blob: 83ff875641931055c1612a907330866d2eaa04bd [file] [log] [blame]
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Steppers</title>
<link rel="stylesheet" href="../../../../../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.78.1">
<link rel="home" href="../../index.html" title="Chapter&#160;1.&#160;Boost.Numeric.Odeint">
<link rel="up" href="../odeint_in_detail.html" title="odeint in detail">
<link rel="prev" href="../odeint_in_detail.html" title="odeint in detail">
<link rel="next" href="generation_functions.html" title="Generation functions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../logo.jpg"></td>
<td align="center"><a href="../../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../odeint_in_detail.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../odeint_in_detail.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="generation_functions.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers"></a><a class="link" href="steppers.html" title="Steppers">Steppers</a>
</h3></div></div></div>
<div class="toc"><dl class="toc">
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.explicit_steppers">Explicit
steppers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.symplectic_solvers">Symplectic
solvers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.implicit_solvers">Implicit
solvers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.multistep_methods">Multistep
methods</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.controlled_steppers">Controlled
steppers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.dense_output_steppers">Dense
output steppers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.using_steppers">Using
steppers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.stepper_overview">Stepper
overview</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.custom_steppers">Custom
steppers</a></span></dt>
<dt><span class="section"><a href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers">Custom
Runge-Kutta steppers</a></span></dt>
</dl></div>
<p>
Solving ordinary differential equation numerically is usually done iteratively,
that is a given state of an ordinary differential equation is iterated forward
<span class="emphasis"><em>x(t) -&gt; x(t+dt) -&gt; x(t+2dt)</em></span>. The steppers in odeint
perform one single step. The most general stepper type is described by the
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a> concept.
The stepper concepts of odeint are described in detail in section <a class="link" href="../concepts.html" title="Concepts">Concepts</a>,
here we briefly present the mathematical and numerical details of the steppers.
The <a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
has two versions of the <code class="computeroutput"><span class="identifier">do_step</span></code>
method, one with an in-place transform of the current state and one with
an out-of-place transform:
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">inout</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">in</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
The first parameter is always the system function - a function describing
the ODE. In the first version the second parameter is the step which is here
updated in-place and the third and the fourth parameters are the time and
step size (the time step). After a call to <code class="computeroutput"><span class="identifier">do_step</span></code>
the state <code class="computeroutput"><span class="identifier">inout</span></code> is updated
and now represents an approximate solution of the ODE at time <span class="emphasis"><em>t+dt</em></span>.
In the second version the second argument is the state of the ODE at time
<span class="emphasis"><em>t</em></span>, the third argument is t, the fourth argument is the
approximate solution at time <span class="emphasis"><em>t+dt</em></span> which is filled by
<code class="computeroutput"><span class="identifier">do_step</span></code> and the fifth argument
is the time step. Note that these functions do not change the time <code class="computeroutput"><span class="identifier">t</span></code>.
</p>
<p>
<span class="bold"><strong>System functions</strong></span>
</p>
<p>
Up to now, we have nothing said about the system function. This function
depends on the stepper. For the explicit Runge-Kutta steppers this function
can be a simple callable object hence a simple (global) C-function or a functor.
The parameter syntax is <code class="computeroutput"><span class="identifier">sys</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span>
<span class="identifier">dxdt</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">)</span></code>
and it is assumed that it calculates <span class="emphasis"><em>dx/dt = f(x,t)</em></span>.
The function structure in most cases looks like:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">void</span> <span class="identifier">sys</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span> <span class="comment">/*x*/</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span> <span class="comment">/*dxdt*/</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="comment">/*t*/</span> <span class="special">)</span>
<span class="special">{</span>
<span class="comment">// ...</span>
<span class="special">}</span>
</pre>
<p>
</p>
<p>
Other types of system functions might represent Hamiltonian systems or systems
which also compute the Jacobian needed in implicit steppers. For information
which stepper uses which system function see the stepper table below. It
might be possible that odeint will introduce new system types in near future.
Since the system function is strongly related to the stepper type, such an
introduction of a new stepper might result in a new type of system function.
</p>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.explicit_steppers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.explicit_steppers" title="Explicit steppers">Explicit
steppers</a>
</h4></div></div></div>
<p>
A first specialization are the explicit steppers. Explicit means that the
new state of the ode can be computed explicitly from the current state
without solving implicit equations. Such steppers have in common that they
evaluate the system at time <span class="emphasis"><em>t</em></span> such that the result
of <span class="emphasis"><em>f(x,t)</em></span> can be passed to the stepper. In odeint,
the explicit stepper have two additional methods
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">inout</span> <span class="special">,</span>
<span class="identifier">dxdtin</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span>
<span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">in</span> <span class="special">,</span>
<span class="identifier">dxdtin</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span>
<span class="identifier">out</span> <span class="special">,</span>
<span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
Here, the additional parameter is the value of the function <span class="emphasis"><em>f</em></span>
at state <span class="emphasis"><em>x</em></span> and time <span class="emphasis"><em>t</em></span>. An example
is the Runge-Kutta stepper of fourth order:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">runge_kutta4</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">rk</span><span class="special">;</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// In-place transformation of inout</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys2</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// call with different system: Ok</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// Out-of-place transformation</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">dxdtin</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// In-place tranformation of inout</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">dxdtin</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// Out-of-place transformation</span>
</pre>
<p>
</p>
<p>
In fact, you do not need to call these two methods. You can always use
the simpler <code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">inout</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span>
<span class="identifier">dt</span> <span class="special">)</span></code>,
but sometimes the derivative of the state is needed externally to do some
external computations or to perform some statistical analysis.
</p>
<p>
A special class of the explicit steppers are the FSAL (first-same-as-last)
steppers, where the last evaluation of the system function is also the
first evaluation of the following step. For such steppers the <code class="computeroutput"><span class="identifier">do_step</span></code> method are slightly different:
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">inout</span> <span class="special">,</span>
<span class="identifier">dxdtinout</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span>
<span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">in</span> <span class="special">,</span>
<span class="identifier">dxdtin</span> <span class="special">,</span>
<span class="identifier">out</span> <span class="special">,</span>
<span class="identifier">dxdtout</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span>
<span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
This method takes the derivative at time <code class="computeroutput"><span class="identifier">t</span></code>
and also stores the derivative at time <span class="emphasis"><em>t+dt</em></span>. Calling
these functions subsequently iterating along the solution one saves one
function call by passing the result for dxdt into the next function call.
However, when using FSAL steppers without supplying derivatives:
</p>
<p>
<code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">inout</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">,</span>
<span class="identifier">dt</span> <span class="special">)</span></code>
</p>
<p>
the stepper internally satisfies the FSAL property which means it remembers
the last <code class="computeroutput"><span class="identifier">dxdt</span></code> and uses
it for the next step. An example for a FSAL stepper is the Runge-Kutta-Dopri5
stepper. The FSAL trick is sometimes also referred as the Fehlberg trick.
An example how the FSAL steppers can be used is
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">rk</span><span class="special">;</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys2</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// DONT do this, sys1 is assumed</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys2</span> <span class="special">,</span> <span class="identifier">in2</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys2</span> <span class="special">,</span> <span class="identifier">in3</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// DONT do this, in2 is assumed</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">dxdtinout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys2</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">dxdtinout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// Ok, internal derivative is not used, dxdtinout is updated</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys1</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">dxdtin</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dxdtout</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">rk</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys2</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">dxdtin</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">dxdtout</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// Ok, internal derivative is not used</span>
</pre>
<p>
</p>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
The FSAL-steppers save the derivative at time <span class="emphasis"><em>t+dt</em></span>
internally if they are called via <code class="computeroutput"><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">out</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">)</span></code>. The first call of <code class="computeroutput"><span class="identifier">do_step</span></code>
will initialize <code class="computeroutput"><span class="identifier">dxdt</span></code>
and for all following calls it is assumed that the same system and the
same state are used. If you use the FSAL stepper within the integrate
functions this is taken care of automatically. See the <a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.using_steppers" title="Using steppers">Using
steppers</a> section for more details or look into the table below
to see which stepper have an internal state.
