blob: d9ad754e436b9981256172246dedd036ce5584e6 [file] [log] [blame]
/*
* Copyright 2011 Steven Watanabe
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
#include "jam.h"
#include "function.h"
#include "class.h"
#include "compile.h"
#include "constants.h"
#include "filesys.h"
#include "frames.h"
#include "lists.h"
#include "mem.h"
#include "pathsys.h"
#include "rules.h"
#include "search.h"
#include "variable.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef OS_CYGWIN
# include <cygwin/version.h>
# include <sys/cygwin.h>
# ifdef CYGWIN_VERSION_CYGWIN_CONV
# include <errno.h>
# endif
# include <windows.h>
#endif
int glob( char const * s, char const * c );
void backtrace( FRAME * );
void backtrace_line( FRAME * );
#define INSTR_PUSH_EMPTY 0
#define INSTR_PUSH_CONSTANT 1
#define INSTR_PUSH_ARG 2
#define INSTR_PUSH_VAR 3
#define INSTR_PUSH_VAR_FIXED 57
#define INSTR_PUSH_GROUP 4
#define INSTR_PUSH_RESULT 5
#define INSTR_PUSH_APPEND 6
#define INSTR_SWAP 7
#define INSTR_JUMP_EMPTY 8
#define INSTR_JUMP_NOT_EMPTY 9
#define INSTR_JUMP 10
#define INSTR_JUMP_LT 11
#define INSTR_JUMP_LE 12
#define INSTR_JUMP_GT 13
#define INSTR_JUMP_GE 14
#define INSTR_JUMP_EQ 15
#define INSTR_JUMP_NE 16
#define INSTR_JUMP_IN 17
#define INSTR_JUMP_NOT_IN 18
#define INSTR_JUMP_NOT_GLOB 19
#define INSTR_FOR_INIT 56
#define INSTR_FOR_LOOP 20
#define INSTR_SET_RESULT 21
#define INSTR_RETURN 22
#define INSTR_POP 23
#define INSTR_PUSH_LOCAL 24
#define INSTR_POP_LOCAL 25
#define INSTR_SET 26
#define INSTR_APPEND 27
#define INSTR_DEFAULT 28
#define INSTR_PUSH_LOCAL_FIXED 58
#define INSTR_POP_LOCAL_FIXED 59
#define INSTR_SET_FIXED 60
#define INSTR_APPEND_FIXED 61
#define INSTR_DEFAULT_FIXED 62
#define INSTR_PUSH_LOCAL_GROUP 29
#define INSTR_POP_LOCAL_GROUP 30
#define INSTR_SET_GROUP 31
#define INSTR_APPEND_GROUP 32
#define INSTR_DEFAULT_GROUP 33
#define INSTR_PUSH_ON 34
#define INSTR_POP_ON 35
#define INSTR_SET_ON 36
#define INSTR_APPEND_ON 37
#define INSTR_DEFAULT_ON 38
#define INSTR_GET_ON 65
#define INSTR_CALL_RULE 39
#define INSTR_CALL_MEMBER_RULE 66
#define INSTR_APPLY_MODIFIERS 40
#define INSTR_APPLY_INDEX 41
#define INSTR_APPLY_INDEX_MODIFIERS 42
#define INSTR_APPLY_MODIFIERS_GROUP 43
#define INSTR_APPLY_INDEX_GROUP 44
#define INSTR_APPLY_INDEX_MODIFIERS_GROUP 45
#define INSTR_COMBINE_STRINGS 46
#define INSTR_GET_GRIST 64
#define INSTR_INCLUDE 47
#define INSTR_RULE 48
#define INSTR_ACTIONS 49
#define INSTR_PUSH_MODULE 50
#define INSTR_POP_MODULE 51
#define INSTR_CLASS 52
#define INSTR_BIND_MODULE_VARIABLES 63
#define INSTR_APPEND_STRINGS 53
#define INSTR_WRITE_FILE 54
#define INSTR_OUTPUT_STRINGS 55
typedef struct instruction
{
unsigned int op_code;
int arg;
} instruction;
typedef struct _subfunction
{
OBJECT * name;
FUNCTION * code;
int local;
} SUBFUNCTION;
typedef struct _subaction
{
OBJECT * name;
FUNCTION * command;
int flags;
} SUBACTION;
#define FUNCTION_BUILTIN 0
#define FUNCTION_JAM 1
struct argument
{
int flags;
#define ARG_ONE 0
#define ARG_OPTIONAL 1
#define ARG_PLUS 2
#define ARG_STAR 3
#define ARG_VARIADIC 4
OBJECT * type_name;
OBJECT * arg_name;
int index;
};
struct arg_list
{
int size;
struct argument * args;
};
struct _function
{
int type;
int reference_count;
OBJECT * rulename;
struct arg_list * formal_arguments;
int num_formal_arguments;
};
typedef struct _builtin_function
{
FUNCTION base;
LIST * ( * func )( FRAME *, int flags );
int flags;
} BUILTIN_FUNCTION;
typedef struct _jam_function
{
FUNCTION base;
int code_size;
instruction * code;
int num_constants;
OBJECT * * constants;
int num_subfunctions;
SUBFUNCTION * functions;
int num_subactions;
SUBACTION * actions;
FUNCTION * generic;
OBJECT * file;
int line;
} JAM_FUNCTION;
#ifdef HAVE_PYTHON
#define FUNCTION_PYTHON 2
typedef struct _python_function
{
FUNCTION base;
PyObject * python_function;
} PYTHON_FUNCTION;
static LIST * call_python_function( PYTHON_FUNCTION *, FRAME * );
#endif
struct _stack
{
void * data;
};
static void * stack;
STACK * stack_global()
{
static STACK result;
if ( !stack )
{
int const size = 1 << 21;
stack = BJAM_MALLOC( size );
result.data = (char *)stack + size;
}
return &result;
}
struct list_alignment_helper
{
char ch;
LIST * l;
};
#define LISTPTR_ALIGN_BASE ( sizeof( struct list_alignment_helper ) - sizeof( LIST * ) )
#define LISTPTR_ALIGN ( ( LISTPTR_ALIGN_BASE > sizeof( LIST * ) ) ? sizeof( LIST * ) : LISTPTR_ALIGN_BASE )
static void check_alignment( STACK * s )
{
assert( (size_t)s->data % LISTPTR_ALIGN == 0 );
}
void * stack_allocate( STACK * s, int size )
{
check_alignment( s );
s->data = (char *)s->data - size;
check_alignment( s );
return s->data;
}
void stack_deallocate( STACK * s, int size )
{
check_alignment( s );
s->data = (char *)s->data + size;
check_alignment( s );
}
void stack_push( STACK * s, LIST * l )
{
*(LIST * *)stack_allocate( s, sizeof( LIST * ) ) = l;
}
LIST * stack_pop( STACK * s )
{
LIST * const result = *(LIST * *)s->data;
stack_deallocate( s, sizeof( LIST * ) );
return result;
}
LIST * stack_top( STACK * s )
{
check_alignment( s );
return *(LIST * *)s->data;
}
LIST * stack_at( STACK * s, int n )
{
check_alignment( s );
return *( (LIST * *)s->data + n );
}
void stack_set( STACK * s, int n, LIST * value )
{
check_alignment( s );
*((LIST * *)s->data + n) = value;
}
void * stack_get( STACK * s )
{
check_alignment( s );
return s->data;
}
LIST * frame_get_local( FRAME * frame, int idx )
{
/* The only local variables are the arguments. */
return list_copy( lol_get( frame->args, idx ) );
}
static OBJECT * function_get_constant( JAM_FUNCTION * function, int idx )
{
return function->constants[ idx ];
}
static LIST * function_get_variable( JAM_FUNCTION * function, FRAME * frame,
int idx )
{
return list_copy( var_get( frame->module, function->constants[ idx ] ) );
}
static void function_set_variable( JAM_FUNCTION * function, FRAME * frame,
int idx, LIST * value )
{
var_set( frame->module, function->constants[ idx ], value, VAR_SET );
}
static LIST * function_swap_variable( JAM_FUNCTION * function, FRAME * frame,
int idx, LIST * value )
{
return var_swap( frame->module, function->constants[ idx ], value );
}
static void function_append_variable( JAM_FUNCTION * function, FRAME * frame,
int idx, LIST * value )
{
var_set( frame->module, function->constants[ idx ], value, VAR_APPEND );
}
static void function_default_variable( JAM_FUNCTION * function, FRAME * frame,
int idx, LIST * value )
{
var_set( frame->module, function->constants[ idx ], value, VAR_DEFAULT );
}
static void function_set_rule( JAM_FUNCTION * function, FRAME * frame,
STACK * s, int idx )
{
SUBFUNCTION * sub = function->functions + idx;
new_rule_body( frame->module, sub->name, sub->code, !sub->local );
}
static void function_set_actions( JAM_FUNCTION * function, FRAME * frame,
STACK * s, int idx )
{
SUBACTION * sub = function->actions + idx;
LIST * bindlist = stack_pop( s );
new_rule_actions( frame->module, sub->name, sub->command, bindlist,
sub->flags );
}
/*
* Returns the index if name is "<", ">", "1", "2", ... or "19" otherwise
* returns -1.
*/
static int get_argument_index( char const * s )
{
if ( s[ 0 ] != '\0')
{
if ( s[ 1 ] == '\0' )
{
switch ( s[ 0 ] )
{
case '<': return 0;
case '>': return 1;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return s[ 0 ] - '1';
}
}
else if ( s[ 0 ] == '1' && s[ 2 ] == '\0' )
{
switch( s[ 1 ] )
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return s[ 1 ] - '0' + 10 - 1;
}
}
}
return -1;
}
static LIST * function_get_named_variable( JAM_FUNCTION * function,
FRAME * frame, OBJECT * name )
{
int const idx = get_argument_index( object_str( name ) );
return idx == -1
? list_copy( var_get( frame->module, name ) )
: list_copy( lol_get( frame->args, idx ) );
}
static void function_set_named_variable( JAM_FUNCTION * function, FRAME * frame,
OBJECT * name, LIST * value)
{
var_set( frame->module, name, value, VAR_SET );
}
static LIST * function_swap_named_variable( JAM_FUNCTION * function,
FRAME * frame, OBJECT * name, LIST * value )
{
return var_swap( frame->module, name, value );
}
static void function_append_named_variable( JAM_FUNCTION * function,
FRAME * frame, OBJECT * name, LIST * value)
{
var_set( frame->module, name, value, VAR_APPEND );
}
static void function_default_named_variable( JAM_FUNCTION * function,
FRAME * frame, OBJECT * name, LIST * value )
{
var_set( frame->module, name, value, VAR_DEFAULT );
}
static LIST * function_call_rule( JAM_FUNCTION * function, FRAME * frame,
STACK * s, int n_args, char const * unexpanded, OBJECT * file, int line )
{
FRAME inner[ 1 ];
int i;
LIST * first = stack_pop( s );
LIST * result = L0;
OBJECT * rulename;
LIST * trailing;
frame->file = file;
frame->line = line;
if ( list_empty( first ) )
{
backtrace_line( frame );
printf( "warning: rulename %s expands to empty string\n", unexpanded );
backtrace( frame );
list_free( first );
for ( i = 0; i < n_args; ++i )
list_free( stack_pop( s ) );
return result;
}
rulename = object_copy( list_front( first ) );
frame_init( inner );
inner->prev = frame;
inner->prev_user = frame->module->user_module ? frame : frame->prev_user;
inner->module = frame->module; /* This gets fixed up in evaluate_rule(). */
for ( i = 0; i < n_args; ++i )
lol_add( inner->args, stack_at( s, n_args - i - 1 ) );
for ( i = 0; i < n_args; ++i )
stack_pop( s );
trailing = list_pop_front( first );
if ( trailing )
{
if ( inner->args->count == 0 )
lol_add( inner->args, trailing );
else
{
LIST * * const l = &inner->args->list[ 0 ];
*l = list_append( trailing, *l );
}
}
result = evaluate_rule( bindrule( rulename, inner->module ), rulename, inner );
frame_free( inner );
object_free( rulename );
return result;
}
static LIST * function_call_member_rule( JAM_FUNCTION * function, FRAME * frame, STACK * s, int n_args, OBJECT * rulename, OBJECT * file, int line )
{
FRAME inner[ 1 ];
int i;
LIST * first = stack_pop( s );
LIST * result = L0;
LIST * trailing;
RULE * rule;
module_t * module;
OBJECT * real_rulename = 0;
frame->file = file;
frame->line = line;
if ( list_empty( first ) )
{
backtrace_line( frame );
printf( "warning: object is empty\n" );
backtrace( frame );
list_free( first );
for( i = 0; i < n_args; ++i )
{
list_free( stack_pop( s ) );
}
return result;
}
/* FIXME: handle generic case */
assert( list_length( first ) == 1 );
module = bindmodule( list_front( first ) );
if ( module->class_module )
{
rule = bindrule( rulename, module );
real_rulename = object_copy( function_rulename( rule->procedure ) );
}
else
{
string buf[ 1 ];
string_new( buf );
string_append( buf, object_str( list_front( first ) ) );
string_push_back( buf, '.' );
string_append( buf, object_str( rulename ) );
real_rulename = object_new( buf->value );
string_free( buf );
rule = bindrule( real_rulename, frame->module );
}
frame_init( inner );
inner->prev = frame;
inner->prev_user = frame->module->user_module ? frame : frame->prev_user;
inner->module = frame->module; /* This gets fixed up in evaluate_rule(), below. */
for( i = 0; i < n_args; ++i )
{
lol_add( inner->args, stack_at( s, n_args - i - 1 ) );
}
for( i = 0; i < n_args; ++i )
{
stack_pop( s );
}
if ( list_length( first ) > 1 )
{
string buf[ 1 ];
LIST * trailing = L0;
LISTITER iter = list_begin( first ), end = list_end( first );
iter = list_next( iter );
string_new( buf );
for ( ; iter != end; iter = list_next( iter ) )
{
string_append( buf, object_str( list_item( iter ) ) );
string_push_back( buf, '.' );
string_append( buf, object_str( rulename ) );
trailing = list_push_back( trailing, object_new( buf->value ) );
string_truncate( buf, 0 );
}
string_free( buf );
if ( inner->args->count == 0 )
lol_add( inner->args, trailing );
else
{
LIST * * const l = &inner->args->list[ 0 ];
*l = list_append( trailing, *l );
}
}
result = evaluate_rule( rule, real_rulename, inner );
frame_free( inner );
object_free( rulename );
object_free( real_rulename );
return result;
}
/* Variable expansion */
typedef struct
{
int sub1;
int sub2;
} subscript_t;
typedef struct
{
PATHNAME f; /* :GDBSMR -- pieces */
char parent; /* :P -- go to parent directory */
char filemods; /* one of the above applied */
char downshift; /* :L -- downshift result */
char upshift; /* :U -- upshift result */
char to_slashes; /* :T -- convert "\" to "/" */
char to_windows; /* :W -- convert cygwin to native paths */
PATHPART empty; /* :E -- default for empties */
PATHPART join; /* :J -- join list with char */
} VAR_EDITS;
static LIST * apply_modifiers_impl( LIST * result, string * buf,
VAR_EDITS * edits, int n, LISTITER iter, LISTITER end );
static void get_iters( subscript_t const subscript, LISTITER * const first,
LISTITER * const last, int const length );
/*
* var_edit_parse() - parse : modifiers into PATHNAME structure
*
* The : modifiers in a $(varname:modifier) currently support replacing or
* omitting elements of a filename, and so they are parsed into a PATHNAME
* structure (which contains pointers into the original string).
