blob: d8eb7846f126e06184ffa972584b3fa8e8e3c781 [file] [log] [blame]
// Boost.Range library
//
// Copyright Neil Groves 2009. Use, modification and
// distribution is subject to the Boost Software License, Version
// 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
// For more information, see http://www.boost.org/libs/range/
//
#include <boost/range/algorithm/unique.hpp>
#include <boost/range/detail/range_return.hpp>
#include <boost/test/test_tools.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/assign.hpp>
#include <boost/bind.hpp>
#include <boost/config.hpp>
#include "../test_driver/range_overload_test_driver.hpp"
#include <algorithm>
#include <functional>
#include <list>
#include <numeric>
#include <deque>
#include <vector>
namespace boost_range_test_algorithm_unique
{
// test the 'unique' algorithm without a predicate
class unique_test_policy
{
public:
template< class Container >
BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type
test_iter(Container& cont)
{
// There isn't an iterator return version of boost::unique, so just
// perform the standard algorithm
return std::unique(cont.begin(), cont.end());
}
template< boost::range_return_value return_type >
struct test_range
{
template< class Container, class Policy >
BOOST_DEDUCED_TYPENAME boost::range_return<Container,return_type>::type
operator()(Policy&, Container& cont)
{
typedef BOOST_DEDUCED_TYPENAME boost::range_return<Container,return_type>::type result_t;
Container cont2(cont);
result_t result = boost::unique<return_type>(cont);
boost::unique<return_type>(boost::make_iterator_range(cont2));
BOOST_CHECK_EQUAL_COLLECTIONS( cont.begin(), cont.end(),
cont2.begin(), cont2.end() );
return result;
}
};
template<typename Container>
struct test_range_overload
{
BOOST_STATIC_CONSTANT(
::boost::range_return_value,
result_type = ::boost::return_begin_found);
template<typename Policy>
BOOST_DEDUCED_TYPENAME boost::range_return<
Container, result_type
>::type
operator()(Policy& policy, Container& cont)
{
typedef BOOST_DEDUCED_TYPENAME boost::range_return<
Container,result_type>::type result_t;
Container cont2(cont);
result_t result = boost::unique(cont);
boost::unique(boost::make_iterator_range(cont2));
BOOST_CHECK_EQUAL_COLLECTIONS(
cont.begin(), cont.end(),
cont2.begin(), cont2.end());
return result;
}
};
template< class Container >
BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type
reference(Container& cont)
{
return std::unique(cont.begin(), cont.end());
}
};
// test the 'unique' algorithm with a predicate
template<class Pred>
class unique_pred_test_policy
{
public:
template< class Container >
BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type
test_iter(Container& cont)
{
// There isn't an iterator return version of boost::unique, so just
// perform the standard algorithm
return std::unique(cont.begin(), cont.end(), Pred());
}
Pred pred() const { return Pred(); }
template< boost::range_return_value return_type >
struct test_range
{
template< class Container, class Policy >
BOOST_DEDUCED_TYPENAME boost::range_return<Container,return_type>::type
operator()(Policy& policy, Container& cont)
{
typedef BOOST_DEDUCED_TYPENAME boost::range_return<Container,return_type>::type result_t;
Container cont2(cont);
result_t result = boost::unique<return_type>(cont, policy.pred());
boost::unique<return_type>(boost::make_iterator_range(cont2), policy.pred());
BOOST_CHECK_EQUAL_COLLECTIONS( cont.begin(), cont.end(),
cont2.begin(), cont2.end() );
return result;
}
};
template<typename Container>
struct test_range_overload
{
BOOST_STATIC_CONSTANT(
::boost::range_return_value,
result_type = ::boost::return_begin_found);
template<typename Policy>
BOOST_DEDUCED_TYPENAME boost::range_return<Container,result_type>::type
operator()(Policy& policy, Container& cont)
{
typedef BOOST_DEDUCED_TYPENAME boost::range_return<
Container,result_type>::type result_t;
Container cont2(cont);
result_t result = boost::unique(cont, policy.pred());
boost::unique(boost::make_iterator_range(cont2), policy.pred());
BOOST_CHECK_EQUAL_COLLECTIONS(
cont.begin(), cont.end(),
cont2.begin(), cont2.end());
return result;
}
};
template< class Container >
BOOST_DEDUCED_TYPENAME boost::range_iterator<Container>::type
reference(Container& cont)
{
return std::unique(cont.begin(), cont.end(), Pred());
}
};
template<class Container, class TestPolicy, class Pred>
void test_unique_impl(TestPolicy policy, Pred pred)
{
using namespace boost::assign;
typedef BOOST_DEDUCED_TYPENAME Container::value_type value_t;
boost::range_test::range_overload_test_driver test_driver;
Container cont;
test_driver(cont, policy);
cont.clear();
cont += 1;
std::vector<value_t> temp(cont.begin(), cont.end());
std::sort(temp.begin(), temp.end(), pred);
cont.assign(temp.begin(), temp.end());
test_driver(cont, policy);
cont.clear();
cont += 1,2,2,2,2,3,4,5,6,7,8,9;
temp.assign(cont.begin(), cont.end());
std::sort(temp.begin(), temp.end(), pred);
cont.assign(temp.begin(), temp.end());
test_driver(cont, policy);
}
template<typename T>
struct equal_div_2
{
typedef bool result_type;
typedef const T& first_argument_type;
typedef const T& second_argument_type;
bool operator()(const T& left, const T& right) const
{
return left / 2 == right / 2;
}
};
template<class Container>
void test_unique_impl()
{
test_unique_impl<Container>(
unique_test_policy(),
std::less<int>()
);
test_unique_impl<Container>(
unique_pred_test_policy<std::equal_to<int> >(),
std::less<int>()
);
test_unique_impl<Container>(
unique_pred_test_policy<std::equal_to<int> >(),
std::greater<int>()
);
test_unique_impl<Container>(
unique_pred_test_policy<equal_div_2<int> >(),
std::less<int>()
);
}
void test_unique()
{
test_unique_impl< std::vector<int> >();
test_unique_impl< std::list<int> >();
test_unique_impl< std::deque<int> >();
}
}
boost::unit_test::test_suite*
init_unit_test_suite(int argc, char* argv[])
{
boost::unit_test::test_suite* test
= BOOST_TEST_SUITE( "RangeTestSuite.algorithm.unique" );
test->add( BOOST_TEST_CASE( &boost_range_test_algorithm_unique::test_unique ) );
return test;
}