blob: 872bfc12903336259258fe48b43244cc5498dbdd [file] [log] [blame]
// Copyright 2006-2010 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
#include "../helpers/test.hpp"
#include <boost/predef.h>
#include <boost/next_prior.hpp>
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/input_iterator.hpp"
#include "../helpers/helpers.hpp"
#include <iostream>
namespace insert_tests {
test::seed_t initialize_seed(243432);
template <class X>
void unique_insert_tests1(X*, test::random_generator generator)
{
test::check_instances check_;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef test::ordered<X> ordered;
std::cerr<<"insert(value) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
std::pair<iterator, bool> r1 = x.insert(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool>
r2 = tracker.insert(*it);
BOOST_TEST(r1.second == r2.second);
BOOST_TEST(*r1.first == *r2.first);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void equivalent_insert_tests1(X*, test::random_generator generator)
{
std::cerr<<"insert(value) tests for containers with equivalent keys.\n";
test::check_instances check_;
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME X::iterator r1 = x.insert(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator r2
= tracker.insert(*it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void insert_tests2(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME test::ordered<X> tracker_type;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME tracker_type::iterator tracker_iterator;
std::cerr<<"insert(begin(), value) tests.\n";
{
test::check_instances check_;
X x;
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
iterator r1 = x.insert(x.begin(), *it);
tracker_iterator r2 = tracker.insert(tracker.begin(), *it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert(end(), value) tests.\n";
{
test::check_instances check_;
X x;
X const& x_const = x;
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(100, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
const_iterator r1 = x.insert(x_const.end(), *it);
tracker_iterator r2 = tracker.insert(tracker.end(), *it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert(pos, value) tests.\n";
{
test::check_instances check_;
X x;
const_iterator pos = x.begin();
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
pos = x.insert(pos, *it);
tracker_iterator r2 = tracker.insert(tracker.begin(), *it);
BOOST_TEST(*pos == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert single item range tests.\n";
{
test::check_instances check_;
X x;
tracker_type tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
it = v.begin(); it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type
old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
x.insert(it, boost::next(it));
tracker.insert(*it);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
std::cerr<<"insert range tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(v.begin(), v.end());
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert range with rehash tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(*v.begin());
x.clear();
x.insert(v.begin(), v.end());
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert input iterator range tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
begin = v.begin(), end = v.end();
x.insert(test::input_iterator(begin), test::input_iterator(end));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert copy iterator range tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(test::copy_iterator(v.begin()), test::copy_iterator(v.end()));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert copy iterator range test 2.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v1(500, generator);
test::random_values<X> v2(500, generator);
x.insert(test::copy_iterator(v1.begin()), test::copy_iterator(v1.end()));
x.insert(test::copy_iterator(v2.begin()), test::copy_iterator(v2.end()));
test::check_equivalent_keys(x);
}
}
template <class X>
void unique_emplace_tests1(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef test::ordered<X> ordered;
std::cerr<<"emplace(value) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
std::pair<iterator, bool> r1 = x.emplace(*it);
std::pair<BOOST_DEDUCED_TYPENAME ordered::iterator, bool>
r2 = tracker.insert(*it);
BOOST_TEST(r1.second == r2.second);
BOOST_TEST(*r1.first == *r2.first);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void equivalent_emplace_tests1(X*, test::random_generator generator)
{
std::cerr<<"emplace(value) tests for containers with equivalent keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
BOOST_DEDUCED_TYPENAME X::iterator r1 = x.emplace(*it);
BOOST_DEDUCED_TYPENAME test::ordered<X>::iterator
r2 = tracker.insert(*it);
BOOST_TEST(*r1 == *r2);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
template <class X>
void move_emplace_tests(X*, test::random_generator generator)
{
std::cerr<<"emplace(move(value)) tests for containers with unique keys.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
typename X::value_type value = *it;
x.emplace(boost::move(value));
tracker.insert(*it);
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
tracker.compare(x);
}
template <class X>
void default_emplace_tests(X*, test::random_generator)
{
std::cerr<<"emplace() tests.\n";
bool is_unique = test::has_unique_keys<X>::value;
X x;
x.emplace();
BOOST_TEST(x.size() == 1);
x.emplace();
BOOST_TEST(x.size() == is_unique ? 1: 2);
x.emplace();
BOOST_TEST(x.size() == is_unique ? 1: 3);
typename X::value_type y;
BOOST_TEST(x.count(test::get_key<X>(y)) == is_unique ? 1: 3);
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
x.emplace(y);
BOOST_TEST(x.size() == is_unique ? 1: 4);
BOOST_TEST(x.count(test::get_key<X>(y)) == is_unique ? 1: 4);
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
x.clear();
BOOST_TEST(x.empty());
x.emplace(y);
BOOST_TEST(x.size() == 1);
x.emplace(y);
BOOST_TEST(x.size() == is_unique ? 1: 2);
BOOST_TEST(x.count(test::get_key<X>(y)) == is_unique ? 1: 2);
BOOST_TEST(*x.equal_range(test::get_key<X>(y)).first == y);
}
template <class X>
void map_tests(X*, test::random_generator generator)
{
std::cerr<<"map tests.\n";
X x;
test::ordered<X> tracker = test::create_ordered(x);
test::random_values<X> v(1000, generator);
for(BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it)
{
BOOST_DEDUCED_TYPENAME X::size_type old_bucket_count = x.bucket_count();
float b = x.max_load_factor();
x[it->first] = it->second;
tracker[it->first] = it->second;
tracker.compare_key(x, *it);
if(static_cast<double>(x.size()) < b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
test::check_equivalent_keys(x);
}
// Some tests for when the range's value type doesn't match the container's
// value type.
