped enums are provided:</p>
<blockquote>
<pre>enum class order {big, little, native};
enum class align {no, yes}; </pre>
</blockquote>
<p>One class template is provided:</p>
<blockquote>
<pre>template &lt;order Order, typename T, std::size_t Nbits,
align Align = align::no&gt;
class endian_buffer;
</pre>
</blockquote>
<p>Typedefs, such as <code>big_int32_buf_t</code>, provide convenient naming
conventions for common use cases:</p>
<blockquote>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="49%">
<tr>
<td width="18%" align="center"><b><i>Name</i></b></td>
<td width="49%" align="center"><b><i>Alignment</i></b></td>
<td width="10%" align="center"><b><i>Endianness</i></b></td>
<td width="10%" align="center"><b><i>Sign</i></b></td>
<td width="15%" align="center"><b><i>Sizes in bits (n)</i></b></td>
</tr>
<tr>
<td width="18%" dir="ltr"><code>big_int</code><b><i>n</i></b><code>_buf_t</code></td>
<td width="49%" align="center" dir="ltr"><code>no</code></td>
<td width="10%" align="center" dir="ltr"><code>big</code></td>
<td width="10%" align="center" dir="ltr">signed</td>
<td width="15%" dir="ltr">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%" dir="ltr"><code>big_uint</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center" dir="ltr"><code>no</code></td>
<td width="10%" align="center" dir="ltr"><code>big</code></td>
<td width="10%" align="center" dir="ltr">unsigned</td>
<td width="15%" dir="ltr">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>native_int</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>native_uint</code><i><b>n</b></i><code>_buf_t</code></td>
<td width="49%" align="center"><code>no</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
</tr>
<tr>
<td width="18%"><code>big_int</code><i><b>n</b></i><code>_buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>big_uint</code><i><b>n</b></i><code>_</code><code>buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>_</code><code>buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,32,64</td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>_</code><code>buf_at</code></td>
<td width="49%" align="center"><code>yes</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,32,64</td>
</tr>
</table>
</blockquote>
<p>The unaligned types do not cause compilers to insert padding bytes in classes
and structs. This is an important characteristic that can be exploited to minimize wasted space in
memory, files, and network transmissions. </p>
<p><font color="#FF0000"><b><i><span style="background-color: #FFFFFF">Warning:</span></i></b></font><span style="background-color: #FFFFFF">
Code that uses a</span>ligned types is possibly non-portable because alignment
requirements vary between hardware architectures and because alignment may be
affected by compiler switches or pragmas. For example, alignment of an 64-bit
integer may be to a 32-bit boundary on a 32-bit machine and to a 64-bit boundary
on a 64-bit machine. Furthermore, aligned types
are only available on architectures with 8, 16, 32, and 64-bit integer types. </p>
<p><i><b>Recommendation:</b></i> Prefer unaligned buffer types.</p>
<p><i><b>Recommendation:</b></i> Protect yourself against alignment ills. For
example:</p>
<blockquote>
<pre>static_assert(sizeof(containing_struct) == 12, &quot;sizeof(containing_struct) is wrong&quot;); </pre>
</blockquote>
<p><b><i>Note:</i></b> One-byte big and little buffer types
have identical layout on all platforms, so they never actually reverse endianness. They are provided to enable generic code, and
to improve code readability and searchability.</p>
<h2><a name="Class_template_endian">Class template <code>endian</code></a><code>_buffer</code></h2>
<p>An <code>endian_buffer</code> is an integer byte-holder with user-specified <a href="#endianness">
endianness</a>, value type, size, and <a href="#alignment">alignment</a>. The
usual operations on integers are supplied.</p>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>namespace boost
{
namespace endian
{