*
* Modifiers of the form "X=value" replace the component X with the given value.
* Modifiers without the "=value" cause everything but the component X to be
* omitted. X is one of:
*
* G <grist>
* D directory name
* B base name
* S .suffix
* M (member)
* R root directory - prepended to whole path
*
* This routine sets:
*
* f->f_xxx.ptr = 0
* f->f_xxx.len = 0
* -> leave the original component xxx
*
* f->f_xxx.ptr = string
* f->f_xxx.len = strlen( string )
* -> replace component xxx with string
*
* f->f_xxx.ptr = ""
* f->f_xxx.len = 0
* -> omit component xxx
*
* var_edit_file() below and path_build() obligingly follow this convention.
*/
static int var_edit_parse( char const * mods, VAR_EDITS * edits, int havezeroed
)
{
while ( *mods )
{
PATHPART * fp;
switch ( *mods++ )
{
case 'L': edits->downshift = 1; continue;
case 'U': edits->upshift = 1; continue;
case 'P': edits->parent = edits->filemods = 1; continue;
case 'E': fp = &edits->empty; goto strval;
case 'J': fp = &edits->join; goto strval;
case 'G': fp = &edits->f.f_grist; goto fileval;
case 'R': fp = &edits->f.f_root; goto fileval;
case 'D': fp = &edits->f.f_dir; goto fileval;
case 'B': fp = &edits->f.f_base; goto fileval;
case 'S': fp = &edits->f.f_suffix; goto fileval;
case 'M': fp = &edits->f.f_member; goto fileval;
case 'T': edits->to_slashes = 1; continue;
case 'W': edits->to_windows = 1; continue;
default:
continue; /* Should complain, but so what... */
}
fileval:
/* Handle :CHARS, where each char (without a following =) selects a
* particular file path element. On the first such char, we deselect all
* others (by setting ptr = "", len = 0) and for each char we select
* that element (by setting ptr = 0).
*/
edits->filemods = 1;
if ( *mods != '=' )
{
if ( !havezeroed++ )
{
int i;
for ( i = 0; i < 6; ++i )
{
edits->f.part[ i ].len = 0;
edits->f.part[ i ].ptr = "";
}
}
fp->ptr = 0;
continue;
}
strval:
/* Handle :X=value, or :X */
if ( *mods != '=' )
{
fp->ptr = "";
fp->len = 0;
}
else
{
fp->ptr = ++mods;
fp->len = strlen( mods );
mods += fp->len;
}
}
return havezeroed;
}
/*
* var_edit_file() - copy input target name to output, modifying filename.
*/
static void var_edit_file( char const * in, string * out, VAR_EDITS * edits )
{
if ( edits->filemods )
{
PATHNAME pathname;
/* Parse apart original filename, putting parts into "pathname". */
path_parse( in, &pathname );
/* Replace any pathname with edits->f */
if ( edits->f.f_grist .ptr ) pathname.f_grist = edits->f.f_grist;
if ( edits->f.f_root .ptr ) pathname.f_root = edits->f.f_root;
if ( edits->f.f_dir .ptr ) pathname.f_dir = edits->f.f_dir;
if ( edits->f.f_base .ptr ) pathname.f_base = edits->f.f_base;
if ( edits->f.f_suffix.ptr ) pathname.f_suffix = edits->f.f_suffix;
if ( edits->f.f_member.ptr ) pathname.f_member = edits->f.f_member;
/* If requested, modify pathname to point to parent. */
if ( edits->parent )
path_parent( &pathname );
/* Put filename back together. */
path_build( &pathname, out );
}
else
string_append( out, in );
}
/*
* var_edit_cyg2win() - conversion of a cygwin to a Windows path.
*
* FIXME: skip grist
*/
#ifdef OS_CYGWIN
static void var_edit_cyg2win( string * out, size_t pos, VAR_EDITS * edits )
{
if ( edits->to_windows )
{
#ifdef CYGWIN_VERSION_CYGWIN_CONV
/* Use new Cygwin API added with Cygwin 1.7. Old one had no error
* handling and has been deprecated.
*/
char * dynamicBuffer = 0;
char buffer[ MAX_PATH + 1001 ];
char const * result = buffer;
cygwin_conv_path_t const conv_type = CCP_POSIX_TO_WIN_A | CCP_RELATIVE;
ssize_t const apiResult = cygwin_conv_path( conv_type, out->value + pos,
buffer, sizeof( buffer ) / sizeof( *buffer ) );
assert( apiResult == 0 || apiResult == -1 );
assert( apiResult || strlen( result ) < sizeof( buffer ) / sizeof(
*buffer ) );
if ( apiResult )
{
result = 0;
if ( errno == ENOSPC )
{
ssize_t const size = cygwin_conv_path( conv_type, out->value +
pos, NULL, 0 );
assert( size >= -1 );
if ( size > 0 )
{
dynamicBuffer = (char *)BJAM_MALLOC_ATOMIC( size );
if ( dynamicBuffer )
{
ssize_t const apiResult = cygwin_conv_path( conv_type,
out->value + pos, dynamicBuffer, size );
assert( apiResult == 0 || apiResult == -1 );
if ( !apiResult )
{
result = dynamicBuffer;
assert( strlen( result ) < size );
}
}
}
}
}
#else /* CYGWIN_VERSION_CYGWIN_CONV */
/* Use old Cygwin API deprecated with Cygwin 1.7. */
char result[ MAX_PATH + 1 ];
cygwin_conv_to_win32_path( out->value + pos, result );
assert( strlen( result ) <= MAX_PATH );
#endif /* CYGWIN_VERSION_CYGWIN_CONV */
if ( result )
{
string_truncate( out, pos );
string_append( out, result );
edits->to_slashes = 0;
}
#ifdef CYGWIN_VERSION_CYGWIN_CONV
if ( dynamicBuffer )
BJAM_FREE( dynamicBuffer );
#endif
}
}
#endif /* OS_CYGWIN */
/*
* var_edit_shift() - do upshift/downshift & other mods.
*/
static void var_edit_shift( string * out, size_t pos, VAR_EDITS * edits )
{
#ifdef OS_CYGWIN
var_edit_cyg2win( out, pos, edits );
#endif
if ( edits->upshift || edits->downshift || edits->to_slashes )
{
/* Handle upshifting, downshifting and slash translation now. */
char * p;
for ( p = out->value + pos; *p; ++p )
{
if ( edits->upshift )
*p = toupper( *p );
else if ( edits->downshift )
*p = tolower( *p );
if ( edits->to_slashes && ( *p == '\\' ) )
*p = '/';
}
}
}
/*
* Reads n LISTs from the top of the STACK and combines them to form VAR_EDITS.
* Returns the number of VAR_EDITS pushed onto the STACK.
*/
static int expand_modifiers( STACK * s, int n )
{
int i;
int total = 1;
LIST * * args = stack_get( s );
for ( i = 0; i < n; ++i )
total *= list_length( args[ i ] );
if ( total != 0 )
{
VAR_EDITS * out = stack_allocate( s, total * sizeof( VAR_EDITS ) );
LISTITER * iter = stack_allocate( s, n * sizeof( LIST * ) );
for ( i = 0; i < n; ++i )
iter[ i ] = list_begin( args[ i ] );
i = 0;
{
int havezeroed;
loop:
memset( out, 0, sizeof( *out ) );
havezeroed = 0;
for ( i = 0; i < n; ++i )
havezeroed = var_edit_parse( object_str( list_item( iter[ i ] )
), out, havezeroed );
++out;
while ( --i >= 0 )
{
if ( list_next( iter[ i ] ) != list_end( args[ i ] ) )
{
iter[ i ] = list_next( iter[ i ] );
goto loop;
}
iter[ i ] = list_begin( args[ i ] );
}
}
stack_deallocate( s, n * sizeof( LIST * ) );
}
return total;
}
static LIST * apply_modifiers( STACK * s, int n )
{
LIST * value = stack_top( s );
LIST * result = L0;
VAR_EDITS * const edits = (VAR_EDITS *)( (LIST * *)stack_get( s ) + 1 );
string buf[ 1 ];
string_new( buf );
result = apply_modifiers_impl( result, buf, edits, n, list_begin( value ),
list_end( value ) );
string_free( buf );
return result;
}
/*
* Parse a string of the form "1-2", "-2--1", "2-" and return the two
* subscripts.
*/
subscript_t parse_subscript( char const * s )
{
subscript_t result;
result.sub1 = 0;
result.sub2 = 0;
do /* so we can use "break" */
{
/* Allow negative subscripts. */
if ( !isdigit( *s ) && ( *s != '-' ) )
{
result.sub2 = 0;
break;
}
result.sub1 = atoi( s );
/* Skip over the first symbol, which is either a digit or dash. */
++s;
while ( isdigit( *s ) ) ++s;
if ( *s == '\0' )
{
result.sub2 = result.sub1;
break;
}
if ( *s != '-' )
{
result.sub2 = 0;
break;
}
++s;
if ( *s == '\0' )
{
result.sub2 = -1;
break;
}
if ( !isdigit( *s ) && ( *s != '-' ) )
{
result.sub2 = 0;
break;
}
/* First, compute the index of the last element. */
result.sub2 = atoi( s );
while ( isdigit( *++s ) );
if ( *s != '\0' )
result.sub2 = 0;
} while ( 0 );
return result;
}
static LIST * apply_subscript( STACK * s )
{
LIST * value = stack_top( s );
LIST * indices = stack_at( s, 1 );
LIST * result = L0;
int length = list_length( value );
string buf[ 1 ];
LISTITER indices_iter = list_begin( indices );
LISTITER const indices_end = list_end( indices );
string_new( buf );
for ( ; indices_iter != indices_end; indices_iter = list_next( indices_iter
) )
{
LISTITER iter = list_begin( value );
LISTITER end = list_end( value );
subscript_t const subscript = parse_subscript( object_str( list_item(
indices_iter ) ) );
get_iters( subscript, &iter, &end, length );
for ( ; iter != end; iter = list_next( iter ) )
result = list_push_back( result, object_copy( list_item( iter ) ) );
}
string_free( buf );
return result;
}
/*
* Reads the LIST from first and applies subscript to it. The results are
* written to *first and *last.
*/
static void get_iters( subscript_t const subscript, LISTITER * const first,
LISTITER * const last, int const length )
{
int start;
int size;
LISTITER iter;
LISTITER end;
{
if ( subscript.sub1 < 0 )
start = length + subscript.sub1;
else if ( subscript.sub1 > length )
start = length;
else
start = subscript.sub1 - 1;
size = subscript.sub2 < 0
? length + 1 + subscript.sub2 - start
: subscript.sub2 - start;
/*
* HACK: When the first subscript is before the start of the list, it
* magically becomes the beginning of the list. This is inconsistent,
* but needed for backwards compatibility.