template <class X>
void map_insert_range_test1(X*, test::random_generator generator)
{
std::cerr<<"map_insert_range_test1\n";
test::check_instances check_;
typedef test::list<
std::pair<
BOOST_DEDUCED_TYPENAME X::key_type,
BOOST_DEDUCED_TYPENAME X::mapped_type
>
> list;
test::random_values<X> v(1000, generator);
list l(v.begin(), v.end());
X x; x.insert(l.begin(), l.end());
test::check_equivalent_keys(x);
}
template <class X>
void map_insert_range_test2(X*, test::random_generator generator)
{
std::cerr<<"map_insert_range_test2\n";
test::check_instances check_;
typedef test::list<
std::pair<BOOST_DEDUCED_TYPENAME X::key_type const, test::implicitly_convertible>
> list;
test::random_values<
boost::unordered_map<BOOST_DEDUCED_TYPENAME X::key_type, test::implicitly_convertible>
> v(1000, generator);
list l(v.begin(), v.end());
X x; x.insert(l.begin(), l.end());
test::check_equivalent_keys(x);
}
boost::unordered_set<test::movable,
test::hash, test::equal_to,
std::allocator<test::movable> >* test_set_std_alloc;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::movable,
test::hash, test::equal_to,
test::allocator2<test::movable> >* test_multiset;
boost::unordered_map<test::movable, test::movable,
test::hash, test::equal_to,
test::allocator2<test::movable> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
UNORDERED_TEST(unique_insert_tests1,
((test_set_std_alloc)(test_set)(test_map))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(equivalent_insert_tests1,
((test_multimap_std_alloc)(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(insert_tests2,
((test_multimap_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(unique_emplace_tests1,
((test_set_std_alloc)(test_set)(test_map))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(equivalent_emplace_tests1,
((test_multimap_std_alloc)(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(move_emplace_tests,
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)
(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(default_emplace_tests,
((test_set_std_alloc)(test_multimap_std_alloc)(test_set)(test_map)
(test_multiset)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(map_tests,
((test_map))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(map_insert_range_test1,
((test_multimap_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
UNORDERED_TEST(map_insert_range_test2,
((test_multimap_std_alloc)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
struct initialize_from_two_ints
{
int a, b;
friend std::size_t hash_value(initialize_from_two_ints const& x)
{
return x.a + x.b;
}
bool operator==(initialize_from_two_ints const& x) const
{
return a == x.a && b == x.b;
}
};
UNORDERED_AUTO_TEST(insert_initializer_list_set)
{
boost::unordered_set<int> set;
set.insert({1,2,3,1});
BOOST_TEST_EQ(set.size(), 3u);
BOOST_TEST(set.find(1) != set.end());
BOOST_TEST(set.find(4) == set.end());
boost::unordered_set<initialize_from_two_ints> set2;
#if BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4,5,0)
set2.insert({{1, 2}});
#else
set2.insert({1, 2});
#endif
BOOST_TEST(set2.size() == 1);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({2,1}) == set2.end());
set2.insert({{3,4},{5,6},{7,8}});
BOOST_TEST(set2.size() == 4);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({3,4}) != set2.end());
BOOST_TEST(set2.find({5,6}) != set2.end());
BOOST_TEST(set2.find({7,8}) != set2.end());
BOOST_TEST(set2.find({8,7}) == set2.end());
set2.insert({{2, 1}, {3,4}});
BOOST_TEST(set2.size() == 5);
BOOST_TEST(set2.find({1,2}) != set2.end());
BOOST_TEST(set2.find({2,1}) != set2.end());
BOOST_TEST(set2.find({3,4}) != set2.end());
BOOST_TEST(set2.find({5,6}) != set2.end());
BOOST_TEST(set2.find({7,8}) != set2.end());
BOOST_TEST(set2.find({8,7}) == set2.end());
}
#if !BOOST_WORKAROUND(BOOST_MSVC, == 1800)
UNORDERED_AUTO_TEST(insert_initializer_list_multiset)
{
boost::unordered_multiset<std::string> multiset;
//multiset.insert({});
BOOST_TEST(multiset.empty());
multiset.insert({"a"});
BOOST_TEST_EQ(multiset.size(), 1u);
BOOST_TEST(multiset.find("a") != multiset.end());
BOOST_TEST(multiset.find("b") == multiset.end());
multiset.insert({"a","b"});
