blob: d79af4d8bf5b5481066f6c1657acb85099cbe0cc [file] [log] [blame]
/*
* Simulation of an ensemble of Roessler attractors using NT2 SIMD library
* This requires the SIMD library headers.
*
* Copyright 2014 Mario Mulansky
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
#include <iostream>
#include <vector>
#include <random>
#include <boost/timer.hpp>
#include <boost/array.hpp>
#include <boost/numeric/odeint.hpp>
#include <boost/simd/sdk/simd/pack.hpp>
#include <boost/simd/sdk/simd/io.hpp>
#include <boost/simd/memory/allocator.hpp>
#include <boost/simd/include/functions/splat.hpp>
#include <boost/simd/include/functions/plus.hpp>
#include <boost/simd/include/functions/multiplies.hpp>
namespace odeint = boost::numeric::odeint;
namespace simd = boost::simd;
typedef boost::timer timer_type;
static const size_t dim = 3; // roessler is 3D
typedef double fp_type;
//typedef float fp_type;
typedef simd::pack<fp_type> simd_pack;
typedef boost::array<simd_pack, dim> state_type;
// use the simd allocator to get properly aligned memory
typedef std::vector< state_type, simd::allocator< state_type > > state_vec;
static const size_t pack_size = simd_pack::static_size;
//---------------------------------------------------------------------------
struct roessler_system {
const fp_type m_a, m_b, m_c;
roessler_system(const fp_type a, const fp_type b, const fp_type c)
: m_a(a), m_b(b), m_c(c)
{}
void operator()(const state_type &x, state_type &dxdt, const fp_type t) const
{
dxdt[0] = -1.0*x[1] - x[2];
dxdt[1] = x[0] + m_a * x[1];
dxdt[2] = m_b + x[2] * (x[0] - m_c);
}
};
//---------------------------------------------------------------------------
int main(int argc, char *argv[]) {
if(argc<3)
{
std::cerr << "Expected size and steps as parameter" << std::endl;
exit(1);
}
const size_t n = atoi(argv[1]);
const size_t steps = atoi(argv[2]);
const fp_type dt = 0.01;
const fp_type a = 0.2;
const fp_type b = 1.0;
const fp_type c = 9.0;
// random initial conditions on the device
std::vector<fp_type> x(n), y(n), z(n);
std::default_random_engine generator;
std::uniform_real_distribution<fp_type> distribution_xy(-8.0, 8.0);
std::uniform_real_distribution<fp_type> distribution_z(0.0, 20.0);
auto rand_xy = std::bind(distribution_xy, std::ref(generator));
auto rand_z = std::bind(distribution_z, std::ref(generator));
std::generate(x.begin(), x.end(), rand_xy);
std::generate(y.begin(), y.end(), rand_xy);
std::generate(z.begin(), z.end(), rand_z);
state_vec state(n/pack_size);
for(size_t i=0; i<n/pack_size; ++i)
{
for(size_t p=0; p<pack_size; ++p)
{
state[i][0][p] = x[i*pack_size+p];
state[i][1][p] = y[i*pack_size+p];
state[i][2][p] = z[i*pack_size+p];
}
}
std::cout << "Systems: " << n << std::endl;
std::cout << "Steps: " << steps << std::endl;
std::cout << "SIMD pack size: " << pack_size << std::endl;
std::cout << state[0][0] << std::endl;
// Stepper type
odeint::runge_kutta4_classic<state_type, fp_type, state_type, fp_type,
odeint::array_algebra, odeint::default_operations,
odeint::never_resizer> stepper;
roessler_system sys(a, b, c);
timer_type timer;
fp_type t = 0.0;
for(int step = 0; step < steps; step++)
{
for(size_t i = 0; i < n/pack_size; ++i)
{
stepper.do_step(sys, state[i], t, dt);
}
t += dt;
}
std::cout.precision(16);
std::cout << "Integration finished, runtime for " << steps << " steps: ";
std::cout << timer.elapsed() << " s" << std::endl;
// compute some accumulation to make sure all results have been computed
simd_pack s_pack = 0.0;
for(size_t i = 0; i < n/pack_size; ++i)
{
s_pack += state[i][0];
}
fp_type s = 0.0;
for(size_t p=0; p<pack_size; ++p)
{
s += s_pack[p];
}
std::cout << state[0][0] << std::endl;
std::cout << s/n << std::endl;
}