*/
if ( start < 0 )
start = 0;
/* The "sub2 < 0" test handles the semantic error of sub2 < sub1. */
if ( size < 0 )
size = 0;
if ( start + size > length )
size = length - start;
}
iter = *first;
while ( start-- > 0 )
iter = list_next( iter );
end = iter;
while ( size-- > 0 )
end = list_next( end );
*first = iter;
*last = end;
}
static LIST * apply_modifiers_empty( LIST * result, string * buf,
VAR_EDITS * edits, int n )
{
int i;
for ( i = 0; i < n; ++i )
{
if ( edits[ i ].empty.ptr )
{
/** FIXME: is empty.ptr always null-terminated? */
var_edit_file( edits[ i ].empty.ptr, buf, edits + i );
var_edit_shift( buf, 0, edits + i );
result = list_push_back( result, object_new( buf->value ) );
string_truncate( buf, 0 );
}
}
return result;
}
static LIST * apply_modifiers_non_empty( LIST * result, string * buf,
VAR_EDITS * edits, int n, LISTITER begin, LISTITER end )
{
int i;
LISTITER iter;
for ( i = 0; i < n; ++i )
{
if ( edits[ i ].join.ptr )
{
var_edit_file( object_str( list_item( begin ) ), buf, edits + i );
var_edit_shift( buf, 0, edits + i );
for ( iter = list_next( begin ); iter != end; iter = list_next( iter
) )
{
size_t size;
string_append( buf, edits[ i ].join.ptr );
size = buf->size;
var_edit_file( object_str( list_item( iter ) ), buf, edits + i
);
var_edit_shift( buf, size, edits + i );
}
result = list_push_back( result, object_new( buf->value ) );
string_truncate( buf, 0 );
}
else
{
for ( iter = begin; iter != end; iter = list_next( iter ) )
{
var_edit_file( object_str( list_item( iter ) ), buf, edits + i );
var_edit_shift( buf, 0, edits + i );
result = list_push_back( result, object_new( buf->value ) );
string_truncate( buf, 0 );
}
}
}
return result;
}
static LIST * apply_modifiers_impl( LIST * result, string * buf,
VAR_EDITS * edits, int n, LISTITER iter, LISTITER end )
{
return iter == end
? apply_modifiers_empty( result, buf, edits, n )
: apply_modifiers_non_empty( result, buf, edits, n, iter, end );
}
static LIST * apply_subscript_and_modifiers( STACK * s, int n )
{
LIST * const value = stack_top( s );
LIST * const indices = stack_at( s, 1 );
LIST * result = L0;
VAR_EDITS * const edits = (VAR_EDITS *)((LIST * *)stack_get( s ) + 2);
int const length = list_length( value );
string buf[ 1 ];
LISTITER indices_iter = list_begin( indices );
LISTITER const indices_end = list_end( indices );
string_new( buf );
for ( ; indices_iter != indices_end; indices_iter = list_next( indices_iter
) )
{
LISTITER iter = list_begin( value );
LISTITER end = list_end( value );
subscript_t const sub = parse_subscript( object_str( list_item(
indices_iter ) ) );
get_iters( sub, &iter, &end, length );
result = apply_modifiers_impl( result, buf, edits, n, iter, end );
}
string_free( buf );
return result;
}
/*
* expand() - expands a list of concatenated strings and variable refereces
*
* Takes a list of expansion items - each representing one element to be
* concatenated and each containing a list of its values. Returns a list of all
* possible values constructed by selecting a single value from each of the
* elements and concatenating them together.
*
* For example, in the following code:
*
* local a = one two three four ;
* local b = foo bar ;
* ECHO /$(a)/$(b)/$(a)/ ;
*
* When constructing the result of /$(a)/$(b)/ this function would get called
* with the following 7 expansion items:
* 1. /
* 2. one two three four
* 3. /
* 4. foo bar
* 5. /
* 6. one two three four
* 7. /
*
* And would result in a list containing 32 values:
* 1. /one/foo/one/
* 2. /one/foo/two/
* 3. /one/foo/three/
* 4. /one/foo/four/
* 5. /one/bar/one/
* ...
*
*/
typedef struct expansion_item
{
/* Item's value list initialized prior to calling expand(). */
LIST * values;
/* Internal data initialized and used inside expand(). */
LISTITER current; /* Currently used value. */
int size; /* Concatenated string length prior to concatenating the
* item's current value.
*/
} expansion_item;
static LIST * expand( expansion_item * items, int const length )
{
LIST * result = L0;
string buf[ 1 ];
int size = 0;
int i;
assert( length > 0 );
for ( i = 0; i < length; ++i )
{
LISTITER iter = list_begin( items[ i ].values );
LISTITER const end = list_end( items[ i ].values );
/* If any of the items has no values - the result is an empty list. */
if ( iter == end ) return L0;
/* Set each item's 'current' to its first listed value. This indicates
* each item's next value to be used when constructing the list of all
* possible concatenated values.
*/
items[ i ].current = iter;
/* Calculate the longest concatenated string length - to know how much
* memory we need to allocate as a buffer for holding the concatenated
* strings.
*/
{
int max = 0;
for ( ; iter != end; iter = list_next( iter ) )
{
int const len = strlen( object_str( list_item( iter ) ) );
if ( len > max ) max = len;
}
size += max;
}
}
string_new( buf );
string_reserve( buf, size );
i = 0;
while ( i >= 0 )
{
for ( ; i < length; ++i )
{
items[ i ].size = buf->size;
string_append( buf, object_str( list_item( items[ i ].current ) ) );
}
result = list_push_back( result, object_new( buf->value ) );
while ( --i >= 0 )
{
if ( list_next( items[ i ].current ) != list_end( items[ i ].values
) )
{
items[ i ].current = list_next( items[ i ].current );
string_truncate( buf, items[ i ].size );
break;
}
else
items[ i ].current = list_begin( items[ i ].values );
}
}
string_free( buf );
return result;
}
static void combine_strings( STACK * s, int n, string * out )
{
int i;
for ( i = 0; i < n; ++i )
{
LIST * const values = stack_pop( s );
LISTITER iter = list_begin( values );
LISTITER const end = list_end( values );
if ( iter != end )
{
string_append( out, object_str( list_item( iter ) ) );
for ( iter = list_next( iter ); iter != end; iter = list_next( iter
) )
{
string_push_back( out, ' ' );
string_append( out, object_str( list_item( iter ) ) );
}
list_free( values );
}
}
}
struct dynamic_array
{
int size;
int capacity;
void * data;
};
static void dynamic_array_init( struct dynamic_array * array )
{
array->size = 0;
array->capacity = 0;
array->data = 0;
}
static void dynamic_array_free( struct dynamic_array * array )
{
BJAM_FREE( array->data );
}
static void dynamic_array_push_impl( struct dynamic_array * const array,
void const * const value, int const unit_size )
{
if ( array->capacity == 0 )
{
array->capacity = 2;
array->data = BJAM_MALLOC( array->capacity * unit_size );
}
else if ( array->capacity == array->size )
{
void * new_data;
array->capacity *= 2;
new_data = BJAM_MALLOC( array->capacity * unit_size );
memcpy( new_data, array->data, array->size * unit_size );
BJAM_FREE( array->data );
array->data = new_data;
}
memcpy( (char *)array->data + array->size * unit_size, value, unit_size );
++array->size;
}
#define dynamic_array_push( array, value ) (dynamic_array_push_impl(array, &value, sizeof(value)))
#define dynamic_array_at( type, array, idx ) (((type *)(array)->data)[idx])
/*
* struct compiler
*/
struct label_info
{
int absolute_position;
struct dynamic_array uses[ 1 ];
};
struct stored_rule
{
OBJECT * name;
PARSE * parse;
int num_arguments;
struct arg_list * arguments;
int local;
};
typedef struct compiler
{
struct dynamic_array code[ 1 ];
struct dynamic_array constants[ 1 ];
struct dynamic_array labels[ 1 ];
struct dynamic_array rules[ 1 ];
struct dynamic_array actions[ 1 ];
} compiler;
static void compiler_init( compiler * c )
{
dynamic_array_init( c->code );
dynamic_array_init( c->constants );
dynamic_array_init( c->labels );
dynamic_array_init( c->rules );
dynamic_array_init( c->actions );
}
static void compiler_free( compiler * c )
{
int i;
dynamic_array_free( c->actions );
dynamic_array_free( c->rules );
for ( i = 0; i < c->labels->size; ++i )
dynamic_array_free( dynamic_array_at( struct label_info, c->labels, i
).uses );
dynamic_array_free( c->labels );
dynamic_array_free( c->constants );
dynamic_array_free( c->code );
}
static void compile_emit_instruction( compiler * c, instruction instr )
{
dynamic_array_push( c->code, instr );
}
static int compile_new_label( compiler * c )
{
int result = c->labels->size;
struct label_info info;
info.absolute_position = -1;
dynamic_array_init( info.uses );
dynamic_array_push( c->labels, info );
return result;
}
static void compile_set_label( compiler * c, int label )
{
struct label_info * const l = &dynamic_array_at( struct label_info,
c->labels, label );
int const pos = c->code->size;
int i;
assert( l->absolute_position == -1 );
l->absolute_position = pos;
for ( i = 0; i < l->uses->size; ++i )
{
int id = dynamic_array_at( int, l->uses, i );
int offset = (int)( pos - id - 1 );
dynamic_array_at( instruction, c->code, id ).arg = offset;
}
}
static void compile_emit( compiler * c, unsigned int op_code, int arg )
{
instruction instr;
instr.op_code = op_code;
instr.arg = arg;
compile_emit_instruction( c, instr );
}
static void compile_emit_branch( compiler * c, unsigned int op_code, int label )
{
struct label_info * const l = &dynamic_array_at( struct label_info,
c->labels, label );
int const pos = c->code->size;
instruction instr;
instr.op_code = op_code;
if ( l->absolute_position == -1 )
{
instr.arg = 0;
dynamic_array_push( l->uses, pos );
}
else
instr.arg = (int)( l->absolute_position - pos - 1 );
compile_emit_instruction( c, instr );
}
static int compile_emit_constant( compiler * c, OBJECT * value )
{
OBJECT * copy = object_copy( value );
dynamic_array_push( c->constants, copy );
return c->constants->size - 1;
}
static int compile_emit_rule( compiler * c, OBJECT * name, PARSE * parse,
int num_arguments, struct arg_list * arguments, int local )
{
struct stored_rule rule;
rule.name = object_copy( name );
rule.parse = parse;
rule.num_arguments = num_arguments;
rule.arguments = arguments;
rule.local = local;
dynamic_array_push( c->rules, rule );
return (int)( c->rules->size - 1 );
}
static int compile_emit_actions( compiler * c, PARSE * parse )
{
SUBACTION a;
a.name = object_copy( parse->string );
a.command = function_compile_actions( object_str( parse->string1 ),
parse->file, parse->line );
a.flags = parse->num;
dynamic_array_push( c->actions, a );
return (int)( c->actions->size - 1 );
}
static JAM_FUNCTION * compile_to_function( compiler * c )
{
JAM_FUNCTION * const result = BJAM_MALLOC( sizeof( JAM_FUNCTION ) );
int i;
result->base.type = FUNCTION_JAM;
result->base.reference_count = 1;
result->base.formal_arguments = 0;
result->base.num_formal_arguments = 0;
result->base.rulename = 0;
result->code_size = c->code->size;
result->code = BJAM_MALLOC( c->code->size * sizeof( instruction ) );
memcpy( result->code, c->code->data, c->code->size * sizeof( instruction ) );
result->constants = BJAM_MALLOC( c->constants->size * sizeof( OBJECT * ) );
memcpy( result->constants, c->constants->data, c->constants->size * sizeof(
OBJECT * ) );
result->num_constants = c->constants->size;
result->num_subfunctions = c->rules->size;
result->functions = BJAM_MALLOC( c->rules->size * sizeof( SUBFUNCTION ) );
for ( i = 0; i < c->rules->size; ++i )
{
struct stored_rule * const rule = &dynamic_array_at( struct stored_rule,
c->rules, i );
result->functions[ i ].name = rule->name;
result->functions[ i ].code = function_compile( rule->parse );
result->functions[ i ].code->num_formal_arguments = rule->num_arguments;
result->functions[ i ].code->formal_arguments = rule->arguments;
result->functions[ i ].local = rule->local;
}
result->actions = BJAM_MALLOC( c->actions->size * sizeof( SUBACTION ) );
memcpy( result->actions, c->actions->data, c->actions->size * sizeof(
SUBACTION ) );
result->num_subactions = c->actions->size;
result->generic = 0;
result->file = 0;
result->line = -1;
return result;
}
/*
* Parsing of variable expansions
*/
typedef struct VAR_PARSE_GROUP
{
struct dynamic_array elems[ 1 ];
} VAR_PARSE_GROUP;
typedef struct VAR_PARSE_ACTIONS
{
struct dynamic_array elems[ 1 ];
} VAR_PARSE_ACTIONS;
#define VAR_PARSE_TYPE_VAR 0
#define VAR_PARSE_TYPE_STRING 1
#define VAR_PARSE_TYPE_FILE 2
typedef struct _var_parse
{
