blob: 220454598dd5f81416cf628f41e76fd2a55222ad [file] [log] [blame]
#!/usr/bin/perl -w
# Copyright Steven J. Ross 2008 - 2014
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
#
# See http://www.boost.org/libs/sort for library home page.
# A speed and accuracy testing and automated parameter tuning script.
$usage = "usage: tune.pl [-tune] [-real] [-tune_verify] [-verbose] [-multiple_iterations] [-large] [-small] [-windows] [fileSize]\n";
# testing sorting on 40 million elements by default
# don't test on below 2^22 (4 million) elements as that is the minimum
# for max_splits of 11 to be efficient
use File::Compare;
$defFileSize = 5000000;
$loopCount = 1;
$realtimes = 0;
$verifycorrect = 0;
$verbose = 0;
$exename = "spreadsort";
$makename = "b2 \-\-tune";
$all = "";
$iter_count = 1;
$debug = 0;
$log = "> .tunelog";
$log2 = "> .tunelog 2>&1";
$diffopt = "-q";
$tune = 0;
# have to change the path for UNIX
$prev_path = $ENV{'PATH'};
$ENV{'PATH'} = '.:'.$prev_path;
for (my $ii = 0; $ii < @ARGV; $ii++) {
my $currArg = $ARGV[$ii];
if ($currArg =~ /^-help$/) {
print STDERR $usage;
exit(0);
}
# verification roughly doubles the runtime of this script,
# but it does make sure that results are correct during tuning
# verification always runs during speed comparisons with std::sort
if ($currArg =~ /^-tune_verify$/) {
$verifycorrect = 1;
# use real times only, don't use weighting and special-case tests
# this saves about 5/6 of the script runtime but results are different
} elsif ($currArg =~ /^-real$/) {
$realtimes = 1;
} elsif ($currArg =~ /^-verbose$/) {
$verbose = 1;
# runs until we converge on a precise set of values
# defaults off because of runtime
} elsif ($currArg =~ /^-multiple_iterations$/) {
$iter_count = 4;
} elsif ($currArg =~ /^-debug$/) {
$debug = 1;
$log = "";
$diffopt = "";
} elsif ($currArg =~ /^-large$/) {
$defFileSize = 20000000;
} elsif ($currArg =~ /^-small$/) {
$defFileSize = 100000;
} elsif ($currArg =~ /^-tune$/) {
$tune = 1;
} elsif ($currArg =~ /^-windows$/) {
$makename = "..\\..\\".$makename;
} elsif ($currArg =~ /^-/) {
print STDERR $usage;
exit(0);
} else {
$defFileSize = $currArg;
}
}
$fileSize = $defFileSize;
print STDOUT "Tuning variables for $exename on vectors with $defFileSize elements\n";
# these are reasonable values
$max_splits = 11;
$log_finishing_count = 31;
$log_min_size = 11;
$log_mean_bin_size = 2;
$float_log_min_size = 10;
$float_log_mean_bin_size = 2;
$float_log_finishing_count = 4;
# this value is a minimum to obtain decent file I/O performance
$min_sort_size = 1000;
$std = "";
print STDOUT "building randomgen\n";
system("$makename randomgen $log");
# Tuning to get convergence, maximum of 4 iterations with multiple iterations
# option set
$changed = 1;
my $ii = 0;
if ($tune) {
for ($ii = 0; $changed and $ii < $iter_count; $ii++) {
$changed = 0;
# Tuning max_splits is not recommended.
#print STDOUT "Tuning max_splits\n";
#TuneVariable(\$max_splits, $log_min_size - $log_mean_bin_size, 17);
print STDOUT "Tuning log of the minimum count for recursion\n";
TuneVariable(\$log_min_size, $log_mean_bin_size + 1, $max_splits + $log_mean_bin_size);
print STDOUT "Tuning log_mean_bin_size\n";
TuneVariable(\$log_mean_bin_size, 0, $log_min_size - 1);
print STDOUT "Tuning log_finishing_size\n";
TuneVariable(\$log_finishing_count, 1, $log_min_size);
# tuning variables for floats
$exename = "floatsort";
print STDOUT "Tuning log of the minimum count for recursion for floats\n";
TuneVariable(\$float_log_min_size, $float_log_mean_bin_size + 1, $max_splits + $float_log_mean_bin_size);
print STDOUT "Tuning float_log_mean_bin_size\n";
TuneVariable(\$float_log_mean_bin_size, 0, $float_log_min_size - 1);
print STDOUT "Tuning float_log_finishing_size\n";
TuneVariable(\$float_log_finishing_count, 1, $float_log_min_size);
$exename = "spreadsort";
}
# After optimizations for large datasets are complete, see how small of a
# dataset can be sped up
print STDOUT "Tuning minimum sorting size\n";
TuneMinSize();
print STDOUT "Writing results\n";
}
# Doing a final run with final settings to compare sort times
# also verifying correctness of results
$verifycorrect = 1;
$loopCount = 1;
$fileSize = $defFileSize;
system("$makename $all $log");
$std = "";
PerfTest("Verifying integer_sort", "spreadsort");
PerfTest("Verifying float_sort", "floatsort");
PerfTest("Verifying string_sort", "stringsort");
PerfTest("Verifying integer_sort with mostly-sorted data", "mostlysorted");
PerfTest("Timing integer_sort on already-sorted data", "alreadysorted");
PerfTest("Verifying integer_sort with rightshift", "rightshift");
PerfTest("Verifying integer_sort with 64-bit integers", "int64");
PerfTest("Verifying integer_sort with separate key and data", "keyplusdata");
PerfTest("Verifying reverse integer_sort", "reverseintsort");
PerfTest("Verifying float_sort with doubles", "double");