</p></td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.symplectic_solvers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.symplectic_solvers" title="Symplectic solvers">Symplectic
solvers</a>
</h4></div></div></div>
<p>
As mentioned above symplectic solvers are used for Hamiltonian systems.
Symplectic solvers conserve the phase space volume exactly and if the Hamiltonian
system is energy conservative they also conserve the energy approximately.
A special class of symplectic systems are separable systems which can be
written in the form <span class="emphasis"><em>dqdt/dt = f1(p)</em></span>, <span class="emphasis"><em>dpdt/dt
= f2(q)</em></span>, where <span class="emphasis"><em>(q,p)</em></span> are the state of system.
The space of <span class="emphasis"><em>(q,p)</em></span> is sometimes referred as the phase
space and <span class="emphasis"><em>q</em></span> and <span class="emphasis"><em>p</em></span> are said the
be the phase space variables. Symplectic systems in this special form occur
widely in nature. For example the complete classical mechanics as written
down by Newton, Lagrange and Hamilton can be formulated in this framework.
The separability of the system depends on the specific choice of coordinates.
</p>
<p>
Symplectic systems can be solved by odeint by means of the symplectic_euler
stepper and a symplectic Runge-Kutta-Nystrom method of fourth order. These
steppers assume that the system is autonomous, hence the time will not
explicitly occur. Further they fulfill in principle the default Stepper
concept, but they expect the system to be a pair of callable objects. The
first entry of this pair calculates <span class="emphasis"><em>f1(p)</em></span> while the
second calculates <span class="emphasis"><em>f2(q)</em></span>. The syntax is <code class="computeroutput"><span class="identifier">sys</span><span class="special">.</span><span class="identifier">first</span><span class="special">(</span><span class="identifier">p</span><span class="special">,</span><span class="identifier">dqdt</span><span class="special">)</span></code> and <code class="computeroutput"><span class="identifier">sys</span><span class="special">.</span><span class="identifier">second</span><span class="special">(</span><span class="identifier">q</span><span class="special">,</span><span class="identifier">dpdt</span><span class="special">)</span></code>,
where the first and second part can be again simple C-functions of functors.
An example is the harmonic oscillator:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">1</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">harm_osc_f1</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">p</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dqdt</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">dqdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">harm_osc_f2</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">q</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dpdt</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">dpdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">q</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
The state of such an ODE consist now also of two parts, the part for q
(also called the coordinates) and the part for p (the momenta). The full
example for the harmonic oscillator is now:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">pair</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="identifier">x</span><span class="special">;</span>
<span class="identifier">x</span><span class="special">.</span><span class="identifier">first</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">second</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
<span class="identifier">symplectic_rkn_sb3a_mclachlan</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="identifier">rkn</span><span class="special">;</span>
<span class="identifier">rkn</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">harm_osc_f1</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">harm_osc_f2</span><span class="special">()</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
If you like to represent the system with one class you can easily bind
two public method:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">harm_osc</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="identifier">f1</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">p</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dqdt</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">dqdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">p</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">void</span> <span class="identifier">f2</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">q</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dpdt</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">dpdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">q</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">harm_osc</span> <span class="identifier">h</span><span class="special">;</span>
<span class="identifier">rkn</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">bind</span><span class="special">(</span> <span class="special">&amp;</span><span class="identifier">harm_osc</span><span class="special">::</span><span class="identifier">f1</span> <span class="special">,</span> <span class="identifier">h</span> <span class="special">,</span> <span class="identifier">_1</span> <span class="special">,</span> <span class="identifier">_2</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">bind</span><span class="special">(</span> <span class="special">&amp;</span><span class="identifier">harm_osc</span><span class="special">::</span><span class="identifier">f2</span> <span class="special">,</span> <span class="identifier">h</span> <span class="special">,</span> <span class="identifier">_1</span> <span class="special">,</span> <span class="identifier">_2</span> <span class="special">)</span> <span class="special">)</span> <span class="special">,</span>
<span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
Many Hamiltonian system can be written as <span class="emphasis"><em>dq/dt=p</em></span>,
<span class="emphasis"><em>dp/dt=f(q)</em></span> which is computationally much easier than
the full separable system. Very often, it is also possible to transform
the original equations of motion to bring the system in this simplified
form. This kind of system can be used in the symplectic solvers, by simply
passing <span class="emphasis"><em>f(p)</em></span> to the <code class="computeroutput"><span class="identifier">do_step</span></code>
method, again <span class="emphasis"><em>f(p)</em></span> will be represented by a simple
C-function or a functor. Here, the above example of the harmonic oscillator
can be written as
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">pair</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="identifier">x</span><span class="special">;</span>
<span class="identifier">x</span><span class="special">.</span><span class="identifier">first</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">second</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
<span class="identifier">symplectic_rkn_sb3a_mclachlan</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="identifier">rkn</span><span class="special">;</span>
<span class="identifier">rkn</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">harm_osc_f1</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
In this example the function <code class="computeroutput"><span class="identifier">harm_osc_f1</span></code>
is exactly the same function as in the above examples.
</p>
<p>
Note, that the state of the ODE must not be constructed explicitly via
<code class="computeroutput"><span class="identifier">pair</span><span class="special">&lt;</span>
<span class="identifier">vector_type</span> <span class="special">,</span>
<span class="identifier">vector_type</span> <span class="special">&gt;</span>
<span class="identifier">x</span></code>. One can also use a combination
of <code class="computeroutput"><span class="identifier">make_pair</span></code> and <code class="computeroutput"><span class="identifier">ref</span></code>. Furthermore, a convenience version
of <code class="computeroutput"><span class="identifier">do_step</span></code> exists which
takes q and p without combining them into a pair:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">rkn</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">harm_osc_f1</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span> <span class="identifier">q</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span><span class="special">(</span> <span class="identifier">p</span> <span class="special">)</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">rkn</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">harm_osc_f1</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">q</span> <span class="special">,</span> <span class="identifier">p</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">rkn</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">harm_osc_f1</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">harm_osc_f2</span><span class="special">()</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">q</span> <span class="special">,</span> <span class="identifier">p</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.implicit_solvers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.implicit_solvers" title="Implicit solvers">Implicit
solvers</a>
</h4></div></div></div>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
This section is not up-to-date.
</p></td></tr>
</table></div>
<p>
For some kind of systems the stability properties of the classical Runge-Kutta
are not sufficient, especially if the system is said to be stiff. A stiff
system possesses two or more time scales of very different order. Solvers
for stiff systems are usually implicit, meaning that they solve equations
like <span class="emphasis"><em>x(t+dt) = x(t) + dt * f(x(t+1))</em></span>. This particular
scheme is the implicit Euler method. Implicit methods usually solve the
system of equations by a root finding algorithm like the Newton method
and therefore need to know the Jacobian of the system <span class="emphasis"><em>J<sub>&#8203;ij</sub> = df<sub>&#8203;i</sub> /
dx<sub>&#8203;j</sub></em></span>.
</p>
<p>
For implicit solvers the system is again a pair, where the first component
computes <span class="emphasis"><em>f(x,t)</em></span> and the second the Jacobian. The syntax
is <code class="computeroutput"><span class="identifier">sys</span><span class="special">.</span><span class="identifier">first</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">dxdt</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">)</span></code> and
<code class="computeroutput"><span class="identifier">sys</span><span class="special">.</span><span class="identifier">second</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">J</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">)</span></code>.
For the implicit solver the <code class="computeroutput"><span class="identifier">state_type</span></code>
is <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span></code> and the Jacobian is represented
by <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span></code>.
</p>
<div class="important"><table border="0" summary="Important">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Important]" src="../../../../../../../doc/src/images/important.png"></td>
<th align="left">Important</th>
</tr>
<tr><td align="left" valign="top"><p>
Implicit solvers only work with ublas::vector as state type. At the moment,
no other state types are supported.
</p></td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.multistep_methods"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.multistep_methods" title="Multistep methods">Multistep
methods</a>
</h4></div></div></div>
<p>
Another large class of solvers are multi-step method. They save a small
part of the history of the solution and compute the next step with the
help of this history. Since multi-step methods know a part of their history
they do not need to compute the system function very often, usually it
is only computed once. This makes multi-step methods preferable if a call
of the system function is expensive. Examples are ODEs defined on networks,
where the computation of the interaction is usually where expensive (and
might be of order O(N^2)).