// C++11 features emulated if not available
enum class <a name="order">order</a>
{
big, // big-endian
little, // little-endian
native = <b><i>implementation-defined</i></b> // same as order::big or order::little<b><i>
</i></b>};
enum class <a name="alignment">align</a> {no, yes};
template &lt;order Order, class T, std::size_t Nbits,
align Align = align::no&gt;
class endian_buffer
{
public:
typedef T value_type;
<a href="#endian">endian_buffer</a>() noexcept = default;
explicit <a href="#explicit-endian">endian_buffer</a>(T v) noexcept;
endian_buffer&amp; <a href="#operator-eq">operator=</a>(T v) noexcept;
value_type <a href="#value">value</a>() const noexcept;
const char* <a href="#data">data</a>() const noexcept;
protected:
<b><i>implementaton-defined</i></b> endian_value; // for exposition only
};
// stream inserter
template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align Align&gt;
std::basic_ostream&lt;charT, traits&gt;&amp;
<a href="#inserter">operator&lt;&lt;</a>(std::basic_ostream&lt;charT, traits&gt;&amp; os,
const endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
// stream extractor
template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align A&gt;
std::basic_istream&lt;charT, traits&gt;&amp;
<a href="#extractor">operator&gt;&gt;</a>(std::basic_istream&lt;charT, traits&gt;&amp; is,
endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
// typedefs
// unaligned big endian signed integer buffers
typedef endian_buffer&lt;order::big, int_least8_t, 8&gt; big_int8_buf_t;
typedef endian_buffer&lt;order::big, int_least16_t, 16&gt; big_int16_buf_t;
typedef endian_buffer&lt;order::big, int_least32_t, 24&gt; big_int24_buf_t;
typedef endian_buffer&lt;order::big, int_least32_t, 32&gt; big_int32_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 40&gt; big_int40_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 48&gt; big_int48_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 56&gt; big_int56_buf_t;
typedef endian_buffer&lt;order::big, int_least64_t, 64&gt; big_int64_buf_t;
// unaligned big endian unsigned integer buffers
typedef endian_buffer&lt;order::big, uint_least8_t, 8&gt; big_uint8_buf_t;
typedef endian_buffer&lt;order::big, uint_least16_t, 16&gt; big_uint16_buf_t;
typedef endian_buffer&lt;order::big, uint_least32_t, 24&gt; big_uint24_buf_t;
typedef endian_buffer&lt;order::big, uint_least32_t, 32&gt; big_uint32_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 40&gt; big_uint40_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 48&gt; big_uint48_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 56&gt; big_uint56_buf_t;
typedef endian_buffer&lt;order::big, uint_least64_t, 64&gt; big_uint64_buf_t;
// unaligned little endian signed integer buffers
typedef endian_buffer&lt;order::little, int_least8_t, 8&gt; little_int8_buf_t;
typedef endian_buffer&lt;order::little, int_least16_t, 16&gt; little_int16_buf_t;
typedef endian_buffer&lt;order::little, int_least32_t, 24&gt; little_int24_buf_t;
typedef endian_buffer&lt;order::little, int_least32_t, 32&gt; little_int32_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 40&gt; little_int40_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 48&gt; little_int48_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 56&gt; little_int56_buf_t;
typedef endian_buffer&lt;order::little, int_least64_t, 64&gt; little_int64_buf_t;
// unaligned little endian unsigned integer buffers
typedef endian_buffer&lt;order::little, uint_least8_t, 8&gt; little_uint8_buf_t;
typedef endian_buffer&lt;order::little, uint_least16_t, 16&gt; little_uint16_buf_t;
typedef endian_buffer&lt;order::little, uint_least32_t, 24&gt; little_uint24_buf_t;
typedef endian_buffer&lt;order::little, uint_least32_t, 32&gt; little_uint32_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 40&gt; little_uint40_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 48&gt; little_uint48_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 56&gt; little_uint56_buf_t;
