blob: ad002c07a4d5baef59020b6886285c90f7315806 [file] [log] [blame]
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252"><title>Voronoi Advanced Tutorial</title></head><body>
<h1>Voronoi Advanced Tutorial<br>
</h1>
This tutorial consists of two parts. The first one provides two
examples of a real world problems that default configuration of Voronoi
library is capable to solve. By default configuration we mean the one
that accepts
signed 32-bit integer and outputs floating-point (64-bit
double) coordinates. We provide those examples to convince even the
most skeptical users that they probably don't need to configure library
for higher-precision input or output coordinate types. However if the
posed problem really requires those, fully featured configuration of
both input and output coordinate types is provided in the second part
of this tutorial.<br>
<h2>Red Planet</h2>
<h3>Problem Statement</h3>
<img style="width: 665px; height: 369px;" alt="" src="images/rover.jpg"><br>
<br>Lets imagine that NASA is
planning to send a new robot to Mars. Each day the center situated on Earth
will send a destination point coordinates the robot needs to reach by
the end of the day. Of course we'd like to save as much energy as
possible thus choosing the shortest possible path. This would be a
straight line in a perfect world (we don't consider curvature of
surface), but situation becomes more complicated as there are some
rocks and wells on Mars our robot can't go through. Behind of those our
robot has some dimensions that might not allow it to pass narrow places.<br>
<h3>Application of Voronoi diagram</h3>
The problem above could be solved using Voronoi diagram. The first
stage would be to discretize obstacles (rocks and wells) with
polylines. Afterwards we will compute Voronoi diagram of the input set
of segments. As each Voronoi edge is equidistant from the two closest
sites we are able to filter edges the robot won't be able to pass due
to it's dimensions. The last step would be to run a bit optimized A*
algorithm to find
the shortest or at least suboptimal path and we are done.<br>
<h3>Discretization of input geometries</h3>
To show how good is the default input coordinate type provided by the
Voronoi library
we will discretize the whole area of Mars. That will be approximately
1.44 *&nbsp; 10^8&nbsp; square kilometres that is equal to 1.44 *&nbsp;
10^18&nbsp; square centimetres, which could be snapped to the integer
grid with a side of 1.2 * 10^9 centimetres.&nbsp; To make the Voronoi
graph
precise on the boundaries of that grid we will replicate input map 9
times (3x3), thus Voronoi diagram within a central piece will
provide us with a correct connectivity graph. This step will increase
the size of our grid to 3.6 * 10^9 centimetres that is less than 2^32.
So we are able to discretize the Red Planet's surface within a 1
centimetre
precision using the default input coordinate type (signed 32-bit
integer). That would imply maximum absolute error to be
equal up to 0.5 centimetres per coordinate. Considering the radius of
our robot to be
0.3 metres and for security reasons avoiding any large enough obstacles
that are within 1 metre distance from it that error would be irrelevant.<br>
<span style="color: rgb(0, 0, 0); font-family: sans-serif; font-size: 12px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: 13px; orphans: 2; text-align: left; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; background-color: rgb(249, 249, 249); display: inline ! important; float: none;"></span>
<h3>Output analysis</h3>
Estimates of the resulting Voronoi diagram precision were already
explained <a href="voronoi_main.htm">here</a>.
So to avoid those computations again we will simply state that the
maximum absolute error of the output geometries will be on the grid
boundaries and will be equal to 2^-16 centimetres, which is
approximately equal to 150 nanometres and is 100 times larger than
a radius of a complex molecule. We would like to notice that the
absolute error of the discretization step is much higher than the one
produced by the Voronoi diagram construction algorithm.
<h2>VLSI Design</h2>
<h3>Problem Statement</h3>
<img style="width: 400px; height: 283px;" alt="" src="images/vlsi.jpg"><br>
<br>
Very-large-scale integration (<a href="http://www.rulabinsky.com/cavd/index.html">VLSI</a>) is the
process of creating
integrated circuits by combining thousands of transistors into a single
chip. Considering the fact that it may take weeks or months to get an
integrated circuit manufactured, designers often spend large amounts of
time analyzing their layouts to avoid costly mistakes. One of the
common static analysis checks is minimum distance requirement between
the components of an integrated circuit (distance should be greater
than
specified value).<br>
<h3>Application of Voronoi diagram</h3>
It appears that the minimum distance between components of the input
set of points and segments corresponds to the one of the Voronoi
diagram edges. This means that we can iterate through each edge of
the Voronoi graph, extract the pair of input geometries that form it
and find
the distance between those. As the total amount of such edges is O(N)
value
(N - is the number of input geometries) the minimum distance could be
efficiently find in a linear time once we construct the diagram.<br>
<h3>Discretization of input geometries</h3>
The average size of the modern CPUs is around 2.5 x 2.5 centimetres.