</p>
<p>
Multi-step methods differ from the normal steppers. They save a part of
their history and this part has to be explicitly calculated and initialized.
In the following example an Adams-Bashforth-stepper with a history of 5
steps is instantiated and initialized;
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">adams_bashforth_moulton</span><span class="special">&lt;</span> <span class="number">5</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">abm</span><span class="special">;</span>
<span class="identifier">abm</span><span class="special">.</span><span class="identifier">initialize</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">abm</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
The initialization uses a fourth-order Runge-Kutta stepper and after the
call of <code class="computeroutput"><span class="identifier">initialize</span></code> the
state of <code class="computeroutput"><span class="identifier">inout</span></code> has changed
to the current state, such that it can be immediately used by passing it
to following calls of <code class="computeroutput"><span class="identifier">do_step</span></code>.
You can also use you own steppers to initialize the internal state of the
Adams-Bashforth-Stepper:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">abm</span><span class="special">.</span><span class="identifier">initialize</span><span class="special">(</span> <span class="identifier">runge_kutta_fehlberg78</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;()</span> <span class="special">,</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
Many multi-step methods are also explicit steppers, hence the parameter
of <code class="computeroutput"><span class="identifier">do_step</span></code> method do not
differ from the explicit steppers.
</p>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
The multi-step methods have some internal variables which depend on the
explicit solution. Hence after any external changes of your state (e.g.
size) or system the initialize function has to be called again to adjust
the internal state of the stepper. If you use the integrate functions
this will be taken into account. See the <a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.using_steppers" title="Using steppers">Using
steppers</a> section for more details.
</p></td></tr>
</table></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.controlled_steppers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.controlled_steppers" title="Controlled steppers">Controlled
steppers</a>
</h4></div></div></div>
<p>
Many of the above introduced steppers possess the possibility to use adaptive
step-size control. Adaptive step size integration works in principle as
follows:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
The error of one step is calculated. This is usually done by performing
two steps with different orders. The difference between these two steps
is then used as a measure for the error. Stepper which can calculate
the error are <a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a> and they form an own class with an separate concept.
</li>
<li class="listitem">
This error is compared against some predefined error tolerances. Are
the tolerance violated the step is reject and the step-size is decreases.
Otherwise the step is accepted and possibly the step-size is increased.
</li>
</ol></div>
<p>
The class of controlled steppers has their own concept in odeint - the
<a class="link" href="../concepts/controlled_stepper.html" title="Controlled Stepper">Controlled
Stepper</a> concept. They are usually constructed from the underlying
error steppers. An example is the controller for the explicit Runge-Kutta
steppers. The Runge-Kutta steppers enter the controller as a template argument.
Additionally one can pass the Runge-Kutta stepper to the constructor, but
this step is not necessary; the stepper is default-constructed if possible.
</p>
<p>
Different step size controlling mechanism exist. They all have in common
that they somehow compare predefined error tolerance against the error
and that they might reject or accept a step. If a step is rejected the
step size is usually decreased and the step is made again with the reduced
step size. This procedure is repeated until the step is accepted. This
algorithm is implemented in the integration functions.
</p>
<p>
A classical way to decide whether a step is rejected or accepted is to
calculate
</p>
<p>
<span class="emphasis"><em>val = || | err<sub>&#8203;i</sub> | / ( &#949;<sub>&#8203;abs</sub> + &#949;<sub>&#8203;rel</sub> * ( a<sub>&#8203;x</sub> | x<sub>&#8203;i</sub> | + a<sub>&#8203;dxdt</sub> | | dxdt<sub>&#8203;i</sub> | )||
</em></span>
</p>
<p>
<span class="emphasis"><em>&#949;<sub>&#8203;abs</sub></em></span> and <span class="emphasis"><em>&#949;<sub>&#8203;rel</sub></em></span> are the absolute
and the relative error tolerances, and <span class="emphasis"><em>|| x ||</em></span> is
a norm, typically <span class="emphasis"><em>||x||=(&#931;<sub>&#8203;i</sub> x<sub>&#8203;i</sub><sup>2</sup>)<sup>1/2</sup></em></span> or the maximum norm.
The step is rejected if <span class="emphasis"><em>val</em></span> is greater then 1, otherwise
it is accepted. For details of the used norms and error tolerance see the
table below.
</p>
<p>
For the <code class="computeroutput"><span class="identifier">controlled_runge_kutta</span></code>
stepper the new step size is then calculated via
</p>
<p>
<span class="emphasis"><em>val &gt; 1 : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub> max( 0.9 pow( val , -1 / ( O<sub>&#8203;E</sub> - 1
) ) , 0.2 )</em></span>
</p>
<p>
<span class="emphasis"><em>val &lt; 0.5 : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub> min( 0.9 pow( val , -1 / O<sub>&#8203;S</sub> ) ,
5 )</em></span>
</p>
<p>
<span class="emphasis"><em>else : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub></em></span>
</p>
<p>
Here, <span class="emphasis"><em>O<sub>&#8203;S</sub></em></span> and <span class="emphasis"><em>O<sub>&#8203;E</sub></em></span> are the order
of the stepper and the error stepper. These formulas also contain some
safety factors, avoiding that the step size is reduced or increased to
much. For details of the implementations of the controlled steppers in
odeint see the table below.
</p>
<div class="table">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.controlled_steppers.adaptive_step_size_algorithms"></a><p class="title"><b>Table&#160;1.5.&#160;Adaptive step size algorithms</b></p>
<div class="table-contents"><table class="table" summary="Adaptive step size algorithms">
<colgroup>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Stepper
</p>
</th>
<th>
<p>
Tolerance formula
</p>
</th>
<th>
<p>
Norm
</p>
</th>
<th>
<p>
Step size adaption
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">controlled_runge_kutta</span></code>
</p>
</td>
<td>
<p>
<span class="emphasis"><em>val = || | err<sub>&#8203;i</sub> | / ( &#949;<sub>&#8203;abs</sub> + &#949;<sub>&#8203;rel</sub> * ( a<sub>&#8203;x</sub> | x<sub>&#8203;i</sub> | + a<sub>&#8203;dxdt</sub> | |
dxdt<sub>&#8203;i</sub> | )|| </em></span>
</p>
</td>
<td>
<p>
<span class="emphasis"><em>||x|| = max( x<sub>&#8203;i</sub> )</em></span>
</p>
</td>
<td>
<p>
<span class="emphasis"><em>val &gt; 1 : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub> max( 0.9 pow( val , -1
/ ( O<sub>&#8203;E</sub> - 1 ) ) , 0.2 )</em></span>
</p>
<p>
<span class="emphasis"><em>val &lt; 0.5 : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub> min( 0.9 pow( val ,
-1 / O<sub>&#8203;S</sub> ) , 5 )</em></span>
</p>
<p>
<span class="emphasis"><em>else : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub></em></span>
</p>
</td>
</tr>
<tr>
<td>
<p>
<code class="computeroutput"><span class="identifier">rosenbrock4_controller</span></code>
</p>
</td>
<td>
<p>
<span class="emphasis"><em>val = || err<sub>&#8203;i</sub> / ( &#949;<sub>&#8203;abs</sub> + &#949;<sub>&#8203;rel</sub> max( | x<sub>&#8203;i</sub> | , | xold<sub>&#8203;i</sub> | ) )
|| </em></span>
</p>
</td>
<td>
<p>
<span class="emphasis"><em>||x||=(&#931;<sub>&#8203;i</sub> x<sub>&#8203;i</sub><sup>2</sup>)<sup>1/2</sup></em></span>
</p>
</td>
<td>
<p>
<span class="emphasis"><em>fac = max( 1 / 6 , min( 5 , pow( val , 1 / 4 ) / 0.9
) </em></span>
</p>
<p>
<span class="emphasis"><em>fac2 = max( 1 / 6 , min( 5 , dt<sub>&#8203;old</sub> / dt<sub>&#8203;current</sub> pow( val<sup>2</sup> /
val<sub>&#8203;old</sub> , 1 / 4 ) / 0.9 ) </em></span>
</p>
<p>
<span class="emphasis"><em>val &gt; 1 : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub> / fac </em></span>
</p>
<p>
<span class="emphasis"><em>val &lt; 1 : dt<sub>&#8203;new</sub> = dt<sub>&#8203;current</sub> / max( fac , fac2 ) </em></span>
</p>
</td>
</tr>
<tr>
<td>
<p>
bulirsch_stoer
</p>
</td>
<td>
<p>
<span class="emphasis"><em>tol=1/2</em></span>
</p>
</td>
<td>
<p>
-
</p>
</td>
<td>
<p>
<span class="emphasis"><em>dt<sub>&#8203;new</sub> = dt<sub>&#8203;old</sub><sup>1/a</sup></em></span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
To ease to generation of the controlled stepper, generation functions exist
which take the absolute and relative error tolerances and a predefined
error stepper and construct from this knowledge an appropriate controlled
stepper. The generation functions are explained in detail in <a class="link" href="generation_functions.html" title="Generation functions">Generation
functions</a>.