PerfTest("Verifying float_sort with shift functor", "shiftfloatsort");
PerfTest("Verifying float_sort with functors", "floatfunctorsort");
PerfTest("Verifying string_sort with indexing functors", "charstringsort");
PerfTest("Verifying string_sort with all functors", "stringfunctorsort");
PerfTest("Verifying reverse_string_sort", "reversestringsort");
PerfTest("Verifying reverse_string_sort with functors",
"reversestringfunctorsort");
PerfTest("Verifying generalized string_sort with multiple keys of different types",
"generalizedstruct");
PerfTest("Verifying boost::sort on its custom-built worst-case distribution",
"binaryalrbreaker");
# clean up once we finish
system("$makename clean $log");
# WINDOWS
system("del spread_sort_out.txt $log2");
system("del standard_sort_out.txt $log2");
system("del input.txt $log2");
system("del *.rsp $log2");
system("del *.manifest $log2");
system("del time.txt $log2");
# UNIX
system("rm -f time.txt $log2");
system("rm -f spread_sort_out.txt $log2");
system("rm -f standard_sort_out.txt $log2");
system("rm -f input.txt $log2");
$ENV{'PATH'} = $prev_path;
# A simple speed test comparing std::sort to
sub PerfTest {
my ($message, $local_exe) = @_;
$exename = $local_exe;
print STDOUT "$message\n";
$lastTime = SumTimes();
print STDOUT "runtime: $lastTime\n";
print STDOUT "std::sort time: $baseTime\n";
$speedup = (($baseTime/$lastTime) - 1) * 100;
print STDOUT "speedup: ".sprintf("%.2f", $speedup)."%\n";
}
# Write an updated constants file as part of tuning.
sub WriteConstants {
# deleting the file
$const_file = 'include/boost/sort/spreadsort/detail/constants.hpp';
@cannot = grep {not unlink} $const_file;
print "$0: could not unlink @cannot\n" if @cannot;
# writing the results back to the original file name
unless(open(CONSTANTS, ">$const_file")) {
print STDERR "Can't open output file: $const_file: $!\n";
exit;
}
print CONSTANTS "//constant definitions for the Boost Sort library\n\n";
print CONSTANTS "// Copyright Steven J. Ross 2001 - 2014\n";
print CONSTANTS "// Distributed under the Boost Software License, Version 1.0.\n";
print CONSTANTS "// (See accompanying file LICENSE_1_0.txt or copy at\n";
print CONSTANTS "// http://www.boost.org/LICENSE_1_0.txt)\n\n";
print CONSTANTS "// See http://www.boost.org/libs/sort for library home page.\n";
print CONSTANTS "#ifndef BOOST_SORT_SPREADSORT_DETAIL_CONSTANTS\n";
print CONSTANTS "#define BOOST_SORT_SPREADSORT_DETAIL_CONSTANTS\n";
print CONSTANTS "namespace boost {\n";
print CONSTANTS "namespace sort {\n";
print CONSTANTS "namespace spreadsort {\n";
print CONSTANTS "namespace detail {\n";
print CONSTANTS "//Tuning constants\n";
print CONSTANTS "//This should be tuned to your processor cache;\n";
print CONSTANTS "//if you go too large you get cache misses on bins\n";
print CONSTANTS "//The smaller this number, the less worst-case memory usage.\n";
print CONSTANTS "//If too small, too many recursions slow down spreadsort\n";
print CONSTANTS "enum { max_splits = $max_splits,\n";
print CONSTANTS "//It's better to have a few cache misses and finish sorting\n";
print CONSTANTS "//than to run another iteration\n";
print CONSTANTS "max_finishing_splits = max_splits + 1,\n";
print CONSTANTS "//Sets the minimum number of items per bin.\n";
print CONSTANTS "int_log_mean_bin_size = $log_mean_bin_size,\n";
print CONSTANTS "//Used to force a comparison-based sorting for small bins, if it's faster.\n";
print CONSTANTS "//Minimum value 1\n";
$log_min_split_count = $log_min_size - $log_mean_bin_size;
print CONSTANTS "int_log_min_split_count = $log_min_split_count,\n";
print CONSTANTS "//This is the minimum split count to use spreadsort when it will finish in one\n";
print CONSTANTS "//iteration. Make this larger the faster std::sort is relative to integer_sort.\n";
print CONSTANTS "int_log_finishing_count = $log_finishing_count,\n";
print CONSTANTS "//Sets the minimum number of items per bin for floating point.\n";
print CONSTANTS "float_log_mean_bin_size = $float_log_mean_bin_size,\n";
print CONSTANTS "//Used to force a comparison-based sorting for small bins, if it's faster.\n";
print CONSTANTS "//Minimum value 1\n";
$float_log_min_split_count = $float_log_min_size - $float_log_mean_bin_size;
print CONSTANTS "float_log_min_split_count = $float_log_min_split_count,\n";
print CONSTANTS "//This is the minimum split count to use spreadsort when it will finish in one\n";
print CONSTANTS "//iteration. Make this larger the faster std::sort is relative to float_sort.\n";
print CONSTANTS "float_log_finishing_count = $float_log_finishing_count,\n";
print CONSTANTS "//There is a minimum size below which it is not worth using spreadsort\n";
print CONSTANTS "min_sort_size = $min_sort_size };\n";
print CONSTANTS "}\n}\n}\n}\n#endif\n";
close CONSTANTS;
system("$makename $exename $log");