int type; /* string, variable or file */
} VAR_PARSE;
typedef struct
{
VAR_PARSE base;
VAR_PARSE_GROUP * name;
VAR_PARSE_GROUP * subscript;
struct dynamic_array modifiers[ 1 ];
} VAR_PARSE_VAR;
typedef struct
{
VAR_PARSE base;
OBJECT * s;
} VAR_PARSE_STRING;
typedef struct
{
VAR_PARSE base;
struct dynamic_array filename[ 1 ];
struct dynamic_array contents[ 1 ];
} VAR_PARSE_FILE;
static void var_parse_free( VAR_PARSE * );
/*
* VAR_PARSE_GROUP
*/
static VAR_PARSE_GROUP * var_parse_group_new()
{
VAR_PARSE_GROUP * const result = BJAM_MALLOC( sizeof( VAR_PARSE_GROUP ) );
dynamic_array_init( result->elems );
return result;
}
static void var_parse_group_free( VAR_PARSE_GROUP * group )
{
int i;
for ( i = 0; i < group->elems->size; ++i )
var_parse_free( dynamic_array_at( VAR_PARSE *, group->elems, i ) );
dynamic_array_free( group->elems );
BJAM_FREE( group );
}
static void var_parse_group_add( VAR_PARSE_GROUP * group, VAR_PARSE * elem )
{
dynamic_array_push( group->elems, elem );
}
static void var_parse_group_maybe_add_constant( VAR_PARSE_GROUP * group,
char const * start, char const * end )
{
if ( start != end )
{
string buf[ 1 ];
VAR_PARSE_STRING * const value = (VAR_PARSE_STRING *)BJAM_MALLOC(
sizeof(VAR_PARSE_STRING) );
value->base.type = VAR_PARSE_TYPE_STRING;
string_new( buf );
string_append_range( buf, start, end );
value->s = object_new( buf->value );
string_free( buf );
var_parse_group_add( group, (VAR_PARSE *)value );
}
}
VAR_PARSE_STRING * var_parse_group_as_literal( VAR_PARSE_GROUP * group )
{
if ( group->elems->size == 1 )
{
VAR_PARSE * result = dynamic_array_at( VAR_PARSE *, group->elems, 0 );
if ( result->type == VAR_PARSE_TYPE_STRING )
return (VAR_PARSE_STRING *)result;
}
return 0;
}
/*
* VAR_PARSE_ACTIONS
*/
static VAR_PARSE_ACTIONS * var_parse_actions_new()
{
VAR_PARSE_ACTIONS * const result = (VAR_PARSE_ACTIONS *)BJAM_MALLOC(
sizeof(VAR_PARSE_ACTIONS) );
dynamic_array_init( result->elems );
return result;
}
static void var_parse_actions_free( VAR_PARSE_ACTIONS * actions )
{
int i;
for ( i = 0; i < actions->elems->size; ++i )
var_parse_group_free( dynamic_array_at( VAR_PARSE_GROUP *,
actions->elems, i ) );
dynamic_array_free( actions->elems );
BJAM_FREE( actions );
}
/*
* VAR_PARSE_VAR
*/
static VAR_PARSE_VAR * var_parse_var_new()
{
VAR_PARSE_VAR * result = BJAM_MALLOC( sizeof( VAR_PARSE_VAR ) );
result->base.type = VAR_PARSE_TYPE_VAR;
result->name = var_parse_group_new();
result->subscript = 0;
dynamic_array_init( result->modifiers );
return result;
}
static void var_parse_var_free( VAR_PARSE_VAR * var )
{
int i;
var_parse_group_free( var->name );
if ( var->subscript )
var_parse_group_free( var->subscript );
for ( i = 0; i < var->modifiers->size; ++i )
var_parse_group_free( dynamic_array_at( VAR_PARSE_GROUP *,
var->modifiers, i ) );
dynamic_array_free( var->modifiers );
BJAM_FREE( var );
}
static VAR_PARSE_GROUP * var_parse_var_new_modifier( VAR_PARSE_VAR * var )
{
VAR_PARSE_GROUP * result = var_parse_group_new();
dynamic_array_push( var->modifiers, result );
return result;
}
/*
* VAR_PARSE_STRING
*/
static void var_parse_string_free( VAR_PARSE_STRING * string )
{
object_free( string->s );
BJAM_FREE( string );
}
/*
* VAR_PARSE_FILE
*/
static VAR_PARSE_FILE * var_parse_file_new( void )
{
VAR_PARSE_FILE * const result = (VAR_PARSE_FILE *)BJAM_MALLOC( sizeof(
VAR_PARSE_FILE ) );
result->base.type = VAR_PARSE_TYPE_FILE;
dynamic_array_init( result->filename );
dynamic_array_init( result->contents );
return result;
}
static void var_parse_file_free( VAR_PARSE_FILE * file )
{
int i;
for ( i = 0; i < file->filename->size; ++i )
var_parse_group_free( dynamic_array_at( VAR_PARSE_GROUP *,
file->filename, i ) );
dynamic_array_free( file->filename );
for ( i = 0; i < file->contents->size; ++i )
var_parse_group_free( dynamic_array_at( VAR_PARSE_GROUP *,
file->contents, i ) );
dynamic_array_free( file->contents );
BJAM_FREE( file );
}
/*
* VAR_PARSE
*/
static void var_parse_free( VAR_PARSE * parse )
{
switch ( parse->type )
{
case VAR_PARSE_TYPE_VAR:
var_parse_var_free( (VAR_PARSE_VAR *)parse );
break;
case VAR_PARSE_TYPE_STRING:
var_parse_string_free( (VAR_PARSE_STRING *)parse );
break;
case VAR_PARSE_TYPE_FILE:
var_parse_file_free( (VAR_PARSE_FILE *)parse );
break;
default:
assert( !"Invalid type" );
}
}
/*
* Compile VAR_PARSE
*/
static void var_parse_group_compile( VAR_PARSE_GROUP const * parse,
compiler * c );
static void var_parse_var_compile( VAR_PARSE_VAR const * parse, compiler * c )
{
int expand_name = 0;
int is_get_grist = 0;
int has_modifiers = 0;
/* Special case common modifiers */
if ( parse->modifiers->size == 1 )
{
VAR_PARSE_GROUP * mod = dynamic_array_at( VAR_PARSE_GROUP *, parse->modifiers, 0 );
if ( mod->elems->size == 1 )
{
VAR_PARSE * mod1 = dynamic_array_at( VAR_PARSE *, mod->elems, 0 );
if ( mod1->type == VAR_PARSE_TYPE_STRING )
{
OBJECT * s = ( (VAR_PARSE_STRING *)mod1 )->s;
if ( ! strcmp ( object_str( s ), "G" ) )
{
is_get_grist = 1;
}
}
}
}
/* If there are modifiers, emit them in reverse order. */
if ( parse->modifiers->size > 0 && !is_get_grist )
{
int i;
has_modifiers = 1;
for ( i = 0; i < parse->modifiers->size; ++i )
var_parse_group_compile( dynamic_array_at( VAR_PARSE_GROUP *,
parse->modifiers, parse->modifiers->size - i - 1 ), c );
}
/* If there is a subscript, emit it. */
if ( parse->subscript )
var_parse_group_compile( parse->subscript, c );
/* If the variable name is empty, look it up. */
if ( parse->name->elems->size == 0 )
compile_emit( c, INSTR_PUSH_VAR, compile_emit_constant( c,
constant_empty ) );
/* If the variable name does not need to be expanded, look it up. */
else if ( parse->name->elems->size == 1 && dynamic_array_at( VAR_PARSE *,
parse->name->elems, 0 )->type == VAR_PARSE_TYPE_STRING )
{
OBJECT * const name = ( (VAR_PARSE_STRING *)dynamic_array_at(
VAR_PARSE *, parse->name->elems, 0 ) )->s;
int const idx = get_argument_index( object_str( name ) );
if ( idx != -1 )
compile_emit( c, INSTR_PUSH_ARG, idx );
else
compile_emit( c, INSTR_PUSH_VAR, compile_emit_constant( c, name ) );
}
/* Otherwise, push the var names and use the group instruction. */
else
{
var_parse_group_compile( parse->name, c );
expand_name = 1;
}
/** Select the instruction for expanding the variable. */
if ( !has_modifiers && !parse->subscript && !expand_name )
;
else if ( !has_modifiers && !parse->subscript && expand_name )
compile_emit( c, INSTR_PUSH_GROUP, 0 );
else if ( !has_modifiers && parse->subscript && !expand_name )
compile_emit( c, INSTR_APPLY_INDEX, 0 );
else if ( !has_modifiers && parse->subscript && expand_name )
compile_emit( c, INSTR_APPLY_INDEX_GROUP, 0 );
else if ( has_modifiers && !parse->subscript && !expand_name )
compile_emit( c, INSTR_APPLY_MODIFIERS, parse->modifiers->size );
else if ( has_modifiers && !parse->subscript && expand_name )
compile_emit( c, INSTR_APPLY_MODIFIERS_GROUP, parse->modifiers->size );
else if ( has_modifiers && parse->subscript && !expand_name )
compile_emit( c, INSTR_APPLY_INDEX_MODIFIERS, parse->modifiers->size );
else if ( has_modifiers && parse->subscript && expand_name )
compile_emit( c, INSTR_APPLY_INDEX_MODIFIERS_GROUP,
parse->modifiers->size );
/* Now apply any special modifiers */
if ( is_get_grist )
{
compile_emit( c, INSTR_GET_GRIST, 0 );
}
}
static void var_parse_string_compile( VAR_PARSE_STRING const * parse,
compiler * c )
{
compile_emit( c, INSTR_PUSH_CONSTANT, compile_emit_constant( c, parse->s )
);
}
static void var_parse_file_compile( VAR_PARSE_FILE const * parse, compiler * c )
{
int i;
for ( i = 0; i < parse->filename->size; ++i )
var_parse_group_compile( dynamic_array_at( VAR_PARSE_GROUP *,
parse->filename, parse->filename->size - i - 1 ), c );
compile_emit( c, INSTR_APPEND_STRINGS, parse->filename->size );
for ( i = 0; i < parse->contents->size; ++i )
var_parse_group_compile( dynamic_array_at( VAR_PARSE_GROUP *,
parse->contents, parse->contents->size - i - 1 ), c );
compile_emit( c, INSTR_WRITE_FILE, parse->contents->size );
}
static void var_parse_compile( VAR_PARSE const * parse, compiler * c )
{
switch ( parse->type )
{
case VAR_PARSE_TYPE_VAR:
var_parse_var_compile( (VAR_PARSE_VAR const *)parse, c );
break;
case VAR_PARSE_TYPE_STRING:
var_parse_string_compile( (VAR_PARSE_STRING const *)parse, c );
break;
case VAR_PARSE_TYPE_FILE:
var_parse_file_compile( (VAR_PARSE_FILE const *)parse, c );
break;
default:
assert( !"Unknown var parse type." );
}
}
static void var_parse_group_compile( VAR_PARSE_GROUP const * parse, compiler * c
)
{
/* Emit the elements in reverse order. */
int i;
for ( i = 0; i < parse->elems->size; ++i )
var_parse_compile( dynamic_array_at( VAR_PARSE *, parse->elems,
parse->elems->size - i - 1 ), c );
/* If there are no elements, emit an empty string. */
if ( parse->elems->size == 0 )
compile_emit( c, INSTR_PUSH_CONSTANT, compile_emit_constant( c,
constant_empty ) );
/* If there is more than one element, combine them. */
if ( parse->elems->size > 1 )
compile_emit( c, INSTR_COMBINE_STRINGS, parse->elems->size );
}
static void var_parse_actions_compile( VAR_PARSE_ACTIONS const * actions,
compiler * c )
{
int i;
for ( i = 0; i < actions->elems->size; ++i )
var_parse_group_compile( dynamic_array_at( VAR_PARSE_GROUP *,
actions->elems, actions->elems->size - i - 1 ), c );
compile_emit( c, INSTR_OUTPUT_STRINGS, actions->elems->size );
}
/*
* Parse VAR_PARSE_VAR
*/
static VAR_PARSE * parse_at_file( char const * start, char const * mid,
char const * end );
static VAR_PARSE * parse_variable( char const * * string );
static int try_parse_variable( char const * * s_, char const * * string,
VAR_PARSE_GROUP * out );
static void balance_parentheses( char const * * s_, char const * * string,
VAR_PARSE_GROUP * out );
static void parse_var_string( char const * first, char const * last,
struct dynamic_array * out );
/*
* Parses a string that can contain variables to expand.
*/
static VAR_PARSE_GROUP * parse_expansion( char const * * string )
{
VAR_PARSE_GROUP * result = var_parse_group_new();
char const * s = *string;
for ( ; ; )
{
if ( try_parse_variable( &s, string, result ) ) {}
else if ( s[ 0 ] == '\0' )
{
var_parse_group_maybe_add_constant( result, *string, s );
return result;
}
else
++s;
}
}
static VAR_PARSE_ACTIONS * parse_actions( char const * string )
{
VAR_PARSE_ACTIONS * const result = var_parse_actions_new();
parse_var_string( string, string + strlen( string ), result->elems );
return result;
}
/*
* Checks whether the string a *s_ starts with a variable expansion "$(".
* *string should point to the first unemitted character before *s. If *s_
* starts with variable expansion, appends elements to out up to the closing
* ")", and adjusts *s_ and *string to point to next character. Returns 1 if s_
* starts with a variable, 0 otherwise.
*/
static int try_parse_variable( char const * * s_, char const * * string,
VAR_PARSE_GROUP * out )
{
char const * s = *s_;
if ( s[ 0 ] == '$' && s[ 1 ] == '(' )
{
var_parse_group_maybe_add_constant( out, *string, s );
s += 2;
var_parse_group_add( out, parse_variable( &s ) );
*string = s;
*s_ = s;
return 1;
}
if ( s[ 0 ] == '@' && s[ 1 ] == '(' )
{
int depth = 1;
char const * ine;
char const * split = 0;
var_parse_group_maybe_add_constant( out, *string, s );
s += 2;
ine = s;
/* Scan the content of the response file @() section. */
while ( *ine && ( depth > 0 ) )
{
switch ( *ine )
{
case '(': ++depth; break;
case ')': --depth; break;
case ':':
if ( ( depth == 1 ) && ( ine[ 1 ] == 'E' ) && ( ine[ 2 ] == '='
) )
split = ine;
break;
}
++ine;
}
if ( !split || depth )
return 0;
var_parse_group_add( out, parse_at_file( s, split, ine - 1 ) );
*string = ine;
*s_ = ine;
return 1;
}
return 0;
}
static char const * current_file = "";
static int current_line;
static void parse_error( char const * message )
{
printf( "%s:%d: %s\n", current_file, current_line, message );
}
/*
* Parses a single variable up to the closing ")" and adjusts *string to point
* to the next character. *string should point to the character immediately
* after the initial "$(".