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.dense_output_steppers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.dense_output_steppers" title="Dense output steppers">Dense
output steppers</a>
</h4></div></div></div>
<p>
A fourth class of stepper exists which are the so called dense output steppers.
Dense-output steppers might take larger steps and interpolate the solution
between two consecutive points. This interpolated points have usually the
same order as the order of the stepper. Dense-output steppers are often
composite stepper which take the underlying method as a template parameter.
An example is the <code class="computeroutput"><span class="identifier">dense_output_runge_kutta</span></code>
stepper which takes a Runge-Kutta stepper with dense-output facilities
as argument. Not all Runge-Kutta steppers provide dense-output calculation;
at the moment only the Dormand-Prince 5 stepper provides dense output.
An example is
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">dense_output_runge_kutta</span><span class="special">&lt;</span> <span class="identifier">controlled_runge_kutta</span><span class="special">&lt;</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="special">&gt;</span> <span class="special">&gt;</span> <span class="identifier">dense</span><span class="special">;</span>
<span class="identifier">dense</span><span class="special">.</span><span class="identifier">initialize</span><span class="special">(</span> <span class="identifier">in</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
<span class="identifier">pair</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">times</span> <span class="special">=</span> <span class="identifier">dense</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">);</span>
<span class="special">(</span><span class="keyword">void</span><span class="special">)</span><span class="identifier">times</span><span class="special">;</span>
</pre>
<p>
</p>
<p>
Dense output stepper have their own concept. The main difference to usual
steppers is that they manage the state and time internally. If you call
<code class="computeroutput"><span class="identifier">do_step</span></code>, only the ODE is
passed as argument. Furthermore <code class="computeroutput"><span class="identifier">do_step</span></code>
return the last time interval: <code class="computeroutput"><span class="identifier">t</span></code>
and <code class="computeroutput"><span class="identifier">t</span><span class="special">+</span><span class="identifier">dt</span></code>, hence you can interpolate the solution
between these two times points. Another difference is that they must be
initialized with <code class="computeroutput"><span class="identifier">initialize</span></code>,
otherwise the internal state of the stepper is default constructed which
might produce funny errors or bugs.
</p>
<p>
The construction of the dense output stepper looks a little bit nasty,
since in the case of the <code class="computeroutput"><span class="identifier">dense_output_runge_kutta</span></code>
stepper a controlled stepper and an error stepper have to be nested. To
simplify the generation of the dense output stepper generation functions
exist:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">result_of</span><span class="special">::</span><span class="identifier">make_dense_output</span><span class="special">&lt;</span>
<span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">dense_stepper_type</span><span class="special">;</span>
<span class="identifier">dense_stepper_type</span> <span class="identifier">dense2</span> <span class="special">=</span> <span class="identifier">make_dense_output</span><span class="special">(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;()</span> <span class="special">);</span>
<span class="special">(</span><span class="keyword">void</span><span class="special">)</span><span class="identifier">dense2</span><span class="special">;</span>
</pre>
<p>
</p>
<p>
This statement is also lengthy; it demonstrates how <code class="computeroutput"><span class="identifier">make_dense_output</span></code>
can be used with the <code class="computeroutput"><span class="identifier">result_of</span></code>
protocol. The parameters to <code class="computeroutput"><span class="identifier">make_dense_output</span></code>
are the absolute error tolerance, the relative error tolerance and the
stepper. This explicitly assumes that the underlying stepper is a controlled
stepper and that this stepper has an absolute and a relative error tolerance.
For details about the generation functions see <a class="link" href="generation_functions.html" title="Generation functions">Generation
functions</a>. The generation functions have been designed for easy
use with the integrate functions:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">make_dense_output</span><span class="special">(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;()</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t_start</span> <span class="special">,</span> <span class="identifier">t_end</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span>
</pre>
<p>
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.using_steppers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.using_steppers" title="Using steppers">Using
steppers</a>
</h4></div></div></div>
<p>
This section contains some general information about the usage of the steppers
in odeint.
</p>
<p>
<span class="bold"><strong>Steppers are copied by value</strong></span>
</p>
<p>
The stepper in odeint are always copied by values. They are copied for
the creation of the controlled steppers or the dense output steppers as
well as in the integrate functions.
</p>
<p>
<span class="bold"><strong>Steppers might have a internal state</strong></span>
</p>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
Some of the features described in this section are not yet implemented
</p></td></tr>
</table></div>
<p>
Some steppers require to store some information about the state of the
ODE between two steps. Examples are the multi-step methods which store
a part of the solution during the evolution of the ODE, or the FSAL steppers
which store the last derivative at time <span class="emphasis"><em>t+dt</em></span>, to be
used in the next step. In both cases the steppers expect that consecutive
calls of <code class="computeroutput"><span class="identifier">do_step</span></code> are from
the same solution and the same ODE. In this case it is absolutely necessary
that you call <code class="computeroutput"><span class="identifier">do_step</span></code> with
the same system function and the same state, see also the examples for
the FSAL steppers above.
</p>
<p>
Stepper with an internal state support two additional methods: <code class="computeroutput"><span class="identifier">reset</span></code> which resets the state and <code class="computeroutput"><span class="identifier">initialize</span></code> which initializes the internal
state. The parameters of <code class="computeroutput"><span class="identifier">initialize</span></code>
depend on the specific stepper. For example the Adams-Bashforth-Moulton
stepper provides two initialize methods: <code class="computeroutput"><span class="identifier">initialize</span><span class="special">(</span> <span class="identifier">system</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">)</span></code> which initializes the internal states
with the help of the Runge-Kutta 4 stepper, and <code class="computeroutput"><span class="identifier">initialize</span><span class="special">(</span> <span class="identifier">stepper</span> <span class="special">,</span> <span class="identifier">system</span> <span class="special">,</span> <span class="identifier">inout</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">)</span></code> which initializes with the help of <code class="computeroutput"><span class="identifier">stepper</span></code>. For the case of the FSAL steppers,
<code class="computeroutput"><span class="identifier">initialize</span></code> is <code class="computeroutput"><span class="identifier">initialize</span><span class="special">(</span>
<span class="identifier">sys</span> <span class="special">,</span>
<span class="identifier">in</span> <span class="special">,</span>
<span class="identifier">t</span> <span class="special">)</span></code>
which simply calculates the r.h.s. of the ODE and assigns its value to
the internal derivative.
</p>
<p>
All these steppers have in common, that they initially fill their internal
state by themselves. Hence you are not required to call initialize. See
how this works for the Adams-Bashforth-Moulton stepper: in the example
we instantiate a fourth order Adams-Bashforth-Moulton stepper, meaning
that it will store 4 internal derivatives of the solution at times <code class="computeroutput"><span class="special">(</span><span class="identifier">t</span><span class="special">-</span><span class="identifier">dt</span><span class="special">,</span><span class="identifier">t</span><span class="special">-</span><span class="number">2</span><span class="special">*</span><span class="identifier">dt</span><span class="special">,</span><span class="identifier">t</span><span class="special">-</span><span class="number">3</span><span class="special">*</span><span class="identifier">dt</span><span class="special">,</span><span class="identifier">t</span><span class="special">-</span><span class="number">4</span><span class="special">*</span><span class="identifier">dt</span><span class="special">)</span></code>.