Snapping this to the 32-bit integer grid will give discretization
precision of 2.5 / 2^33 centimetres or 3 picometres that is 10 times
smaller value than radius of an atom. That would be probably good
enough precision even for a few next generations of processors.<br>
<h3>Output analysis</h3>
The maximum absolute error of the output geometries will be 2.5 / 2^47
centimetres or 0.2 femtometres that is 10 times smaller value than
the radius of an electron. However in this particular case we are not
interested in the precision of the output, rather in its topology. As
it was noticed on
the <a href="voronoi_main.htm">Voronoi main page</a> very small edges
are removed from the Voronoi diagram. However user should not worry
because the edge that correspond to the minimal distance won't be among
those. That means that we would be able to 100% correctly identify a
pair of closest objects within the discretization precision.<br>
<h2>Conclusions</h2>
The above two examples show usage of the default Voronoi coordinate
types
in the macro and micro world. The main point of those was to give the user
understanding of a scale that the default coordinate types provide. There
are
two main points we didn't mention before, but that would be relevant to
the most real world problems:<br>
<ul>
<li>The absolute error of the coordinates of the output Voronoi
diagram
inside the 32-bit integer discretization grid is slightly smaller than
the absolute error of discretization itself, thus could be neglected at
all.</li>
<li>In both problems above we didn't consider error of measurement.
For example: is it possible to construct a map of the Mars within the
0.5
centimetres precision, or to get coordinates of the circuit parts
withing the subatomic precision? I guess the answer for both questions
would be "No". And that actually means that the error of the
discretization
step could be neglected comparing to the error produced by the
measuring
devices.<br>
</li>
</ul>
The second statement means that there is actually no point to provide
implementation that operates with floating-point input coordinates,
because those always could be snapped to the integer grid. In case the
user is not satisfied with the precision that the 32-bit integer grid
provides or would like to retrieve coordinates of the output geometries
within a smaller
relative error, follow the next paragraph.<br>
<h2>Voronoi Coordinate Types Configuration</h2>
In the following chapter we are going to extend input coordinate type
to the 48-bit signed
integer and output coordinate type to the 80-bit IEEE floating-point
type
(long double). The code for this chapter is available in <a href="../example/voronoi_advanced_tutorial.cpp">voroni_advanced_tutorial.cpp</a>.
While it won't be possible to compile it using the MSVC compiler (it
doesn't
support 80-bit long double type; ieee754.h header is required), it
should give a clear understanding of how the library supports the user
provided coordinate types.<br>
<br>
So the main step would be to declare the voronoi coordinate type traits
that satisfy set of restrictions explained <a href="voronoi_builder.htm">here</a>:<br>
<br>
<span style="font-family: Courier New,Courier,monospace;">struct
my_voronoi_ctype_traits {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef boost::int64_t int_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef detail::extended_int&lt;3&gt; int_x2_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef detail::extended_int&lt;3&gt; uint_x2_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef detail::extended_int&lt;128&gt; big_int_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef fpt80 fpt_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef fpt80 efpt_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef my_ulp_comparison ulp_cmp_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef my_fpt_converter to_fpt_converter_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef my_fpt_converter to_efpt_converter_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">};<br>
<br>
</span>It is always better to use C++ built-in types wherever it's
possible. That's why we use the 64-bit signed integer type to handle
our
input coordinates. <span style="font-family: Courier New,Courier,monospace;">int_x2_type</span>
and <span style="font-family: Courier New,Courier,monospace;">uint_x2_type</span>
is required to handle 96-bit signed/unsigned integers. As there is no
such built-in type we use library provided efficient fixed integer
type.
The big integer type should be capable to handle 48 * 64 bit integers,
that is
less than 32 * 128, and so far we are good with <span style="font-family: Courier New,Courier,monospace;">extended_int&lt;128&gt;</span>
type. We use the same floating point type for both <span style="font-family: Courier New,Courier,monospace;">fpt_type</span>
and <span style="font-family: Courier New,Courier,monospace;">efpt_type</span>
as it has enough exponent bits to represent both 48 * 32 bit and 48 *
64 bit integers (that is also the reason we don't need two
floating-point converter structures). The <span style="font-family: Courier New,Courier,monospace;">ulp_cmp_type</span>
structure checks weather two IEEE floating-point values are within the
given signed integer ulp range (we won't analyze corresponding code
here as it requires deep understanding of the <a href="http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html">floating-point
architecture</a> and its <a href="../../../boost/polygon/detail/voronoi_ctypes.hpp">usage to compare
floating-point values</a>), but just to mention the declaration is
following:<br>
<span style="font-family: Courier New,Courier,monospace;"></span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">struct
my_ulp_comparison {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; enum
Result {</span><span style="font-family: Courier New,Courier,monospace;"><br>
&nbsp;&nbsp;&nbsp; LESS = -1,</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
EQUAL = 0,</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
MORE = 1</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; };</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; Result
operator()(fpt80 a, fpt80 b, unsigned int maxUlps) const;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">};<br>
<br>
</span>The last step would be to declare the <span style="font-family: Courier New,Courier,monospace;">my_fpt_converter</span>
structure (converts the integer types to the floating-point type):<br>