*/
static VAR_PARSE * parse_variable( char const * * string )
{
VAR_PARSE_VAR * const result = var_parse_var_new();
VAR_PARSE_GROUP * const name = result->name;
char const * s = *string;
for ( ; ; )
{
if ( try_parse_variable( &s, string, name ) ) {}
else if ( s[ 0 ] == ':' )
{
VAR_PARSE_GROUP * mod;
var_parse_group_maybe_add_constant( name, *string, s );
++s;
*string = s;
mod = var_parse_var_new_modifier( result );
for ( ; ; )
{
if ( try_parse_variable( &s, string, mod ) ) {}
else if ( s[ 0 ] == ')' )
{
var_parse_group_maybe_add_constant( mod, *string, s );
*string = ++s;
return (VAR_PARSE *)result;
}
else if ( s[ 0 ] == '(' )
{
++s;
balance_parentheses( &s, string, mod );
}
else if ( s[ 0 ] == ':' )
{
var_parse_group_maybe_add_constant( mod, *string, s );
*string = ++s;
mod = var_parse_var_new_modifier( result );
}
else if ( s[ 0 ] == '[' )
{
parse_error("unexpected subscript");
++s;
}
else if ( s[ 0 ] == '\0' )
{
parse_error( "unbalanced parentheses" );
var_parse_group_maybe_add_constant( mod, *string, s );
*string = s;
return (VAR_PARSE *)result;
}
else
++s;
}
}
else if ( s[ 0 ] == '[' )
{
VAR_PARSE_GROUP * subscript = var_parse_group_new();
result->subscript = subscript;
var_parse_group_maybe_add_constant( name, *string, s );
*string = ++s;
for ( ; ; )
{
if ( try_parse_variable( &s, string, subscript ) ) {}
else if ( s[ 0 ] == ']' )
{
var_parse_group_maybe_add_constant( subscript, *string, s );
*string = ++s;
if ( s[ 0 ] != ')' && s[ 0 ] != ':' && s[ 0 ] != '\0' )
parse_error( "unexpected text following []" );
break;
}
else if ( isdigit( s[ 0 ] ) || s[ 0 ] == '-' )
{
++s;
}
else if ( s[ 0 ] == '\0' )
{
parse_error( "malformed subscript" );
break;
}
else
{
parse_error( "malformed subscript" );
++s;
}
}
}
else if ( s[ 0 ] == ')' )
{
var_parse_group_maybe_add_constant( name, *string, s );
*string = ++s;
return (VAR_PARSE *)result;
}
else if ( s[ 0 ] == '(' )
{
++s;
balance_parentheses( &s, string, name );
}
else if ( s[ 0 ] == '\0' )
{
parse_error( "unbalanced parentheses" );
var_parse_group_maybe_add_constant( name, *string, s );
*string = s;
return (VAR_PARSE *)result;
}
else
++s;
}
}
static void parse_var_string( char const * first, char const * last,
struct dynamic_array * out )
{
char const * saved = first;
while ( first != last )
{
/* Handle whitespace. */
while ( first != last && isspace( *first ) ) ++first;
if ( saved != first )
{
VAR_PARSE_GROUP * const group = var_parse_group_new();
var_parse_group_maybe_add_constant( group, saved, first );
saved = first;
dynamic_array_push( out, group );
}
if ( first == last ) break;
/* Handle non-whitespace */
{
VAR_PARSE_GROUP * group = var_parse_group_new();
for ( ; ; )
{
if ( first == last || isspace( *first ) )
{
var_parse_group_maybe_add_constant( group, saved, first );
saved = first;
break;
}
if ( try_parse_variable( &first, &saved, group ) )
assert( first <= last );
else
++first;
}
dynamic_array_push( out, group );
}
}
}
/*
* start should point to the character immediately following the opening "@(",
* mid should point to the ":E=", and end should point to the closing ")".
*/
static VAR_PARSE * parse_at_file( char const * start, char const * mid,
char const * end )
{
VAR_PARSE_FILE * result = var_parse_file_new();
parse_var_string( start, mid, result->filename );
parse_var_string( mid + 3, end, result->contents );
return (VAR_PARSE *)result;
}
/*
* Given that *s_ points to the character after a "(", parses up to the matching
* ")". *string should point to the first unemitted character before *s_.
*
* When the function returns, *s_ will point to the character after the ")", and
* *string will point to the first unemitted character before *s_. The range
* from *string to *s_ does not contain any variables that need to be expanded.
*/
void balance_parentheses( char const * * s_, char const * * string,
VAR_PARSE_GROUP * out)
{
int depth = 1;
char const * s = *s_;
for ( ; ; )
{
if ( try_parse_variable( &s, string, out ) ) { }
else if ( s[ 0 ] == ':' || s[ 0 ] == '[' )
{
parse_error( "unbalanced parentheses" );
++s;
}
else if ( s[ 0 ] == '\0' )
{
parse_error( "unbalanced parentheses" );
break;
}
else if ( s[ 0 ] == ')' )
{
++s;
if ( --depth == 0 ) break;
}
else if ( s[ 0 ] == '(' )
{
++depth;
++s;
}
else
++s;
}
*s_ = s;
}
/*
* Main compile.
*/
#define RESULT_STACK 0
#define RESULT_RETURN 1
#define RESULT_NONE 2
static void compile_parse( PARSE * parse, compiler * c, int result_location );
static struct arg_list * arg_list_compile( PARSE * parse, int * num_arguments );
static void compile_condition( PARSE * parse, compiler * c, int branch_true, int label )
{
assert( parse->type == PARSE_EVAL );
switch ( parse->num )
{
case EXPR_EXISTS:
compile_parse( parse->left, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_NOT_EMPTY, label );
else
compile_emit_branch( c, INSTR_JUMP_EMPTY, label );
break;
case EXPR_EQUALS:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_EQ, label );
else
compile_emit_branch( c, INSTR_JUMP_NE, label );
break;
case EXPR_NOTEQ:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_NE, label );
else
compile_emit_branch( c, INSTR_JUMP_EQ, label );
break;
case EXPR_LESS:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_LT, label );
else
compile_emit_branch( c, INSTR_JUMP_GE, label );
break;
case EXPR_LESSEQ:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_LE, label );
else
compile_emit_branch( c, INSTR_JUMP_GT, label );
break;
case EXPR_MORE:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_GT, label );
else
compile_emit_branch( c, INSTR_JUMP_LE, label );
break;
case EXPR_MOREEQ:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_GE, label );
else
compile_emit_branch( c, INSTR_JUMP_LT, label );
break;
case EXPR_IN:
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( branch_true )
compile_emit_branch( c, INSTR_JUMP_IN, label );
else
compile_emit_branch( c, INSTR_JUMP_NOT_IN, label );
break;
case EXPR_AND:
if ( branch_true )
{
int f = compile_new_label( c );
compile_condition( parse->left, c, 0, f );
compile_condition( parse->right, c, 1, label );
compile_set_label( c, f );
}
else
{
compile_condition( parse->left, c, 0, label );
compile_condition( parse->right, c, 0, label );
}
break;
case EXPR_OR:
if ( branch_true )
{
compile_condition( parse->left, c, 1, label );
compile_condition( parse->right, c, 1, label );
}
else
{
int t = compile_new_label( c );
compile_condition( parse->left, c, 1, t );
compile_condition( parse->right, c, 0, label );
compile_set_label( c, t );
}
break;
case EXPR_NOT:
compile_condition( parse->left, c, !branch_true, label );
break;
}
}
static void adjust_result( compiler * c, int actual_location,
int desired_location )
{
if ( actual_location == desired_location )
;
else if ( actual_location == RESULT_STACK && desired_location == RESULT_RETURN )
compile_emit( c, INSTR_SET_RESULT, 0 );
else if ( actual_location == RESULT_STACK && desired_location == RESULT_NONE )
compile_emit( c, INSTR_POP, 0 );
else if ( actual_location == RESULT_RETURN && desired_location == RESULT_STACK )
compile_emit( c, INSTR_PUSH_RESULT, 0 );
else if ( actual_location == RESULT_RETURN && desired_location == RESULT_NONE )
;
else if ( actual_location == RESULT_NONE && desired_location == RESULT_STACK )
compile_emit( c, INSTR_PUSH_EMPTY, 0 );
else if ( actual_location == RESULT_NONE && desired_location == RESULT_RETURN )
{
compile_emit( c, INSTR_PUSH_EMPTY, 0 );
compile_emit( c, INSTR_SET_RESULT, 0 );
}
else
assert( !"invalid result location" );
}
static char const * parse_type( PARSE * parse )
{
switch ( parse->type )
{
case PARSE_APPEND: return "append";
case PARSE_EVAL: return "eval";
case PARSE_RULES: return "rules";
default: return "unknown";
}
}
static void compile_append_chain( PARSE * parse, compiler * c )
{
assert( parse->type == PARSE_APPEND );
if ( parse->left->type == PARSE_NULL )
compile_parse( parse->right, c, RESULT_STACK );
else
{
if ( parse->left->type == PARSE_APPEND )
compile_append_chain( parse->left, c );
else
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
compile_emit( c, INSTR_PUSH_APPEND, 0 );
}
}
static void compile_parse( PARSE * parse, compiler * c, int result_location )
{
if ( parse->type == PARSE_APPEND )
{
compile_append_chain( parse, c );
adjust_result( c, RESULT_STACK, result_location );
}
else if ( parse->type == PARSE_EVAL )
{
/* FIXME: This is only needed because of the bizarre parsing of
* conditions.
*/
if ( parse->num == EXPR_EXISTS )
compile_parse( parse->left, c, result_location );
else
{
int f = compile_new_label( c );
int end = compile_new_label( c );
printf( "%s:%d: Conditional used as list (check operator "
"precedence).\n", object_str( parse->file ), parse->line );
/* Emit the condition */
compile_condition( parse, c, 0, f );
compile_emit( c, INSTR_PUSH_CONSTANT, compile_emit_constant( c,
constant_true ) );
compile_emit_branch( c, INSTR_JUMP, end );
compile_set_label( c, f );
compile_emit( c, INSTR_PUSH_EMPTY, 0 );
compile_set_label( c, end );
adjust_result( c, RESULT_STACK, result_location );
}
}
else if ( parse->type == PARSE_FOREACH )
{
int var = compile_emit_constant( c, parse->string );
int top = compile_new_label( c );
int end = compile_new_label( c );
/*
* Evaluate the list.
*/
compile_parse( parse->left, c, RESULT_STACK );
/* Localize the loop variable */
if ( parse->num )
{
compile_emit( c, INSTR_PUSH_EMPTY, 0 );
compile_emit( c, INSTR_PUSH_LOCAL, var );
compile_emit( c, INSTR_SWAP, 1 );
}
compile_emit( c, INSTR_FOR_INIT, 0 );
compile_set_label( c, top );
compile_emit_branch( c, INSTR_FOR_LOOP, end );
compile_emit( c, INSTR_SET, var );
/* Run the loop body */
compile_parse( parse->right, c, RESULT_NONE );
compile_emit_branch( c, INSTR_JUMP, top );
compile_set_label( c, end );
if ( parse->num )
compile_emit( c, INSTR_POP_LOCAL, var );
adjust_result( c, RESULT_NONE, result_location);
}
else if ( parse->type == PARSE_IF )
{
int f = compile_new_label( c );
/* Emit the condition */
compile_condition( parse->left, c, 0, f );
/* Emit the if block */
compile_parse( parse->right, c, result_location );
if ( parse->third->type != PARSE_NULL || result_location != RESULT_NONE )
{
/* Emit the else block */
int end = compile_new_label( c );
compile_emit_branch( c, INSTR_JUMP, end );
compile_set_label( c, f );
compile_parse( parse->third, c, result_location );
compile_set_label( c, end );
}
else
compile_set_label( c, f );
}
else if ( parse->type == PARSE_WHILE )
{
int nested_result = result_location == RESULT_NONE
? RESULT_NONE
: RESULT_RETURN;
int test = compile_new_label( c );
int top = compile_new_label( c );
/* Make sure that we return an empty list if the loop runs zero times.