typedef endian_buffer&lt;order::little, uint_least64_t, 64&gt; little_uint64_buf_t;
// unaligned native endian signed integer types
typedef <b><i>implementation-defined</i></b>_int8_buf_t native_int8_buf_t;
typedef <b><i>implementation-defined</i></b>_int16_buf_t native_int16_buf_t;
typedef <b><i>implementation-defined</i></b>_int24_buf_t native_int24_buf_t;
typedef <b><i>implementation-defined</i></b>_int32_buf_t native_int32_buf_t;
typedef <b><i>implementation-defined</i></b>_int40_buf_t native_int40_buf_t;
typedef <b><i>implementation-defined</i></b>_int48_buf_t native_int48_buf_t;
typedef <b><i>implementation-defined</i></b>_int56_buf_t native_int56_buf_t;
typedef <b><i>implementation-defined</i></b>_int64_buf_t native_int64_buf_t;
// unaligned native endian unsigned integer types
typedef <b><i>implementation-defined</i></b>_uint8_buf_t native_uint8_buf_t;
typedef <b><i>implementation-defined</i></b>_uint16_buf_t native_uint16_buf_t;
typedef <b><i>implementation-defined</i></b>_uint24_buf_t native_uint24_buf_t;
typedef <b><i>implementation-defined</i></b>_uint32_buf_t native_uint32_buf_t;
typedef <b><i>implementation-defined</i></b>_uint40_buf_t native_uint40_buf_t;
typedef <b><i>implementation-defined</i></b>_uint48_buf_t native_uint48_buf_t;
typedef <b><i>implementation-defined</i></b>_uint56_buf_t native_uint56_buf_t;
typedef <b><i>implementation-defined</i></b>_uint64_buf_t native_uint64_buf_t;
// aligned big endian signed integer buffers
typedef endian_buffer&lt;order::big, int8_t, 8, align::yes&gt; big_int8_buf_at;
typedef endian_buffer&lt;order::big, int16_t, 16, align::yes&gt; big_int16_buf_at;
typedef endian_buffer&lt;order::big, int32_t, 32, align::yes&gt; big_int32_buf_at;
typedef endian_buffer&lt;order::big, int64_t, 64, align::yes&gt; big_int64_buf_at;
// aligned big endian unsigned integer buffers
typedef endian_buffer&lt;order::big, uint8_t, 8, align::yes&gt; big_uint8_buf_at;
typedef endian_buffer&lt;order::big, uint16_t, 16, align::yes&gt; big_uint16_buf_at;
typedef endian_buffer&lt;order::big, uint32_t, 32, align::yes&gt; big_uint32_buf_at;
typedef endian_buffer&lt;order::big, uint64_t, 64, align::yes&gt; big_uint64_buf_at;
// aligned little endian signed integer buffers
typedef endian_buffer&lt;order::little, int8_t, 8, align::yes&gt; little_int8_buf_at;
typedef endian_buffer&lt;order::little, int16_t, 16, align::yes&gt; little_int16_buf_at;
typedef endian_buffer&lt;order::little, int32_t, 32, align::yes&gt; little_int32_buf_at;
typedef endian_buffer&lt;order::little, int64_t, 64, align::yes&gt; little_int64_buf_at;
// aligned little endian unsigned integer buffers
typedef endian_buffer&lt;order::little, uint8_t, 8, align::yes&gt; little_uint8_buf_at;
typedef endian_buffer&lt;order::little, uint16_t, 16, align::yes&gt; little_uint16_buf_at;
typedef endian_buffer&lt;order::little, uint32_t, 32, align::yes&gt; little_uint32_buf_at;
typedef endian_buffer&lt;order::little, uint64_t, 64, align::yes&gt; little_uint64_buf_at;
// aligned native endian typedefs are not provided because
// &lt;cstdint&gt; types are superior for this use case
} // namespace endian
} // namespace boost</pre>
<p>The <i><b><code>implementation-defined</code></b></i> text in typedefs above is either
<code>big</code> or <code>little</code> according to the native endianness of the
platform.</p>
<p>The expository data member <code>endian_value</code> stores the current value
of an <code>endian_value</code> object as a sequence of bytes ordered as
specified by the <code>Order</code> template parameter.&nbsp; The <i><b><code>
implementation-defined</code></b></i> type of <code>endian_value</code> is a
type such as <code><span style="font-size: 85%">char[Nbits/CHAR_BIT]</span></code>
or <code><span style="font-size: 85%">T</span></code> that meets the
requirements imposed by the <code>Nbits</code> and <code>Align</code> template
parameters.&nbsp; The <code><span style="font-size: 85%">CHAR_BIT</span></code>
macro is defined in <code><span style="font-size: 85%">&lt;climits&gt;</span></code>.