<br>
<span style="font-family: Courier New,Courier,monospace;">struct
my_fpt_converter {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
template &lt;typename T&gt;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; fpt80
operator()(const T&amp; that) const {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
return static_cast&lt;fpt80&gt;(that);</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; }</span><br style="font-family: Courier New,Courier,monospace;">
<br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
template &lt;size_t N&gt;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; fpt80
operator()(const typename detail::extended_int&lt;N&gt;&amp; that)
const {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
fpt80 result = 0.0;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
for (size_t i = 1; i &lt;= (std::min)((size_t)3, that.size()); ++i) {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
if (i != 1)</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
result *= static_cast&lt;fpt80&gt;(0x100000000ULL);</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
result += that.chunks()[that.size() - i];</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
}</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
return (that.count() &lt; 0) ? -result : result;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; }</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">};<br>
<br>
</span>At this point we are done with declaration of the Voronoi
coordinate type traits. The next step is to declare the Voronoi diagram
traits:<br>
<br>
<span style="font-family: Courier New,Courier,monospace;">struct
my_voronoi_diagram_traits {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef fpt80 coordinate_type;</span><span style="font-family: Courier New,Courier,monospace;"></span><span style="font-family: Courier New,Courier,monospace;"></span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef voronoi_cell&lt;coordinate_type&gt; cell_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef voronoi_vertex&lt;coordinate_type&gt; vertex_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef voronoi_edge&lt;coordinate_type&gt; edge_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
typedef struct {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; public:</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
enum { ULPS = 128 };</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
bool operator()(const point_type &amp;v1, const point_type &amp;v2)
const {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
return (ulp_cmp(v1.x(), v2.x(), ULPS) == my_ulp_comparison::EQUAL
&amp;&amp;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
ulp_cmp(v1.y(), v2.y(), ULPS) == my_ulp_comparison::EQUAL);</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
}</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
private:</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;&nbsp;&nbsp;
my_ulp_comparison ulp_cmp;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp; }
vertex_equality_predicate_type;</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">};</span><br>
<span style="font-family: Courier New,Courier,monospace;"></span><br>
Above we simply declared the Voronoi primitive types
and vertex
equality predicate using the new coordinate type and corresponding ulp
comparison structure. As we are done with the declaration of the
coordinate
type specific structures we are ready to proceed to the construction
step itself. The first step would be to initialize voronoi_builder
structure with a set of random points:<br>
<br>
<span style="font-family: Courier New,Courier,monospace;">// Random
generator and distribution. MAX is equal to 2^48.</span><br>
<span style="font-family: Courier New,Courier,monospace;">boost::mt19937_64
gen(std::time(0));</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">boost::random::uniform_int_distribution&lt;boost::int64_t&gt;
distr(-MAX, MAX-1);<br>
<br>
</span><span style="font-family: Courier New,Courier,monospace;">
// Declaring and configuring Voronoi builder with the new coordinate
type traits.<br>
voronoi_builder&lt;boost::int64_t, my_voronoi_ctype_traits&gt; vb;</span><br>
<span style="font-family: Courier New,Courier,monospace;"></span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">// Voronoi
builder initialization step.<br>
for (size_t i = 0; i &lt; GENERATED_POINTS; ++i) {</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
boost::int64_t x = distr(gen);</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
boost::int64_t y = distr(gen);</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">&nbsp;
vb.insert_point(x, y);</span><br style="font-family: Courier New,Courier,monospace;">
<span style="font-family: Courier New,Courier,monospace;">}<br>
<br>
</span>The second step would be to generate the Voronoi diagram and
this is done as before with the two lines of code:<br>
<br>
<span style="font-family: Courier New,Courier,monospace;">// Declaring
and configuring Voronoi diagram structure with the new coordinate type
traits.<br>
voronoi_diagram&lt;fpt80, my_voronoi_diagram_traits&gt; vd;</span><br>
<span style="font-family: Courier New,Courier,monospace;">vb.construct(&amp;vd);<br>
<br>
</span>From this point the user can operate with the Voronoi diagram
data structure
and in our tutorial we output some simple stats of the resulting
Voronoi graph. Probably the hardest part of this tutorial is
the declaration of the ulp comparison structure. The library provides
efficient well-commented cross-platform implementation for 64-bit
floating-point type (double). So the best advice would be to follow
that implementation, but before doing that really consider thoughtfully if the
default
coordinate types are not capable to deal with your problem.<br>
<br>
<table class="docinfo" id="table1" frame="void" rules="none">
<colgroup> <col class="docinfo-name"><col class="docinfo-content"> </colgroup>
<tbody valign="top">
<tr>
<th class="docinfo-name">Copyright:</th>
<td>Copyright © Andrii Sydorchuk 2010-2012.</td>
</tr>
<tr class="field">
<th class="docinfo-name">License:</th>
<td class="field-body">Distributed under the Boost Software
License, Version 1.0. (See accompanying file <tt class="literal"> <span class="pre">LICENSE_1_0.txt</span></tt> or copy at <a class="reference" target="_top" href="http://www.boost.org/LICENSE_1_0.txt">
http://www.boost.org/LICENSE_1_0.txt</a>)</td>
</tr>
</tbody>
</table>
</body></html>