BOOST_TEST(multiset.size() == 3);
BOOST_TEST_EQ(multiset.count("a"), 2u);
BOOST_TEST_EQ(multiset.count("b"), 1u);
BOOST_TEST_EQ(multiset.count("c"), 0u);
}
#endif
UNORDERED_AUTO_TEST(insert_initializer_list_map)
{
boost::unordered_map<std::string, std::string> map;
//map.insert({});
BOOST_TEST(map.empty());
map.insert({{"a", "b"},{"a", "b"},{"d", ""}});
BOOST_TEST_EQ(map.size(), 2u);
}
UNORDERED_AUTO_TEST(insert_initializer_list_multimap)
{
boost::unordered_multimap<std::string, std::string> multimap;
//multimap.insert({});
BOOST_TEST(multimap.empty());
multimap.insert({{"a", "b"},{"a", "b"},{"d", ""}});
BOOST_TEST_EQ(multimap.size(), 3u);
BOOST_TEST_EQ(multimap.count("a"), 2u);
}
#endif
struct overloaded_constructor
{
overloaded_constructor(int x1_ = 1, int x2_ = 2, int x3_ = 3, int x4_ = 4)
: x1(x1_), x2(x2_), x3(x3_), x4(x4_) {}
int x1, x2, x3, x4;
bool operator==(overloaded_constructor const& rhs) const
{
return x1 == rhs.x1 && x2 == rhs.x2 && x3 == rhs.x3 && x4 == rhs.x4;
}
friend std::size_t hash_value(overloaded_constructor const& x)
{
std::size_t hash = 0;
boost::hash_combine(hash, x.x1);
boost::hash_combine(hash, x.x2);
boost::hash_combine(hash, x.x3);
boost::hash_combine(hash, x.x4);
return hash;
}
};
UNORDERED_AUTO_TEST(map_emplace_test)
{
boost::unordered_map<int, overloaded_constructor> x;
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
x.emplace();
BOOST_TEST(x.find(0) != x.end() &&
x.find(0)->second == overloaded_constructor());
#endif
x.emplace(2, 3);
BOOST_TEST(x.find(2) != x.end() &&
x.find(2)->second == overloaded_constructor(3));
}
UNORDERED_AUTO_TEST(set_emplace_test)
{
boost::unordered_set<overloaded_constructor> x;
overloaded_constructor check;
#if !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x5100))
x.emplace();
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
#endif
x.clear();
x.emplace(1);
check = overloaded_constructor(1);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(2, 3);
check = overloaded_constructor(2, 3);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(4, 5, 6);
check = overloaded_constructor(4, 5, 6);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(7, 8, 9, 10);
check = overloaded_constructor(7, 8, 9, 10);
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
}
struct derived_from_piecewise_construct_t :
boost::unordered::piecewise_construct_t {};
derived_from_piecewise_construct_t piecewise_rvalue() {
return derived_from_piecewise_construct_t();
}
struct convertible_to_piecewise {
operator boost::unordered::piecewise_construct_t() const {
return boost::unordered::piecewise_construct;
}
};
UNORDERED_AUTO_TEST(map_emplace_test2)
{
boost::unordered_map<overloaded_constructor, overloaded_constructor> x;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(), boost::make_tuple());
BOOST_TEST(x.find(overloaded_constructor()) != x.end() &&
x.find(overloaded_constructor())->second == overloaded_constructor());
x.emplace(convertible_to_piecewise(), boost::make_tuple(1), boost::make_tuple());
BOOST_TEST(x.find(overloaded_constructor(1)) != x.end() &&
x.find(overloaded_constructor(1))->second == overloaded_constructor());
x.emplace(piecewise_rvalue(), boost::make_tuple(2,3), boost::make_tuple(4,5,6));
BOOST_TEST(x.find(overloaded_constructor(2,3)) != x.end() &&
x.find(overloaded_constructor(2,3))->second == overloaded_constructor(4,5,6));
derived_from_piecewise_construct_t d;
x.emplace(d, boost::make_tuple(9,3,1), boost::make_tuple(10));
BOOST_TEST(x.find(overloaded_constructor(9,3,1)) != x.end() &&
x.find(overloaded_constructor(9,3,1))->second == overloaded_constructor(10));
}
UNORDERED_AUTO_TEST(set_emplace_test2)
{
boost::unordered_set<std::pair<overloaded_constructor, overloaded_constructor> > x;
std::pair<overloaded_constructor, overloaded_constructor> check;
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(), boost::make_tuple());
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
x.clear();
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(1), boost::make_tuple(2,3));
check = std::make_pair(overloaded_constructor(1), overloaded_constructor(2, 3));;
BOOST_TEST(x.find(check) != x.end() && *x.find(check) == check);
}
}
RUN_TESTS()