The only value of <code><span style="font-size: 85%">CHAR_BIT</span></code> that
is required to be supported is 8.</p>
<p>Template parameter <code><span style="font-size: 85%">T</span></code> is
required to be a standard integer type (C++std, 3.9.1) and <code>
<span style="font-size: 85%">sizeof(T)*CHAR_BIT</span></code> is required to be
greater or equal to <span style="font-size: 85%"> <code>Nbits</code>.</span></p>
<h3><a name="Members">Members</a></h3>
<pre><code><a name="endian">endian</a>_buffer() noexcept = default;</code></pre>
<blockquote>
<p><i>Effects:</i> Constructs an uninitialized object of type <code>endian_buffer&lt;Order, T,
Nbits, Align&gt;</code>.</p>
</blockquote>
<pre><code>explicit <a name="explicit-endian">endian</a>_buffer(T v) noexcept;</code></pre>
<blockquote>
<p><i>Effects:</i> Constructs an object of type <code>endian_buffer&lt;Order, T,
Nbits, Align&gt;</code>.</p>
<p><i>Postcondition:</i> <code>value() == v &amp; mask</code>, where <code>mask</code>
is a constant of type <code>value_type</code> with <code>Nbits</code> low-order
bits set to one.</p>
<p><i>Remarks:</i> If <code>Align</code> is <code>align::yes</code> then
endianness conversion, if required, is performed by <code>
boost::endian::endian_reverse</code>.</p>
</blockquote>
<pre><code>endian_buffer&amp; <a name="operator-eq">operator=</a>(T v) noexcept;</code></pre>
<blockquote>
<p><i>Postcondition:</i> <code>value() == v &amp; mask</code>, where <code>mask</code>
is a constant of type <code>value_type</code> with <code>Nbits</code>
low-order bits set to one.</p>
<p><i>Returns:</i> <code>*this</code>.</p>
<p><i>Remarks:</i> If <code>Align</code> is <code>align::yes</code> then
endianness conversion, if required, is performed by <code>
boost::endian::endian_reverse</code>.</p>
</blockquote>
<pre>value_type <a name="value">value</a>()<code> const noexcept;</code></pre>
<blockquote>
<p><i>Returns:</i> <code>endian_value</code>, converted to <code>value_type</code>,
if required, and having the endianness of the native platform.</p>
<p><i>Remarks:</i> If <code>Align</code> is <code>align::yes</code> then
endianness conversion, if required, is performed by <code>
boost::endian::endian_reverse</code>.</p>
</blockquote>
<pre><code>const char* <a name="data">data</a>() const noexcept;</code></pre>
<blockquote>
<p><i>Returns:</i> A pointer to the first byte of <code>endian_value</code>.</p>
</blockquote>
<h3><a name="Non-member-functions">Non-member functions</a></h3>
<pre>template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align Align&gt;
std::basic_ostream&lt;charT, traits&gt;&amp; <a name="inserter">operator&lt;&lt;</a>(std::basic_ostream&lt;charT, traits&gt;&amp; os,
const endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
</pre>
<blockquote>
<p><i>Returns:</i> <code>os &lt;&lt; x.value()</code>.</p>
</blockquote>
<pre>template &lt;class charT, class traits, order Order, class T,
std::size_t n_bits, align A&gt;
std::basic_istream&lt;charT, traits&gt;&amp; <a name="extractor">operator&gt;&gt;</a>(std::basic_istream&lt;charT, traits&gt;&amp; is,
endian_buffer&lt;Order, T, n_bits, Align&gt;&amp; x);
</pre>
<blockquote>
<p><i>Effects: </i>As if:</p>
<blockquote>
<pre>T i;
if (is &gt;&gt; i)
x = i;
</pre>
</blockquote>
<p><i>Returns:</i> <code>is</code>.</p>
</blockquote>
<h2><a name="FAQ">FAQ</a></h2>
<p>See the <a href="index.html#FAQ">Endian home page</a> FAQ for a library-wide
FAQ.</p>
<p><b>Why not just use Boost.Serialization?</b> Serialization involves a
conversion for every object involved in I/O. Endian integers require no
conversion or copying. They are already in the desired format for binary I/O.