*/
adjust_result( c, RESULT_NONE, nested_result );
/* Jump to the loop test. */
compile_emit_branch( c, INSTR_JUMP, test );
compile_set_label( c, top );
/* Emit the loop body. */
compile_parse( parse->right, c, nested_result );
/* Emit the condition. */
compile_set_label( c, test );
compile_condition( parse->left, c, 1, top );
adjust_result( c, nested_result, result_location );
}
else if ( parse->type == PARSE_INCLUDE )
{
compile_parse( parse->left, c, RESULT_STACK );
compile_emit( c, INSTR_INCLUDE, 0 );
compile_emit( c, INSTR_BIND_MODULE_VARIABLES, 0 );
adjust_result( c, RESULT_NONE, result_location );
}
else if ( parse->type == PARSE_MODULE )
{
int const nested_result = result_location == RESULT_NONE
? RESULT_NONE
: RESULT_RETURN;
compile_parse( parse->left, c, RESULT_STACK );
compile_emit( c, INSTR_PUSH_MODULE, 0 );
compile_parse( parse->right, c, nested_result );
compile_emit( c, INSTR_POP_MODULE, 0 );
adjust_result( c, nested_result, result_location );
}
else if ( parse->type == PARSE_CLASS )
{
/* Evaluate the class name. */
compile_parse( parse->left->right, c, RESULT_STACK );
/* Evaluate the base classes. */
if ( parse->left->left )
compile_parse( parse->left->left->right, c, RESULT_STACK );
else
compile_emit( c, INSTR_PUSH_EMPTY, 0 );
compile_emit( c, INSTR_CLASS, 0 );
compile_parse( parse->right, c, RESULT_NONE );
compile_emit( c, INSTR_BIND_MODULE_VARIABLES, 0 );
compile_emit( c, INSTR_POP_MODULE, 0 );
adjust_result( c, RESULT_NONE, result_location );
}
else if ( parse->type == PARSE_LIST )
{
OBJECT * const o = parse->string;
char const * s = object_str( o );
VAR_PARSE_GROUP * group;
current_file = object_str( parse->file );
current_line = parse->line;
group = parse_expansion( &s );
var_parse_group_compile( group, c );
var_parse_group_free( group );
adjust_result( c, RESULT_STACK, result_location );
}
else if ( parse->type == PARSE_LOCAL )
{
int nested_result = result_location == RESULT_NONE
? RESULT_NONE
: RESULT_RETURN;
/* This should be left recursive group of compile_appends. */
PARSE * vars = parse->left;
/* Special case an empty list of vars */
if ( vars->type == PARSE_NULL )
{
compile_parse( parse->right, c, RESULT_NONE );
compile_parse( parse->third, c, result_location );
nested_result = result_location;
}
/* Check whether there is exactly one variable with a constant name. */
else if ( vars->left->type == PARSE_NULL &&
vars->right->type == PARSE_LIST )
{
char const * s = object_str( vars->right->string );
VAR_PARSE_GROUP * group;
current_file = object_str( parse->file );
current_line = parse->line;
group = parse_expansion( &s );
if ( group->elems->size == 1 && dynamic_array_at( VAR_PARSE *,
group->elems, 0 )->type == VAR_PARSE_TYPE_STRING )
{
int const name = compile_emit_constant( c, (
(VAR_PARSE_STRING *)dynamic_array_at( VAR_PARSE *,
group->elems, 0 ) )->s );
var_parse_group_free( group );
compile_parse( parse->right, c, RESULT_STACK );
compile_emit( c, INSTR_PUSH_LOCAL, name );
compile_parse( parse->third, c, nested_result );
compile_emit( c, INSTR_POP_LOCAL, name );
}
else
{
var_parse_group_compile( group, c );
var_parse_group_free( group );
compile_parse( parse->right, c, RESULT_STACK );
compile_emit( c, INSTR_PUSH_LOCAL_GROUP, 0 );
compile_parse( parse->third, c, nested_result );
compile_emit( c, INSTR_POP_LOCAL_GROUP, 0 );
}
}
else
{
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
compile_emit( c, INSTR_PUSH_LOCAL_GROUP, 0 );
compile_parse( parse->third, c, nested_result );
compile_emit( c, INSTR_POP_LOCAL_GROUP, 0 );
}
adjust_result( c, nested_result, result_location );
}
else if ( parse->type == PARSE_ON )
{
if ( parse->right->type == PARSE_APPEND &&
parse->right->left->type == PARSE_NULL &&
parse->right->right->type == PARSE_LIST )
{
/* [ on $(target) return $(variable) ] */
PARSE * value = parse->right->right;
OBJECT * const o = value->string;
char const * s = object_str( o );
VAR_PARSE_GROUP * group;
OBJECT * varname = 0;
current_file = object_str( value->file );
current_line = value->line;
group = parse_expansion( &s );
if ( group->elems->size == 1 )
{
VAR_PARSE * one = dynamic_array_at( VAR_PARSE *, group->elems, 0 );
if ( one->type == VAR_PARSE_TYPE_VAR )
{
VAR_PARSE_VAR * var = ( VAR_PARSE_VAR * )one;
if ( var->modifiers->size == 0 && !var->subscript && var->name->elems->size == 1 )
{
VAR_PARSE * name = dynamic_array_at( VAR_PARSE *, var->name->elems, 0 );
if ( name->type == VAR_PARSE_TYPE_STRING )
{
varname = ( ( VAR_PARSE_STRING * )name )->s;
}
}
}
}
if ( varname )
{
/* We have one variable with a fixed name and no modifiers. */
compile_parse( parse->left, c, RESULT_STACK );
compile_emit( c, INSTR_GET_ON, compile_emit_constant( c, varname ) );
}
else
{
/* Too complex. Fall back on push/pop. */
int end = compile_new_label( c );
compile_parse( parse->left, c, RESULT_STACK );
compile_emit_branch( c, INSTR_PUSH_ON, end );
var_parse_group_compile( group, c );
compile_emit( c, INSTR_POP_ON, 0 );
compile_set_label( c, end );
}
var_parse_group_free( group );
}
else
{
int end = compile_new_label( c );
compile_parse( parse->left, c, RESULT_STACK );
compile_emit_branch( c, INSTR_PUSH_ON, end );
compile_parse( parse->right, c, RESULT_STACK );
compile_emit( c, INSTR_POP_ON, 0 );
compile_set_label( c, end );
}
adjust_result( c, RESULT_STACK, result_location );
}
else if ( parse->type == PARSE_RULE )
{
PARSE * p;
int n = 0;
VAR_PARSE_GROUP * group;
char const * s = object_str( parse->string );
if ( parse->left->left || parse->left->right->type != PARSE_NULL )
for ( p = parse->left; p; p = p->left )
{
compile_parse( p->right, c, RESULT_STACK );
++n;
}
current_file = object_str( parse->file );
current_line = parse->line;
group = parse_expansion( &s );
if ( group->elems->size == 2 &&
dynamic_array_at( VAR_PARSE *, group->elems, 0 )->type == VAR_PARSE_TYPE_VAR &&
dynamic_array_at( VAR_PARSE *, group->elems, 1 )->type == VAR_PARSE_TYPE_STRING &&
( object_str( ( (VAR_PARSE_STRING *)dynamic_array_at( VAR_PARSE *, group->elems, 1 ) )->s )[ 0 ] == '.' ) )
{
VAR_PARSE_STRING * access = (VAR_PARSE_STRING *)dynamic_array_at( VAR_PARSE *, group->elems, 1 );
OBJECT * member = object_new( object_str( access->s ) + 1 );
/* Emit the object */
var_parse_var_compile( (VAR_PARSE_VAR *)dynamic_array_at( VAR_PARSE *, group->elems, 0 ), c );
var_parse_group_free( group );
compile_emit( c, INSTR_CALL_MEMBER_RULE, n );
compile_emit( c, compile_emit_constant( c, member ), parse->line );
object_free( member );
}
else
{
var_parse_group_compile( group, c );
var_parse_group_free( group );
compile_emit( c, INSTR_CALL_RULE, n );
compile_emit( c, compile_emit_constant( c, parse->string ), parse->line );
}
adjust_result( c, RESULT_STACK, result_location );
}
else if ( parse->type == PARSE_RULES )
{
do compile_parse( parse->left, c, RESULT_NONE );
while ( ( parse = parse->right )->type == PARSE_RULES );
compile_parse( parse, c, result_location );
}
else if ( parse->type == PARSE_SET )
{
PARSE * vars = parse->left;
unsigned int op_code;
unsigned int op_code_group;
switch ( parse->num )
{
case ASSIGN_APPEND: op_code = INSTR_APPEND; op_code_group = INSTR_APPEND_GROUP; break;
case ASSIGN_DEFAULT: op_code = INSTR_DEFAULT; op_code_group = INSTR_DEFAULT_GROUP; break;
default: op_code = INSTR_SET; op_code_group = INSTR_SET_GROUP; break;
}
/* Check whether there is exactly one variable with a constant name. */
if ( vars->type == PARSE_LIST )
{
char const * s = object_str( vars->string );
VAR_PARSE_GROUP * group;
current_file = object_str( parse->file );
current_line = parse->line;
group = parse_expansion( &s );
if ( group->elems->size == 1 && dynamic_array_at( VAR_PARSE *,
group->elems, 0 )->type == VAR_PARSE_TYPE_STRING )
{
int const name = compile_emit_constant( c, (
(VAR_PARSE_STRING *)dynamic_array_at( VAR_PARSE *,
group->elems, 0 ) )->s );
var_parse_group_free( group );
compile_parse( parse->right, c, RESULT_STACK );
if ( result_location != RESULT_NONE )
{
compile_emit( c, INSTR_SET_RESULT, 1 );
}
compile_emit( c, op_code, name );
}
else
{
var_parse_group_compile( group, c );
var_parse_group_free( group );
compile_parse( parse->right, c, RESULT_STACK );
if ( result_location != RESULT_NONE )
{
compile_emit( c, INSTR_SET_RESULT, 1 );
}
compile_emit( c, op_code_group, 0 );
}
}
else
{
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
if ( result_location != RESULT_NONE )
{
compile_emit( c, INSTR_SET_RESULT, 1 );
}
compile_emit( c, op_code_group, 0 );
}
if ( result_location != RESULT_NONE )
{
adjust_result( c, RESULT_RETURN, result_location );
}
}
else if ( parse->type == PARSE_SETCOMP )
{
int n_args;
struct arg_list * args = arg_list_compile( parse->right, &n_args );
int const rule_id = compile_emit_rule( c, parse->string, parse->left,
n_args, args, parse->num );
compile_emit( c, INSTR_RULE, rule_id );
adjust_result( c, RESULT_NONE, result_location );
}
else if ( parse->type == PARSE_SETEXEC )
{
int const actions_id = compile_emit_actions( c, parse );
compile_parse( parse->left, c, RESULT_STACK );
compile_emit( c, INSTR_ACTIONS, actions_id );
adjust_result( c, RESULT_NONE, result_location );
}
else if ( parse->type == PARSE_SETTINGS )
{
compile_parse( parse->left, c, RESULT_STACK );
compile_parse( parse->third, c, RESULT_STACK );
compile_parse( parse->right, c, RESULT_STACK );
switch ( parse->num )
{
case ASSIGN_APPEND: compile_emit( c, INSTR_APPEND_ON, 0 ); break;
case ASSIGN_DEFAULT: compile_emit( c, INSTR_DEFAULT_ON, 0 ); break;
default: compile_emit( c, INSTR_SET_ON, 0 ); break;
}
adjust_result( c, RESULT_STACK, result_location );
}
else if ( parse->type == PARSE_SWITCH )
{
int const switch_end = compile_new_label( c );
compile_parse( parse->left, c, RESULT_STACK );
for ( parse = parse->right; parse; parse = parse->right )
{
int const id = compile_emit_constant( c, parse->left->string );
int const next_case = compile_new_label( c );
compile_emit( c, INSTR_PUSH_CONSTANT, id );
compile_emit_branch( c, INSTR_JUMP_NOT_GLOB, next_case );
compile_parse( parse->left->left, c, result_location );
compile_emit_branch( c, INSTR_JUMP, switch_end );
compile_set_label( c, next_case );
}
compile_emit( c, INSTR_POP, 0 );
adjust_result( c, RESULT_NONE, result_location );
compile_set_label( c, switch_end );
}
else if ( parse->type == PARSE_NULL )
adjust_result( c, RESULT_NONE, result_location );
else
assert( !"unknown PARSE type." );
}
OBJECT * function_rulename( FUNCTION * function )
{
return function->rulename;
}
void function_set_rulename( FUNCTION * function, OBJECT * rulename )
{
function->rulename = rulename;
}
void function_location( FUNCTION * function_, OBJECT * * file, int * line )
{
if ( function_->type == FUNCTION_BUILTIN )
{
*file = constant_builtin;
*line = -1;
}
#ifdef HAVE_PYTHON
if ( function_->type == FUNCTION_PYTHON )
{
*file = constant_builtin;
*line = -1;
}
#endif
else
{
JAM_FUNCTION * function = (JAM_FUNCTION *)function_;
assert( function_->type == FUNCTION_JAM );
*file = function->file;
*line = function->line;
}
}
static struct arg_list * arg_list_compile_builtin( char const * * args,
int * num_arguments );
FUNCTION * function_builtin( LIST * ( * func )( FRAME * frame, int flags ),
int flags, char const * * args )
{
BUILTIN_FUNCTION * result = BJAM_MALLOC( sizeof( BUILTIN_FUNCTION ) );
result->base.type = FUNCTION_BUILTIN;
result->base.reference_count = 1;
result->base.rulename = 0;
result->base.formal_arguments = arg_list_compile_builtin( args,
&result->base.num_formal_arguments );
result->func = func;
result->flags = flags;
return (FUNCTION *)result;
}
FUNCTION * function_compile( PARSE * parse )
{
compiler c[ 1 ];
JAM_FUNCTION * result;
compiler_init( c );
compile_parse( parse, c, RESULT_RETURN );
compile_emit( c, INSTR_RETURN, 0 );
result = compile_to_function( c );
compiler_free( c );
result->file = object_copy( parse->file );
result->line = parse->line;
return (FUNCTION *)result;
}
FUNCTION * function_compile_actions( char const * actions, OBJECT * file,
int line )
{
compiler c[ 1 ];
JAM_FUNCTION * result;
VAR_PARSE_ACTIONS * parse;
current_file = object_str( file );
current_line = line;
parse = parse_actions( actions );
compiler_init( c );
var_parse_actions_compile( parse, c );
var_parse_actions_free( parse );
compile_emit( c, INSTR_RETURN, 0 );
result = compile_to_function( c );
compiler_free( c );
result->file = object_copy( file );
result->line = line;
return (FUNCTION *)result;
}
static void argument_list_print( struct arg_list * args, int num_args );
/* Define delimiters for type check elements in argument lists (and return type
* specifications, eventually).
*/
# define TYPE_OPEN_DELIM '['
# define TYPE_CLOSE_DELIM ']'
/*
* is_type_name() - true iff the given string represents a type check
* specification.