}
# Sort the file with both std::sort and boost::sort, verify the results are the
# same, update stdtime with std::sort time, and return boost::sort time.
sub CheckTime {
my $sort_time = 0.0;
my $time_file = "time.txt";
# use the line below on systems that can't overwrite.
#system("rm -f $time_file");
system("$exename $loopCount $std > $time_file");
unless(open(CODE, $time_file)) {
print STDERR "Could not open file: $time_file: $!\n";
exit;
}
while ($line = <CODE>) {
@parts = split("time", $line);
if (@parts > 1) {
$sort_time = $parts[1];
last;
}
}
close(CODE);
# verifying correctness
if (not $std and $verifycorrect) {
system("$exename $loopCount -std > $time_file");
unless(open(CODE, $time_file)) {
print STDERR "Could not open file: $time_file: $!\n";
exit;
}
die "Difference in results\n" unless (compare("boost_sort_out.txt","standard_sort_out.txt") == 0) ;
while ($line = <CODE>) {
@parts = split("time", $line);
if (@parts > 1) {
$stdsingle = $parts[1];
last;
}
}
close(CODE);
}
return $sort_time;
}
# Sum up times for different data distributions. If realtimes is not set,
# larger ranges are given a larger weight.
sub SumTimes {
my $time = 0;
$baseTime = 0.0;
$stdsingle = 0.0;
my $ii = 1;
# if we're only using real times, don't bother with the corner-cases
if ($realtimes) {
$ii = 8;
}
for (; $ii <= 16; $ii++) {
system("randomgen $ii $ii $fileSize");
if ($realtimes) {
$time += CheckTime();
$baseTime += $stdsingle;
} else {
# tests with higher levels of randomness are given
# higher priority in timing results
print STDOUT "trying $ii $ii\n" if $debug;
$time += 2 * $ii * CheckTime();
$baseTime += 2 * $ii * $stdsingle;
if ($ii > 1) {
print STDOUT "trying 1 $ii\n" if $debug;
system("randomgen 1 $ii $fileSize");
$time += $ii * CheckTime();
$baseTime += $ii * $stdsingle;
print STDOUT "trying $ii 1\n" if $debug;
system("randomgen $ii 1 $fileSize");
$time += $ii * CheckTime();
$baseTime += $ii * $stdsingle;
}
}
}
if ($time == 0.0) {
$time = 0.01;
}
return $time;
}
# Tests a range of potential values for a variable, and sets it to the fastest.
sub TuneVariable {
my ($tunevar, $beginval, $endval) = @_;
my $best_val = $$tunevar;
my $besttime = 0;
my $startval = $$tunevar;
for ($$tunevar = $beginval; $$tunevar <= $endval; $$tunevar++) {
WriteConstants();
$sumtime = SumTimes();
# If this value is better, use it. If this is the start value
# and it's just as good, use the startval
if (not $besttime or ($sumtime < $besttime) or (($besttime == $sumtime) and ($$tunevar == $startval))) {
$besttime = $sumtime;
$best_val = $$tunevar;
}
print STDOUT "Value: $$tunevar Time: $sumtime\n" if $verbose;
}
$$tunevar = $best_val;
print STDOUT "Best Value: $best_val\n";
if ($best_val != $startval) {
$changed = 1;
}
}
# Determine the cutoff size below which std::sort is faster.
sub TuneMinSize {
for (; $min_sort_size <= $defFileSize; $min_sort_size *= 2) {
$loopCount = ($defFileSize/$min_sort_size)/10;
$fileSize = $min_sort_size;
WriteConstants();
$std = "";
$sumtime = SumTimes();
$std = "-std";
$stdtime = SumTimes();
print STDOUT "Size: $min_sort_size boost::sort Time: $sumtime std::sort Time: $stdtime\n";
last if ($stdtime > $sumtime);
}
}