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">adams_bashforth_moulton</span><span class="special">&lt;</span> <span class="number">4</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">stepper</span><span class="special">;</span>
<span class="identifier">stepper</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// make one step with the classical Runge-Kutta stepper and initialize the first internal state</span>
<span class="comment">// the internal array is now [x(t-dt)]</span>
<span class="identifier">stepper</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// make one step with the classical Runge-Kutta stepper and initialize the second internal state</span>
<span class="comment">// the internal state array is now [x(t-dt), x(t-2*dt)]</span>
<span class="identifier">stepper</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// make one step with the classical Runge-Kutta stepper and initialize the third internal state</span>
<span class="comment">// the internal state array is now [x(t-dt), x(t-2*dt), x(t-3*dt)]</span>
<span class="identifier">stepper</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// make one step with the classical Runge-Kutta stepper and initialize the fourth internal state</span>
<span class="comment">// the internal state array is now [x(t-dt), x(t-2*dt), x(t-3*dt), x(t-4*dt)]</span>
<span class="identifier">stepper</span><span class="special">.</span><span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">sys</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">);</span> <span class="comment">// make one step with Adam-Bashforth-Moulton, the internal array of states is now rotated</span>
</pre>
<p>
</p>
<p>
In the stepper table at the bottom of this page one can see which stepper
have an internal state and hence provide the <code class="computeroutput"><span class="identifier">reset</span></code>
and <code class="computeroutput"><span class="identifier">initialize</span></code> methods.
</p>
<p>
<span class="bold"><strong>Stepper might be resizable</strong></span>
</p>
<p>
Nearly all steppers in odeint need to store some intermediate results of
the type <code class="computeroutput"><span class="identifier">state_type</span></code> or
<code class="computeroutput"><span class="identifier">deriv_type</span></code>. To do so odeint
need some memory management for the internal temporaries. As this memory
management is typically related to adjusting the size of vector-like types,
it is called resizing in odeint. So, most steppers in odeint provide an
additional template parameter which controls the size adjustment of the
internal variables - the resizer. In detail odeint provides three policy
classes (resizers) <code class="computeroutput"><span class="identifier">always_resizer</span></code>,
<code class="computeroutput"><span class="identifier">initially_resizer</span></code>, and
<code class="computeroutput"><span class="identifier">never_resizer</span></code>. Furthermore,
all stepper have a method <code class="computeroutput"><span class="identifier">adjust_size</span></code>
which takes a parameter representing a state type and which manually adjusts
the size of the internal variables matching the size of the given instance.
Before performing the actual resizing odeint always checks if the sizes
of the state and the internal variable differ and only resizes if they
are different.
</p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
You only have to worry about memory allocation when using dynamically
sized vector types. If your state type is heap allocated, like <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span></code>, no memory allocation is required
whatsoever.
</p></td></tr>
</table></div>
<p>
By default the resizing parameter is <code class="computeroutput"><span class="identifier">initially_resizer</span></code>,
meaning that the first call to <code class="computeroutput"><span class="identifier">do_step</span></code>
performs the resizing, hence memory allocation. If you have changed the
size of your system and your state you have to call <code class="computeroutput"><span class="identifier">adjust_size</span></code>
by hand in this case. The second resizer is the <code class="computeroutput"><span class="identifier">always_resizer</span></code>
which tries to resize the internal variables at every call of <code class="computeroutput"><span class="identifier">do_step</span></code>. Typical use cases for this kind
of resizer are self expanding lattices like shown in the tutorial ( <a class="link" href="../tutorial/self_expanding_lattices.html" title="Self expanding lattices">Self expanding
lattices</a>) or partial differential equations with an adaptive grid.
Here, no calls of <code class="computeroutput"><span class="identifier">adjust_size</span></code>
are required, the steppers manage everything themselves. The third class
of resizer is the <code class="computeroutput"><span class="identifier">never_resizer</span></code>
which means that the internal variables are never adjusted automatically
and always have to be adjusted by hand .
</p>
<p>
There is a second mechanism which influences the resizing and which controls
if a state type is at least resizeable - a meta-function <code class="computeroutput"><span class="identifier">is_resizeable</span></code>. This meta-function returns
a static Boolean value if any type is resizable. For example it will return
<code class="computeroutput"><span class="keyword">true</span></code> for <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="identifier">T</span> <span class="special">&gt;</span></code> but <code class="computeroutput"><span class="keyword">false</span></code>
for <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="identifier">T</span> <span class="special">&gt;</span></code>.
By default and for unknown types <code class="computeroutput"><span class="identifier">is_resizeable</span></code>
returns <code class="computeroutput"><span class="keyword">false</span></code>, so if you have
your own type you need to specialize this meta-function. For more details
on the resizing mechanism see the section <a class="link" href="state_types__algebras_and_operations.html" title="State types, algebras and operations">Adapt
your own state types</a>.
</p>
<p>
<span class="bold"><strong>Which steppers should be used in which situation</strong></span>
</p>
<p>
odeint provides a quite large number of different steppers such that the
user is left with the question of which stepper fits his needs. Our personal
recommendations are:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<code class="computeroutput"><span class="identifier">runge_kutta_dopri5</span></code>
is maybe the best default stepper. It has step size control as well
as dense-output functionality. Simple create a dense-output stepper
by <code class="computeroutput"><span class="identifier">make_dense_output</span><span class="special">(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-5</span> <span class="special">,</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">state_type</span>
<span class="special">&gt;()</span> <span class="special">)</span></code>.
</li>
<li class="listitem">
<code class="computeroutput"><span class="identifier">runge_kutta4</span></code> is a good
stepper for constant step sizes. It is widely used and very well known.
If you need to create artificial time series this stepper should be
the first choice.
</li>
<li class="listitem">
'runge_kutta_fehlberg78' is similar to the 'runge_kutta4' with the
advantage that it has higher precision. It can also be used with step
size control.
</li>
<li class="listitem">
<code class="computeroutput"><span class="identifier">adams_bashforth_moulton</span></code>
is very well suited for ODEs where the r.h.s. is expensive (in terms
of computation time). It will calculate the system function only once
during each step.
</li>
</ul></div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.stepper_overview"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.stepper_overview" title="Stepper overview">Stepper
overview</a>
</h4></div></div></div>
<div class="table">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.stepper_overview.stepper_algorithms"></a><p class="title"><b>Table&#160;1.6.&#160;Stepper Algorithms</b></p>
<div class="table-contents"><table class="table" summary="Stepper Algorithms">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Algorithm
</p>
</th>
<th>
<p>
Class
</p>
</th>
<th>
<p>
Concept
</p>
</th>
<th>
<p>
System Concept
</p>
</th>
<th>
<p>
Order
</p>
</th>
<th>
<p>
Error Estimation
</p>
</th>
<th>
<p>
Dense Output
</p>
</th>
<th>
<p>
Internal state
</p>
</th>
<th>
<p>
Remarks
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Explicit Euler
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">euler</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/dense_output_stepper.html" title="Dense Output Stepper">Dense
Output Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
1
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Very simple, only for demonstrating purpose
</p>
</td>
</tr>
<tr>
<td>
<p>
Modified Midpoint
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">modified_midpoint</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
configurable (2)
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Used in Bulirsch-Stoer implementation
</p>
</td>
</tr>
<tr>
<td>
<p>
Runge-Kutta 4
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">runge_kutta4</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
4
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
The classical Runge-Kutta scheme, good general scheme without
error control
</p>
</td>
</tr>
<tr>
<td>
<p>
Cash-Karp
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">runge_kutta_cash_karp54</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
5
</p>
</td>
<td>
<p>
Yes (4)
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Good general scheme with error estimation, to be used in controlled_error_stepper
</p>
</td>
</tr>
<tr>
<td>
<p>
Dormand-Prince 5
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">runge_kutta_dopri5</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
5
</p>
</td>
<td>
<p>
Yes (4)
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Standard method with error control and dense output, to be used
in controlled_error_stepper and in dense_output_controlled_explicit_fsal.