*/
int is_type_name( char const * s )
{
return s[ 0 ] == TYPE_OPEN_DELIM && s[ strlen( s ) - 1 ] ==
TYPE_CLOSE_DELIM;
}
static void argument_error( char const * message, FUNCTION * procedure,
FRAME * frame, OBJECT * arg )
{
extern void print_source_line( FRAME * );
LOL * actual = frame->args;
backtrace_line( frame->prev );
printf( "*** argument error\n* rule %s ( ", frame->rulename );
argument_list_print( procedure->formal_arguments,
procedure->num_formal_arguments );
printf( " )\n* called with: ( " );
lol_print( actual );
printf( " )\n* %s %s\n", message, arg ? object_str ( arg ) : "" );
function_location( procedure, &frame->file, &frame->line );
print_source_line( frame );
printf( "see definition of rule '%s' being called\n", frame->rulename );
backtrace( frame->prev );
exit( 1 );
}
static void type_check_range( OBJECT * type_name, LISTITER iter, LISTITER end,
FRAME * caller, FUNCTION * called, OBJECT * arg_name )
{
static module_t * typecheck = 0;
/* If nothing to check, bail now. */
if ( iter == end || !type_name )
return;
if ( !typecheck )
typecheck = bindmodule( constant_typecheck );
/* If the checking rule can not be found, also bail. */
if ( !typecheck->rules || !hash_find( typecheck->rules, type_name ) )
return;
for ( ; iter != end; iter = list_next( iter ) )
{
LIST * error;
FRAME frame[ 1 ];
frame_init( frame );
frame->module = typecheck;
frame->prev = caller;
frame->prev_user = caller->module->user_module
? caller
: caller->prev_user;
/* Prepare the argument list */
lol_add( frame->args, list_new( object_copy( list_item( iter ) ) ) );
error = evaluate_rule( bindrule( type_name, frame->module ), type_name, frame );
if ( !list_empty( error ) )
argument_error( object_str( list_front( error ) ), called, caller,
arg_name );
frame_free( frame );
}
}
static void type_check( OBJECT * type_name, LIST * values, FRAME * caller,
FUNCTION * called, OBJECT * arg_name )
{
type_check_range( type_name, list_begin( values ), list_end( values ),
caller, called, arg_name );
}
void argument_list_check( struct arg_list * formal, int formal_count,
FUNCTION * function, FRAME * frame )
{
LOL * all_actual = frame->args;
int i;
for ( i = 0; i < formal_count; ++i )
{
LIST * actual = lol_get( all_actual, i );
LISTITER actual_iter = list_begin( actual );
LISTITER const actual_end = list_end( actual );
int j;
for ( j = 0; j < formal[ i ].size; ++j )
{
struct argument * formal_arg = &formal[ i ].args[ j ];
LIST * value;
switch ( formal_arg->flags )
{
case ARG_ONE:
if ( actual_iter == actual_end )
argument_error( "missing argument", function, frame,
formal_arg->arg_name );
type_check_range( formal_arg->type_name, actual_iter,
list_next( actual_iter ), frame, function,
formal_arg->arg_name );
actual_iter = list_next( actual_iter );
break;
case ARG_OPTIONAL:
if ( actual_iter == actual_end )
value = L0;
else
{
type_check_range( formal_arg->type_name, actual_iter,
list_next( actual_iter ), frame, function,
formal_arg->arg_name );
actual_iter = list_next( actual_iter );
}
break;
case ARG_PLUS:
if ( actual_iter == actual_end )
argument_error( "missing argument", function, frame,
formal_arg->arg_name );
/* fallthrough */
case ARG_STAR:
type_check_range( formal_arg->type_name, actual_iter,
actual_end, frame, function, formal_arg->arg_name );
actual_iter = actual_end;
break;
case ARG_VARIADIC:
return;
}
}
if ( actual_iter != actual_end )
argument_error( "extra argument", function, frame, list_item(
actual_iter ) );
}
for ( ; i < all_actual->count; ++i )
{
LIST * actual = lol_get( all_actual, i );
if ( !list_empty( actual ) )
argument_error( "extra argument", function, frame, list_front(
actual ) );
}
}
void argument_list_push( struct arg_list * formal, int formal_count,
FUNCTION * function, FRAME * frame, STACK * s )
{
LOL * all_actual = frame->args;
int i;
for ( i = 0; i < formal_count; ++i )
{
LIST * actual = lol_get( all_actual, i );
LISTITER actual_iter = list_begin( actual );
LISTITER const actual_end = list_end( actual );
int j;
for ( j = 0; j < formal[ i ].size; ++j )
{
struct argument * formal_arg = &formal[ i ].args[ j ];
LIST * value;
switch ( formal_arg->flags )
{
case ARG_ONE:
if ( actual_iter == actual_end )
argument_error( "missing argument", function, frame,
formal_arg->arg_name );
value = list_new( object_copy( list_item( actual_iter ) ) );
actual_iter = list_next( actual_iter );
break;
case ARG_OPTIONAL:
if ( actual_iter == actual_end )
value = L0;
else
{
value = list_new( object_copy( list_item( actual_iter ) ) );
actual_iter = list_next( actual_iter );
}
break;
case ARG_PLUS:
if ( actual_iter == actual_end )
argument_error( "missing argument", function, frame,
formal_arg->arg_name );
/* fallthrough */
case ARG_STAR:
value = list_copy_range( actual, actual_iter, actual_end );
actual_iter = actual_end;
break;
case ARG_VARIADIC:
return;
}
type_check( formal_arg->type_name, value, frame, function,
formal_arg->arg_name );
if ( formal_arg->index != -1 )
{
LIST * * const old = &frame->module->fixed_variables[
formal_arg->index ];
stack_push( s, *old );
*old = value;
}
else
stack_push( s, var_swap( frame->module, formal_arg->arg_name,
value ) );
}
if ( actual_iter != actual_end )
argument_error( "extra argument", function, frame, list_item(
actual_iter ) );
}
for ( ; i < all_actual->count; ++i )
{
LIST * const actual = lol_get( all_actual, i );
if ( !list_empty( actual ) )
argument_error( "extra argument", function, frame, list_front(
actual ) );
}
}
void argument_list_pop( struct arg_list * formal, int formal_count,
FRAME * frame, STACK * s )
{
int i;
for ( i = formal_count - 1; i >= 0; --i )
{
int j;
for ( j = formal[ i ].size - 1; j >= 0 ; --j )
{
struct argument * formal_arg = &formal[ i ].args[ j ];
if ( formal_arg->flags == ARG_VARIADIC )
continue;
if ( formal_arg->index != -1 )
{
LIST * const old = stack_pop( s );
LIST * * const pos = &frame->module->fixed_variables[
formal_arg->index ];
list_free( *pos );
*pos = old;
}
else
var_set( frame->module, formal_arg->arg_name, stack_pop( s ),
VAR_SET );
}
}
}
struct argument_compiler
{
struct dynamic_array args[ 1 ];
struct argument arg;
int state;
#define ARGUMENT_COMPILER_START 0
#define ARGUMENT_COMPILER_FOUND_TYPE 1
#define ARGUMENT_COMPILER_FOUND_OBJECT 2
#define ARGUMENT_COMPILER_DONE 3
};
static void argument_compiler_init( struct argument_compiler * c )
{
dynamic_array_init( c->args );
c->state = ARGUMENT_COMPILER_START;
}
static void argument_compiler_free( struct argument_compiler * c )
{
dynamic_array_free( c->args );
}
static void argument_compiler_add( struct argument_compiler * c, OBJECT * arg,
OBJECT * file, int line )
{
switch ( c->state )
{
case ARGUMENT_COMPILER_FOUND_OBJECT:
if ( object_equal( arg, constant_question_mark ) )
{
c->arg.flags = ARG_OPTIONAL;
}
else if ( object_equal( arg, constant_plus ) )
{
c->arg.flags = ARG_PLUS;
}
else if ( object_equal( arg, constant_star ) )
{
c->arg.flags = ARG_STAR;
}
dynamic_array_push( c->args, c->arg );
c->state = ARGUMENT_COMPILER_START;
if ( c->arg.flags != ARG_ONE )
break;
/* fall-through */
case ARGUMENT_COMPILER_START:
c->arg.type_name = 0;
c->arg.index = -1;
c->arg.flags = ARG_ONE;
if ( is_type_name( object_str( arg ) ) )
{
c->arg.type_name = object_copy( arg );
c->state = ARGUMENT_COMPILER_FOUND_TYPE;
break;
}
/* fall-through */
case ARGUMENT_COMPILER_FOUND_TYPE:
if ( is_type_name( object_str( arg ) ) )
{
printf( "%s:%d: missing argument name before type name: %s\n",
object_str( file ), line, object_str( arg ) );
exit( 1 );
}
c->arg.arg_name = object_copy( arg );
if ( object_equal( arg, constant_star ) )
{
c->arg.flags = ARG_VARIADIC;
dynamic_array_push( c->args, c->arg );
c->state = ARGUMENT_COMPILER_DONE;
}
else
{
c->state = ARGUMENT_COMPILER_FOUND_OBJECT;
}
break;
case ARGUMENT_COMPILER_DONE:
break;
}
}
static void argument_compiler_recurse( struct argument_compiler * c,
PARSE * parse )
{
if ( parse->type == PARSE_APPEND )
{
argument_compiler_recurse( c, parse->left );
argument_compiler_recurse( c, parse->right );
}
else if ( parse->type != PARSE_NULL )
{
assert( parse->type == PARSE_LIST );
argument_compiler_add( c, parse->string, parse->file, parse->line );
}
}
static struct arg_list arg_compile_impl( struct argument_compiler * c,
OBJECT * file, int line )
{
struct arg_list result;
switch ( c->state )
{
case ARGUMENT_COMPILER_START:
case ARGUMENT_COMPILER_DONE:
break;
case ARGUMENT_COMPILER_FOUND_TYPE:
printf( "%s:%d: missing argument name after type name: %s\n",
object_str( file ), line, object_str( c->arg.type_name ) );
exit( 1 );
case ARGUMENT_COMPILER_FOUND_OBJECT:
dynamic_array_push( c->args, c->arg );
break;
}
result.size = c->args->size;
result.args = BJAM_MALLOC( c->args->size * sizeof( struct argument ) );
memcpy( result.args, c->args->data, c->args->size * sizeof( struct argument
) );
return result;
}
static struct arg_list arg_compile( PARSE * parse )
{
struct argument_compiler c[ 1 ];
struct arg_list result;
argument_compiler_init( c );
argument_compiler_recurse( c, parse );
result = arg_compile_impl( c, parse->file, parse->line );
argument_compiler_free( c );
return result;
}
struct argument_list_compiler
{
struct dynamic_array args[ 1 ];
};
static void argument_list_compiler_init( struct argument_list_compiler * c )
{
dynamic_array_init( c->args );
}
static void argument_list_compiler_free( struct argument_list_compiler * c )
{
dynamic_array_free( c->args );
}
static void argument_list_compiler_add( struct argument_list_compiler * c,
PARSE * parse )
{
struct arg_list args = arg_compile( parse );
dynamic_array_push( c->args, args );
}
static void argument_list_compiler_recurse( struct argument_list_compiler * c,
PARSE * parse )
{
if ( parse )
{
argument_list_compiler_add( c, parse->right );
argument_list_compiler_recurse( c, parse->left );
}
}
static struct arg_list * arg_list_compile( PARSE * parse, int * num_arguments )
{
if ( parse )
{
struct argument_list_compiler c[ 1 ];
struct arg_list * result;
argument_list_compiler_init( c );
argument_list_compiler_recurse( c, parse );
*num_arguments = c->args->size;
result = BJAM_MALLOC( c->args->size * sizeof( struct arg_list ) );
memcpy( result, c->args->data, c->args->size * sizeof( struct arg_list )
);
argument_list_compiler_free( c );
return result;
}
*num_arguments = 0;
return 0;
}
static struct arg_list * arg_list_compile_builtin( char const * * args,
int * num_arguments )
{
if ( args )
{
struct argument_list_compiler c[ 1 ];
struct arg_list * result;
argument_list_compiler_init( c );
while ( *args )
{
struct argument_compiler arg_comp[ 1 ];
struct arg_list arg;
argument_compiler_init( arg_comp );
for ( ; *args; ++args )
{
OBJECT * token;
if ( strcmp( *args, ":" ) == 0 )
{
++args;
break;
}
token = object_new( *args );
argument_compiler_add( arg_comp, token, constant_builtin, -1 );
object_free( token );
}
arg = arg_compile_impl( arg_comp, constant_builtin, -1 );
dynamic_array_push( c->args, arg );
argument_compiler_free( arg_comp );
}
*num_arguments = c->args->size;
result = BJAM_MALLOC( c->args->size * sizeof( struct arg_list ) );
memcpy( result, c->args->data, c->args->size * sizeof( struct arg_list )
);
argument_list_compiler_free( c );
return result;
}
*num_arguments = 0;
return 0;
}
static void argument_list_print( struct arg_list * args, int num_args )
{
if ( args )
{
int i;
for ( i = 0; i < num_args; ++i )
{
int j;
if ( i ) printf( " : " );
for ( j = 0; j < args[ i ].size; ++j )
{