Thus they can be read or written in bulk.</p>
<p><b>Are endian types PODs?</b> Yes for C++11. No for C++03, although several
<a href="#Compilation">macros</a> are available to force PODness in all cases.</p>
<p><b>What are the implications of endian integer types not being PODs with C++03
compilers?</b> They
can't be used in unions. Also, compilers aren't required to align or lay
out storage in portable ways, although this potential problem hasn't prevented
use of Boost.Endian with
real compilers.</p>
<p><b>What good is <i>native </i>endianness?</b> It provides alignment and
size guarantees not available from the built-in types. It eases generic
programming.</p>
<p><b>Why bother with the aligned endian types?</b> Aligned integer operations
may be faster (as much as 10 to 20 times faster) if the endianness and alignment of
the type matches the endianness and alignment requirements of the machine. The code,
however, is
likely to be somewhat less portable than with the unaligned types.</p>
<p><b>Why provide the arithmetic operations?</b> Providing a full set of operations reduces program
clutter and makes code both easier to write and to read. Consider
incrementing a variable in a record. It is very convenient to write:</p>
<pre wrap> ++record.foo;</pre>
<p wrap>Rather than:</p>
<pre wrap> int temp(record.foo);
++temp;
record.foo = temp;</pre>
<h2><a name="Design">Design</a> considerations for Boost.Endian buffers</h2>
<ul>
<li>Must be suitable for I/O - in other words, must be memcpyable.</li>
<li>Must provide exactly the size and internal byte ordering specified.</li>
<li>Must work correctly when the internal integer representation has more bits
that the sum of the bits in the external byte representation. Sign extension
must work correctly when the internal integer representation type has more
bits than the sum of the bits in the external bytes. For example, using
a 64-bit integer internally to represent 40-bit (5 byte) numbers must work for
both positive and negative values.</li>
<li>Must work correctly (including using the same defined external
representation) regardless of whether a compiler treats char as signed or
unsigned.</li>
<li>Unaligned types must not cause compilers to insert padding bytes.</li>
<li>The implementation should supply optimizations with great care. Experience has shown that optimizations of endian
integers often become pessimizations when changing
machines or compilers. Pessimizations can also happen when changing compiler switches,
compiler versions, or CPU models of the same architecture.</li>
</ul>
<h2><a name="C++0x">C++11</a></h2>
<p>The availability of the C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> feature is detected automatically, and will be used if
present to ensure that objects of <code>class endian_buffer</code> are trivial, and
thus PODs.</p>
<h2><a name="Compilation">Compilation</a></h2>
<p>Boost.Endian is implemented entirely within headers, with no need to link to
any Boost object libraries.</p>
<p>Several macros allow user control over features:</p>
<ul>
<li>BOOST_ENDIAN_NO_CTORS causes <code>class endian_buffer</code> to have no
constructors. The intended use is for compiling user code that must be
portable between compilers regardless of C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> support. Use of constructors will always fail, <br>
&nbsp;</li>
<li>BOOST_ENDIAN_FORCE_PODNESS causes BOOST_ENDIAN_NO_CTORS to be defined if
the compiler does not support C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a>. This is ensures that objects of <code>class endian_buffer</code>
are PODs, and so can be used in C++03 unions.
In C++11, <code>class endian_buffer</code> objects are PODs, even though they have
constructors, so can always be used in unions.</li>
</ul>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->25 March, 2015<!--webbot bot="Timestamp" endspan i-checksum="28920" --></p>
<p>© Copyright Beman Dawes, 2006-2009, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>