</p>
</td>
</tr>
<tr>
<td>
<p>
Fehlberg 78
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">runge_kutta_fehlberg78</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
8
</p>
</td>
<td>
<p>
Yes (7)
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Good high order method with error estimation, to be used in controlled_error_stepper.
</p>
</td>
</tr>
<tr>
<td>
<p>
Adams Bashforth
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">adams_bashforth</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
configurable
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Multistep method
</p>
</td>
</tr>
<tr>
<td>
<p>
Adams Moulton
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">adams_moulton</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
configurable
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Multistep method
</p>
</td>
</tr>
<tr>
<td>
<p>
Adams Bashforth Moulton
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">adams_bashforth_moulton</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
configurable
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Combined multistep method
</p>
</td>
</tr>
<tr>
<td>
<p>
Controlled Runge-Kutta
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">controlled_runge_kutta</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/controlled_stepper.html" title="Controlled Stepper">Controlled
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
depends
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
depends
</p>
</td>
<td>
<p>
Error control for <a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a>. Requires an <a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a> from above. Order depends on the given ErrorStepper
</p>
</td>
</tr>
<tr>
<td>
<p>
Dense Output Runge-Kutta
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">dense_output_runge_kutta</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/dense_output_stepper.html" title="Dense Output Stepper">Dense
Output Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
depends
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Dense output for <a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
and <a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a> from above if they provide dense output functionality
(like <code class="computeroutput"><span class="identifier">euler</span></code> and
<code class="computeroutput"><span class="identifier">runge_kutta_dopri5</span></code>).
Order depends on the given stepper.
</p>
</td>
</tr>
<tr>
<td>
<p>
Bulirsch-Stoer
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">bulirsch_stoer</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/controlled_stepper.html" title="Controlled Stepper">Controlled
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
variable
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Stepper with step size and order control. Very good if high precision
is required.
</p>
</td>
</tr>
<tr>
<td>
<p>
Bulirsch-Stoer Dense Output
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">bulirsch_stoer_dense_out</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/dense_output_stepper.html" title="Dense Output Stepper">Dense
Output Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/system.html" title="System">System</a>
</p>
</td>
<td>
<p>
variable
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Stepper with step size and order control as well as dense output.
Very good if high precision and dense output is required.
</p>
</td>
</tr>
<tr>
<td>
<p>
Implicit Euler
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">implicit_euler</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/implicit_system.html" title="Implicit System">Implicit
System</a>
</p>
</td>
<td>
<p>
1
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Basic implicit routine. Requires the Jacobian. Works only with
<a href="http://www.boost.org/doc/libs/release/libs/numeric/ublas/index.html" target="_top">Boost.uBLAS</a>
vectors as state types.
</p>
</td>
</tr>
<tr>
<td>
<p>
Rosenbrock 4
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">rosenbrock4</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/error_stepper.html" title="Error Stepper">Error
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/implicit_system.html" title="Implicit System">Implicit
System</a>
</p>
</td>
<td>
<p>
4
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Good for stiff systems. Works only with <a href="http://www.boost.org/doc/libs/release/libs/numeric/ublas/index.html" target="_top">Boost.uBLAS</a>
vectors as state types.
</p>
</td>
</tr>
<tr>
<td>
<p>
Controlled Rosenbrock 4
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">rosenbrock4_controller</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/controlled_stepper.html" title="Controlled Stepper">Controlled
Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/implicit_system.html" title="Implicit System">Implicit
System</a>
</p>
</td>
<td>
<p>
4
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Rosenbrock 4 with error control. Works only with <a href="http://www.boost.org/doc/libs/release/libs/numeric/ublas/index.html" target="_top">Boost.uBLAS</a>
vectors as state types.
</p>
</td>
</tr>
<tr>
<td>
<p>
Dense Output Rosenbrock 4
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">rosenbrock4_dense_output</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/dense_output_stepper.html" title="Dense Output Stepper">Dense
Output Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/implicit_system.html" title="Implicit System">Implicit
System</a>
</p>
</td>
<td>
<p>
4
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Controlled Rosenbrock 4 with dense output. Works only with <a href="http://www.boost.org/doc/libs/release/libs/numeric/ublas/index.html" target="_top">Boost.uBLAS</a>
vectors as state types.
</p>
</td>
</tr>
<tr>
<td>
<p>
Symplectic Euler
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">symplectic_euler</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/symplectic_system.html" title="Symplectic System">Symplectic
System</a> <a class="link" href="../concepts/simple_symplectic_system.html" title="Simple Symplectic System">Simple
Symplectic System</a>
</p>
</td>
<td>
<p>
1
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Basic symplectic solver for separable Hamiltonian system
</p>
</td>
</tr>
<tr>
<td>
<p>
Symplectic RKN McLachlan
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">symplectic_rkn_sb3a_mclachlan</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/symplectic_system.html" title="Symplectic System">Symplectic
System</a> <a class="link" href="../concepts/simple_symplectic_system.html" title="Simple Symplectic System">Simple
Symplectic System</a>
</p>
</td>
<td>
<p>
4
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Symplectic solver for separable Hamiltonian system with 6 stages
and order 4.
</p>
</td>
</tr>
<tr>
<td>
<p>
Symplectic RKN McLachlan
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">symplectic_rkn_sb3a_m4_mclachlan</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/symplectic_system.html" title="Symplectic System">Symplectic
System</a> <a class="link" href="../concepts/simple_symplectic_system.html" title="Simple Symplectic System">Simple
Symplectic System</a>
</p>
</td>
<td>
<p>
4
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Symplectic solver with 5 stages and order 4, can be used with
arbitrary precision types.
</p>
</td>
</tr>
<tr>
<td>
<p>
Velocity Verlet
</p>
</td>
<td>
<p>
<code class="computeroutput"><span class="identifier">velocity_verlet</span></code>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a>
</p>
</td>
<td>
<p>
<a class="link" href="../concepts/second_order_system.html" title="Second Order System">Second
Order System</a>
</p>
</td>
<td>
<p>
1
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
No
</p>
</td>
<td>
<p>
Yes
</p>
</td>
<td>
<p>
Velocity verlet method suitable for molecular dynamics simulation.
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break">
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.custom_steppers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.custom_steppers" title="Custom steppers">Custom
steppers</a>
</h4></div></div></div>
<p>
Finally, one can also write new steppers which are fully compatible with
odeint. They only have to fulfill one or several of the stepper <a class="link" href="../concepts.html" title="Concepts">Concepts</a>
of odeint.
</p>
<p>
We will illustrate how to write your own stepper with the example of the
stochastic Euler method. This method is suited to solve stochastic differential
equations (SDEs). A SDE has the form
</p>
<p>
<span class="emphasis"><em>dx/dt = f(x) + g(x) &#958;(t)</em></span>
</p>
<p>
where <span class="emphasis"><em>&#958;</em></span> is Gaussian white noise with zero mean and
a standard deviation <span class="emphasis"><em>&#963;(t)</em></span>. <span class="emphasis"><em>f(x)</em></span>
is said to be the deterministic part while <span class="emphasis"><em>g(x) &#958;</em></span> is
the noisy part. In case <span class="emphasis"><em>g(x)</em></span> is independent of <span class="emphasis"><em>x</em></span>
the SDE is said to have additive noise. It is not possible to solve SDE
with the classical solvers for ODEs since the noisy part of the SDE has
to be scaled differently then the deterministic part with respect to the
time step. But there exist many solvers for SDEs. A classical and easy
method is the stochastic Euler solver. It works by iterating
</p>
<p>
<span class="emphasis"><em>x(t+&#916; t) = x(t) + &#916; t f(x(t)) + &#916; t<sup>1/2</sup> g(x) &#958;(t)</em></span>
</p>
<p>
where &#958;(t) is an independent normal distributed random variable.
</p>
<p>
Now we will implement this method. We will call the stepper <code class="computeroutput"><span class="identifier">stochastic_euler</span></code>. It models the <a class="link" href="../concepts/stepper.html" title="Stepper">Stepper</a> concept.
For simplicity, we fix the state type to be an <code class="computeroutput"><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">N</span> <span class="special">&gt;</span></code> The class definition looks like
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="identifier">size_t</span> <span class="identifier">N</span> <span class="special">&gt;</span> <span class="keyword">class</span> <span class="identifier">stochastic_euler</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">N</span> <span class="special">&gt;</span> <span class="identifier">state_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">N</span> <span class="special">&gt;</span> <span class="identifier">deriv_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">value_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">time_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">unsigned</span> <span class="keyword">short</span> <span class="identifier">order_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">stepper_tag</span> <span class="identifier">stepper_category</span><span class="special">;</span>
<span class="keyword">static</span> <span class="identifier">order_type</span> <span class="identifier">order</span><span class="special">(</span> <span class="keyword">void</span> <span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="number">1</span><span class="special">;</span> <span class="special">}</span>
<span class="comment">// ...</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
The types are needed in order to fulfill the stepper concept. As internal
state and deriv type we use simple arrays in the stochastic Euler, they
are needed for the temporaries. The stepper has the order one which is
returned from the <code class="computeroutput"><span class="identifier">order</span><span class="special">()</span></code> function.
</p>
<p>
The system functions needs to calculate the deterministic and the stochastic
part of our stochastic differential equation. So it might be suitable that
the system function is a pair of functions. The first element of the pair
computes the deterministic part and the second the stochastic one. Then,
the second part also needs to calculate the random numbers in order to
simulate the stochastic process. We can now implement the <code class="computeroutput"><span class="identifier">do_step</span></code> method
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="identifier">size_t</span> <span class="identifier">N</span> <span class="special">&gt;</span> <span class="keyword">class</span> <span class="identifier">stochastic_euler</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="comment">// ...</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">System</span> <span class="special">&gt;</span>
<span class="keyword">void</span> <span class="identifier">do_step</span><span class="special">(</span> <span class="identifier">System</span> <span class="identifier">system</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">time_type</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">time_type</span> <span class="identifier">dt</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">deriv_type</span> <span class="identifier">det</span> <span class="special">,</span> <span class="identifier">stoch</span> <span class="special">;</span>
<span class="identifier">system</span><span class="special">.</span><span class="identifier">first</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">det</span> <span class="special">);</span>
<span class="identifier">system</span><span class="special">.</span><span class="identifier">second</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">stoch</span> <span class="special">);</span>
<span class="keyword">for</span><span class="special">(</span> <span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">=</span><span class="number">0</span> <span class="special">;</span> <span class="identifier">i</span><span class="special">&lt;</span><span class="identifier">x</span><span class="special">.</span><span class="identifier">size</span><span class="special">()</span> <span class="special">;</span> <span class="special">++</span><span class="identifier">i</span> <span class="special">)</span>
<span class="identifier">x</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">+=</span> <span class="identifier">dt</span> <span class="special">*</span> <span class="identifier">det</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">+</span> <span class="identifier">sqrt</span><span class="special">(</span> <span class="identifier">dt</span> <span class="special">)</span> <span class="special">*</span> <span class="identifier">stoch</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
This is all. It is quite simple and the stochastic Euler stepper implement
here is quite general. Of course it can be enhanced, for example
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
use of operations and algebras as well as the resizing mechanism for
maximal flexibility and portability
</li>
<li class="listitem">
use of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">ref</span></code> for the system functions
</li>
<li class="listitem">
use of <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">range</span></code> for the state type in the
<code class="computeroutput"><span class="identifier">do_step</span></code> method
</li>
<li class="listitem">
...
</li>
</ul></div>
<p>
Now, lets look how we use the new stepper. A nice example is the Ornstein-Uhlenbeck
process. It consists of a simple Brownian motion overlapped with an relaxation
process. Its SDE reads
</p>
<p>
<span class="emphasis"><em>dx/dt = - x + &#958;</em></span>
</p>
<p>
where &#958; is Gaussian white noise with standard deviation <span class="emphasis"><em>&#963;</em></span>.
Implementing the Ornstein-Uhlenbeck process is quite simple. We need two
functions or functors - one for the deterministic and one for the stochastic
part:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">const</span> <span class="keyword">static</span> <span class="identifier">size_t</span> <span class="identifier">N</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">N</span> <span class="special">&gt;</span> <span class="identifier">state_type</span><span class="special">;</span>
<span class="keyword">struct</span> <span class="identifier">ornstein_det</span>
<span class="special">{</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">];</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">struct</span> <span class="identifier">ornstein_stoch</span>
<span class="special">{</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">mt19937</span> <span class="special">&amp;</span><span class="identifier">m_rng</span><span class="special">;</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">normal_distribution</span><span class="special">&lt;&gt;</span> <span class="identifier">m_dist</span><span class="special">;</span>
<span class="identifier">ornstein_stoch</span><span class="special">(</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">mt19937</span> <span class="special">&amp;</span><span class="identifier">rng</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">sigma</span> <span class="special">)</span> <span class="special">:</span> <span class="identifier">m_rng</span><span class="special">(</span> <span class="identifier">rng</span> <span class="special">)</span> <span class="special">,</span> <span class="identifier">m_dist</span><span class="special">(</span> <span class="number">0.0</span> <span class="special">,</span> <span class="identifier">sigma</span> <span class="special">)</span> <span class="special">{</span> <span class="special">}</span>
<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">)</span>
<span class="special">{</span>
<span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">m_dist</span><span class="special">(</span> <span class="identifier">m_rng</span> <span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
In the stochastic part we have used the Mersenne twister for the random
number generation and a Gaussian white noise generator <code class="computeroutput"><span class="identifier">normal_distribution</span></code>
with standard deviation <span class="emphasis"><em>&#963;</em></span>. Now, we can use the stochastic
Euler stepper with the integrate functions:
</p>
<p>
</p>
<pre class="programlisting"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">mt19937</span> <span class="identifier">rng</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">dt</span> <span class="special">=</span> <span class="number">0.1</span><span class="special">;</span>
<span class="identifier">state_type</span> <span class="identifier">x</span> <span class="special">=</span> <span class="special">{{</span> <span class="number">1.0</span> <span class="special">}};</span>
<span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">stochastic_euler</span><span class="special">&lt;</span> <span class="identifier">N</span> <span class="special">&gt;()</span> <span class="special">,</span> <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">ornstein_det</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">ornstein_stoch</span><span class="special">(</span> <span class="identifier">rng</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">)</span> <span class="special">),</span>
<span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">10.0</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">,</span> <span class="identifier">streaming_observer</span><span class="special">()</span> <span class="special">);</span>
</pre>
<p>
</p>
<p>
Note, how we have used the <code class="computeroutput"><span class="identifier">make_pair</span></code>
function for the generation of the system function.
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers"></a><a class="link" href="steppers.html#boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers" title="Custom Runge-Kutta steppers">Custom
Runge-Kutta steppers</a>
</h4></div></div></div>
<p>
odeint provides a C++ template meta-algorithm for constructing arbitrary
Runge-Kutta schemes <a href="#ftn.boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers.f0" class="footnote" name="boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers.f0"><sup class="footnote">[1]</sup></a>. Some schemes are predefined in odeint, for example the classical
Runge-Kutta of fourth order, or the Runge-Kutta-Cash-Karp 54 and the Runge-Kutta-Fehlberg
78 method. You can use this meta algorithm to construct you own solvers.
This has the advantage that you can make full use of odeint's algebra and
operation system.
</p>
<p>
Consider for example the method of Heun, defined by the following Butcher
tableau:
</p>
<pre class="programlisting">c1 = 0
c2 = 1/3, a21 = 1/3
c3 = 2/3, a31 = 0 , a32 = 2/3
b1 = 1/4, b2 = 0 , b3 = 3/4
</pre>
<p>
Implementing this method is very easy. First you have to define the constants:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">Value</span> <span class="special">=</span> <span class="keyword">double</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">heun_a1</span> <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">,</span> <span class="number">1</span> <span class="special">&gt;</span> <span class="special">{</span>
<span class="identifier">heun_a1</span><span class="special">(</span> <span class="keyword">void</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">1</span> <span class="special">)</span> <span class="special">/</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">3</span> <span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">Value</span> <span class="special">=</span> <span class="keyword">double</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">heun_a2</span> <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">,</span> <span class="number">2</span> <span class="special">&gt;</span>
<span class="special">{</span>
<span class="identifier">heun_a2</span><span class="special">(</span> <span class="keyword">void</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">0</span> <span class="special">);</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">2</span> <span class="special">)</span> <span class="special">/</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">3</span> <span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">Value</span> <span class="special">=</span> <span class="keyword">double</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">heun_b</span> <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">,</span> <span class="number">3</span> <span class="special">&gt;</span>
<span class="special">{</span>
<span class="identifier">heun_b</span><span class="special">(</span> <span class="keyword">void</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;(</span> <span class="number">1</span> <span class="special">)</span> <span class="special">/</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;(</span> <span class="number">4</span> <span class="special">);</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;(</span> <span class="number">0</span> <span class="special">);</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;(</span> <span class="number">3</span> <span class="special">)</span> <span class="special">/</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;(</span> <span class="number">4</span> <span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">Value</span> <span class="special">=</span> <span class="keyword">double</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">heun_c</span> <span class="special">:</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">,</span> <span class="number">3</span> <span class="special">&gt;</span>
<span class="special">{</span>
<span class="identifier">heun_c</span><span class="special">(</span> <span class="keyword">void</span> <span class="special">)</span>
<span class="special">{</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">0</span> <span class="special">);</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">1</span> <span class="special">)</span> <span class="special">/</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">3</span> <span class="special">);</span>
<span class="special">(*</span><span class="keyword">this</span><span class="special">)[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">2</span> <span class="special">)</span> <span class="special">/</span> <span class="keyword">static_cast</span><span class="special">&lt;</span> <span class="identifier">Value</span> <span class="special">&gt;(</span> <span class="number">3</span> <span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
While this might look cumbersome, packing all parameters into a templatized
class which is not immediately evaluated has the advantage that you can
change the <code class="computeroutput"><span class="identifier">value_type</span></code> of
your stepper to any type you like - presumably arbitrary precision types.
One could also instantiate the coefficients directly
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">1</span> <span class="special">&gt;</span> <span class="identifier">heun_a1</span> <span class="special">=</span> <span class="special">{{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">3.0</span> <span class="special">}};</span>
<span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">2</span> <span class="special">&gt;</span> <span class="identifier">heun_a2</span> <span class="special">=</span> <span class="special">{{</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">2.0</span> <span class="special">/</span> <span class="number">3.0</span> <span class="special">}};</span>
<span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">3</span> <span class="special">&gt;</span> <span class="identifier">heun_b</span> <span class="special">=</span> <span class="special">{{</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">4.0</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">3.0</span> <span class="special">/</span> <span class="number">4.0</span> <span class="special">}};</span>
<span class="keyword">const</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">3</span> <span class="special">&gt;</span> <span class="identifier">heun_c</span> <span class="special">=</span> <span class="special">{{</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">/</span> <span class="number">3.0</span> <span class="special">,</span> <span class="number">2.0</span> <span class="special">/</span> <span class="number">3.0</span> <span class="special">}};</span>
</pre>
<p>
</p>
<p>
But then you are nailed down to use doubles.
</p>
<p>
Next, you need to define your stepper, note that the Heun method has 3
stages and produces approximations of order 3:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span>
<span class="keyword">class</span> <span class="identifier">State</span> <span class="special">,</span>
<span class="keyword">class</span> <span class="identifier">Value</span> <span class="special">=</span> <span class="keyword">double</span> <span class="special">,</span>
<span class="keyword">class</span> <span class="identifier">Deriv</span> <span class="special">=</span> <span class="identifier">State</span> <span class="special">,</span>
<span class="keyword">class</span> <span class="identifier">Time</span> <span class="special">=</span> <span class="identifier">Value</span> <span class="special">,</span>
<span class="keyword">class</span> <span class="identifier">Algebra</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">range_algebra</span> <span class="special">,</span>
<span class="keyword">class</span> <span class="identifier">Operations</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">default_operations</span> <span class="special">,</span>
<span class="keyword">class</span> <span class="identifier">Resizer</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">initially_resizer</span>
<span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">heun</span> <span class="special">:</span> <span class="keyword">public</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">explicit_generic_rk</span><span class="special">&lt;</span> <span class="number">3</span> <span class="special">,</span> <span class="number">3</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">,</span> <span class="identifier">Value</span> <span class="special">,</span> <span class="identifier">Deriv</span> <span class="special">,</span> <span class="identifier">Time</span> <span class="special">,</span>
<span class="identifier">Algebra</span> <span class="special">,</span> <span class="identifier">Operations</span> <span class="special">,</span> <span class="identifier">Resizer</span> <span class="special">&gt;</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">odeint</span><span class="special">::</span><span class="identifier">explicit_generic_rk</span><span class="special">&lt;</span> <span class="number">3</span> <span class="special">,</span> <span class="number">3</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">,</span> <span class="identifier">Value</span> <span class="special">,</span> <span class="identifier">Deriv</span> <span class="special">,</span> <span class="identifier">Time</span> <span class="special">,</span>
<span class="identifier">Algebra</span> <span class="special">,</span> <span class="identifier">Operations</span> <span class="special">,</span> <span class="identifier">Resizer</span> <span class="special">&gt;</span> <span class="identifier">stepper_base_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">state_type</span> <span class="identifier">state_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">wrapped_state_type</span> <span class="identifier">wrapped_state_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">value_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">deriv_type</span> <span class="identifier">deriv_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">wrapped_deriv_type</span> <span class="identifier">wrapped_deriv_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">time_type</span> <span class="identifier">time_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">algebra_type</span> <span class="identifier">algebra_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">operations_type</span> <span class="identifier">operations_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">resizer_type</span> <span class="identifier">resizer_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">stepper_base_type</span><span class="special">::</span><span class="identifier">stepper_type</span> <span class="identifier">stepper_type</span><span class="special">;</span>
<span class="identifier">heun</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">algebra_type</span> <span class="special">&amp;</span><span class="identifier">algebra</span> <span class="special">=</span> <span class="identifier">algebra_type</span><span class="special">()</span> <span class="special">)</span>
<span class="special">:</span> <span class="identifier">stepper_base_type</span><span class="special">(</span>
<span class="identifier">fusion</span><span class="special">::</span><span class="identifier">make_vector</span><span class="special">(</span>
<span class="identifier">heun_a1</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;()</span> <span class="special">,</span>
<span class="identifier">heun_a2</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;()</span> <span class="special">)</span> <span class="special">,</span>
<span class="identifier">heun_b</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;()</span> <span class="special">,</span> <span class="identifier">heun_c</span><span class="special">&lt;</span><span class="identifier">Value</span><span class="special">&gt;()</span> <span class="special">,</span> <span class="identifier">algebra</span> <span class="special">)</span>
<span class="special">{</span> <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
</p>
<p>
That's it. Now, we have a new stepper method and we can use it, for example
with the Lorenz system:
</p>
<p>
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">3</span> <span class="special">&gt;</span> <span class="identifier">state_type</span><span class="special">;</span>
<span class="identifier">heun</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">h</span><span class="special">;</span>
<span class="identifier">state_type</span> <span class="identifier">x</span> <span class="special">=</span> <span class="special">{{</span> <span class="number">10.0</span> <span class="special">,</span> <span class="number">10.0</span> <span class="special">,</span> <span class="number">10.0</span> <span class="special">}};</span>
<span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">h</span> <span class="special">,</span> <span class="identifier">lorenz</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">100.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
<span class="identifier">streaming_observer</span><span class="special">(</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">)</span> <span class="special">);</span>
</pre>
<p>
</p>
</div>
<div class="footnotes">
<br><hr style="width:100; text-align:left;margin-left: 0">
<div id="ftn.boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers.f0" class="footnote"><p><a href="#boost_numeric_odeint.odeint_in_detail.steppers.custom_runge_kutta_steppers.f0" class="para"><sup class="para">[1] </sup></a>
M. Mulansky, K. Ahnert, Template-Metaprogramming applied to numerical
problems, <a href="http://arxiv.org/abs/1110.3233" target="_top">arxiv:1110.3233</a>
</p></div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2009-2012 Karsten
Ahnert and Mario Mulansky<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../odeint_in_detail.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../odeint_in_detail.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="generation_functions.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>