struct argument * formal_arg = &args[ i ].args[ j ];
if ( j ) printf( " " );
if ( formal_arg->type_name )
printf( "%s ", object_str( formal_arg->type_name ) );
printf( "%s", object_str( formal_arg->arg_name ) );
switch ( formal_arg->flags )
{
case ARG_OPTIONAL: printf( " ?" ); break;
case ARG_PLUS: printf( " +" ); break;
case ARG_STAR: printf( " *" ); break;
}
}
}
}
}
struct arg_list * argument_list_bind_variables( struct arg_list * formal,
int formal_count, module_t * module, int * counter )
{
if ( formal )
{
struct arg_list * result = (struct arg_list *)BJAM_MALLOC( sizeof(
struct arg_list ) * formal_count );
int i;
for ( i = 0; i < formal_count; ++i )
{
int j;
struct argument * args = (struct argument *)BJAM_MALLOC( sizeof(
struct argument ) * formal[ i ].size );
for ( j = 0; j < formal[ i ].size; ++j )
{
args[ j ] = formal[ i ].args[ j ];
if ( args[ j ].type_name )
args[ j ].type_name = object_copy( args[ j ].type_name );
args[ j ].arg_name = object_copy( args[ j ].arg_name );
if ( args[ j ].flags != ARG_VARIADIC )
args[ j ].index = module_add_fixed_var( module,
args[ j ].arg_name, counter );
}
result[ i ].args = args;
result[ i ].size = formal[ i ].size;
}
return result;
}
return 0;
}
void argument_list_free( struct arg_list * args, int args_count )
{
int i;
for ( i = 0; i < args_count; ++i )
{
int j;
for ( j = 0; j < args[ i ].size; ++j )
{
if ( args[ i ].args[ j ].type_name )
object_free( args[ i ].args[ j ].type_name );
object_free( args[ i ].args[ j ].arg_name );
}
BJAM_FREE( args[ i ].args );
}
BJAM_FREE( args );
}
FUNCTION * function_unbind_variables( FUNCTION * f )
{
if ( f->type == FUNCTION_JAM )
{
JAM_FUNCTION * const func = (JAM_FUNCTION *)f;
return func->generic ? func->generic : f;
}
#ifdef HAVE_PYTHON
if ( f->type == FUNCTION_PYTHON )
return f;
#endif
assert( f->type == FUNCTION_BUILTIN );
return f;
}
FUNCTION * function_bind_variables( FUNCTION * f, module_t * module,
int * counter )
{
if ( f->type == FUNCTION_BUILTIN )
return f;
#ifdef HAVE_PYTHON
if ( f->type == FUNCTION_PYTHON )
return f;
#endif
{
JAM_FUNCTION * func = (JAM_FUNCTION *)f;
JAM_FUNCTION * new_func = BJAM_MALLOC( sizeof( JAM_FUNCTION ) );
instruction * code;
int i;
assert( f->type == FUNCTION_JAM );
memcpy( new_func, func, sizeof( JAM_FUNCTION ) );
new_func->base.reference_count = 1;
new_func->base.formal_arguments = argument_list_bind_variables(
f->formal_arguments, f->num_formal_arguments, module, counter );
new_func->code = BJAM_MALLOC( func->code_size * sizeof( instruction ) );
memcpy( new_func->code, func->code, func->code_size * sizeof(
instruction ) );
new_func->generic = (FUNCTION *)func;
func = new_func;
for ( i = 0; ; ++i )
{
OBJECT * key;
int op_code;
code = func->code + i;
switch ( code->op_code )
{
case INSTR_PUSH_VAR: op_code = INSTR_PUSH_VAR_FIXED; break;
case INSTR_PUSH_LOCAL: op_code = INSTR_PUSH_LOCAL_FIXED; break;
case INSTR_POP_LOCAL: op_code = INSTR_POP_LOCAL_FIXED; break;
case INSTR_SET: op_code = INSTR_SET_FIXED; break;
case INSTR_APPEND: op_code = INSTR_APPEND_FIXED; break;
case INSTR_DEFAULT: op_code = INSTR_DEFAULT_FIXED; break;
case INSTR_RETURN: return (FUNCTION *)new_func;
case INSTR_CALL_MEMBER_RULE:
case INSTR_CALL_RULE: ++i; continue;
case INSTR_PUSH_MODULE:
{
int depth = 1;
++i;
while ( depth > 0 )
{
code = func->code + i;
switch ( code->op_code )
{
case INSTR_PUSH_MODULE:
case INSTR_CLASS:
++depth;
break;
case INSTR_POP_MODULE:
--depth;
break;
case INSTR_CALL_RULE:
++i;
break;
}
++i;
}
--i;
}
default: continue;
}
key = func->constants[ code->arg ];
if ( !( object_equal( key, constant_TMPDIR ) ||
object_equal( key, constant_TMPNAME ) ||
object_equal( key, constant_TMPFILE ) ||
object_equal( key, constant_STDOUT ) ||
object_equal( key, constant_STDERR ) ) )
{
code->op_code = op_code;
code->arg = module_add_fixed_var( module, key, counter );
}
}
}
}
void function_refer( FUNCTION * func )
{
++func->reference_count;
}
void function_free( FUNCTION * function_ )
{
int i;
if ( --function_->reference_count != 0 )
return;
if ( function_->formal_arguments )
argument_list_free( function_->formal_arguments,
function_->num_formal_arguments );
if ( function_->type == FUNCTION_JAM )
{
JAM_FUNCTION * func = (JAM_FUNCTION *)function_;
BJAM_FREE( func->code );
if ( func->generic )
function_free( func->generic );
else
{
if ( function_->rulename ) object_free( function_->rulename );
for ( i = 0; i < func->num_constants; ++i )
object_free( func->constants[ i ] );
BJAM_FREE( func->constants );
for ( i = 0; i < func->num_subfunctions; ++i )
{
object_free( func->functions[ i ].name );
function_free( func->functions[ i ].code );
}
BJAM_FREE( func->functions );
for ( i = 0; i < func->num_subactions; ++i )
{
object_free( func->actions[ i ].name );
function_free( func->actions[ i ].command );
}
BJAM_FREE( func->actions );
object_free( func->file );
}
}
#ifdef HAVE_PYTHON
else if ( function_->type == FUNCTION_PYTHON )
{
PYTHON_FUNCTION * func = (PYTHON_FUNCTION *)function_;
Py_DECREF( func->python_function );
if ( function_->rulename ) object_free( function_->rulename );
}
#endif
else
{
assert( function_->type == FUNCTION_BUILTIN );
if ( function_->rulename ) object_free( function_->rulename );
}
BJAM_FREE( function_ );
}
/* Alignment check for stack */
struct align_var_edits
{
char ch;
VAR_EDITS e;
};
struct align_expansion_item
{
char ch;
expansion_item e;
};
static char check_align_var_edits[ sizeof(struct align_var_edits) <= sizeof(VAR_EDITS) + sizeof(void *) ? 1 : -1 ];
static char check_align_expansion_item[ sizeof(struct align_expansion_item) <= sizeof(expansion_item) + sizeof(void *) ? 1 : -1 ];
static char check_ptr_size1[ sizeof(LIST *) <= sizeof(void *) ? 1 : -1 ];
static char check_ptr_size2[ sizeof(char *) <= sizeof(void *) ? 1 : -1 ];
void function_run_actions( FUNCTION * function, FRAME * frame, STACK * s,
string * out )
{
*(string * *)stack_allocate( s, sizeof( string * ) ) = out;
list_free( function_run( function, frame, s ) );
stack_deallocate( s, sizeof( string * ) );
}
/*
* WARNING: The instruction set is tuned for Jam and is not really generic. Be
* especially careful about stack push/pop.
*/
LIST * function_run( FUNCTION * function_, FRAME * frame, STACK * s )
{
JAM_FUNCTION * function;
instruction * code;
LIST * l;
LIST * r;
LIST * result = L0;
void * saved_stack = s->data;
if ( function_->type == FUNCTION_BUILTIN )
{
BUILTIN_FUNCTION const * const f = (BUILTIN_FUNCTION *)function_;
if ( function_->formal_arguments )
argument_list_check( function_->formal_arguments,
function_->num_formal_arguments, function_, frame );
return f->func( frame, f->flags );
}
#ifdef HAVE_PYTHON
else if ( function_->type == FUNCTION_PYTHON )
{
PYTHON_FUNCTION * f = (PYTHON_FUNCTION *)function_;
return call_python_function( f, frame );
}
#endif
assert( function_->type == FUNCTION_JAM );
if ( function_->formal_arguments )
argument_list_push( function_->formal_arguments,
function_->num_formal_arguments, function_, frame, s );
function = (JAM_FUNCTION *)function_;
code = function->code;
for ( ; ; )
{
switch ( code->op_code )
{
/*
* Basic stack manipulation
*/
case INSTR_PUSH_EMPTY:
stack_push( s, L0 );
break;
case INSTR_PUSH_CONSTANT:
{
OBJECT * value = function_get_constant( function, code->arg );
stack_push( s, list_new( object_copy( value ) ) );
break;
}
case INSTR_PUSH_ARG:
stack_push( s, frame_get_local( frame, code->arg ) );
break;
case INSTR_PUSH_VAR:
stack_push( s, function_get_variable( function, frame, code->arg ) );
break;
case INSTR_PUSH_VAR_FIXED:
stack_push( s, list_copy( frame->module->fixed_variables[ code->arg
] ) );
break;
case INSTR_PUSH_GROUP:
{
LIST * value = L0;
LISTITER iter;
LISTITER end;
l = stack_pop( s );
for ( iter = list_begin( l ), end = list_end( l ); iter != end;
iter = list_next( iter ) )
value = list_append( value, function_get_named_variable(
function, frame, list_item( iter ) ) );
list_free( l );
stack_push( s, value );
break;
}
case INSTR_PUSH_APPEND:
r = stack_pop( s );
l = stack_pop( s );
stack_push( s, list_append( l, r ) );
break;
case INSTR_SWAP:
l = stack_top( s );
stack_set( s, 0, stack_at( s, code->arg ) );
stack_set( s, code->arg, l );
break;
case INSTR_POP:
list_free( stack_pop( s ) );
break;
/*
* Branch instructions
*/
case INSTR_JUMP:
code += code->arg;
break;
case INSTR_JUMP_EMPTY:
l = stack_pop( s );
if ( !list_cmp( l, L0 ) ) code += code->arg;
list_free( l );
break;
case INSTR_JUMP_NOT_EMPTY:
l = stack_pop( s );
if ( list_cmp( l, L0 ) ) code += code->arg;
list_free( l );
break;
case INSTR_JUMP_LT:
r = stack_pop( s );
l = stack_pop( s );
if ( list_cmp( l, r ) < 0 ) code += code->arg;
list_free( l );
list_free( r );
break;
case INSTR_JUMP_LE:
r = stack_pop( s );
l = stack_pop( s );
if ( list_cmp( l, r ) <= 0 ) code += code->arg;
list_free( l );
list_free( r );
break;
case INSTR_JUMP_GT:
r = stack_pop( s );
l = stack_pop( s );
if ( list_cmp( l, r ) > 0 ) code += code->arg;
list_free( l );
list_free( r );
break;
case INSTR_JUMP_GE:
r = stack_pop( s );
l = stack_pop( s );
if ( list_cmp( l, r ) >= 0 ) code += code->arg;
list_free( l );
list_free( r );
break;
case INSTR_JUMP_EQ:
r = stack_pop( s );
l = stack_pop( s );
if ( list_cmp( l, r ) == 0 ) code += code->arg;
list_free( l );
list_free( r );
break;
case INSTR_JUMP_NE:
r = stack_pop(s);
l = stack_pop(s);
if ( list_cmp(l, r) != 0 ) code += code->arg;
list_free(l);
list_free(r);
break;
case INSTR_JUMP_IN:
r = stack_pop(s);
l = stack_pop(s);
if ( list_is_sublist( l, r ) ) code += code->arg;
list_free(l);
list_free(r);
break;
case INSTR_JUMP_NOT_IN:
r = stack_pop( s );
l = stack_pop( s );
if ( !list_is_sublist( l, r ) ) code += code->arg;
list_free( l );
list_free( r );
break;
/*
* For
*/
case INSTR_FOR_INIT:
l = stack_top( s );
*(LISTITER *)stack_allocate( s, sizeof( LISTITER ) ) =
list_begin( l );
break;
case INSTR_FOR_LOOP:
{
LISTITER iter = *(LISTITER *)stack_get( s );
stack_deallocate( s, sizeof( LISTITER ) );
l = stack_top( s );
if ( iter == list_end( l ) )
{
list_free( stack_pop( s ) );
code += code->arg;
}
else
{
r = list_new( object_copy( list_item( iter ) ) );
iter = list_next( iter );
*(LISTITER *)stack_allocate( s, sizeof( LISTITER ) ) = iter;
stack_push( s, r );
}
break;
}
/*
* Switch
*/
case INSTR_JUMP_NOT_GLOB:
{
char const * pattern;
char const * match;
l = stack_pop( s );
r = stack_top( s );
pattern = list_empty( l ) ? "" : object_str( list_front( l ) );
match = list_empty( r ) ? "" : object_str( list_front( r ) );
if ( glob( pattern, match ) )
code += code->arg;
else
list_free( stack_pop( s ) );
list_free( l );
break;
}
/*
* Return
*/
case INSTR_SET_RESULT:
list_free( result );
if ( !code->arg )
result = stack_pop( s );
else
result = list_copy( stack_top( s ) );
break;
case INSTR_PUSH_RESULT:
stack_push( s, result );
result = L0;
break;
case INSTR_RETURN:
{
if ( function_->formal_arguments )
argument_list_pop( function_->formal_arguments,
function_->num_formal_arguments, frame, s );
#ifndef NDEBUG
if ( !( saved_stack == s->data ) )
{
frame->file = function->file;
frame->line = function->line;
backtrace_line( frame );
printf( "error: stack check failed.\n" );
backtrace( frame );
assert( saved_stack == s->data );
}
#endif
assert( saved_stack == s->data );
return result;
}
/*
* Local variables
*/
case INSTR_PUSH_LOCAL:
{
LIST * value = stack_pop( s );
stack_push( s, function_swap_variable( function, frame, code->arg,
value ) );
break;
}
case INSTR_POP_LOCAL:
function_set_variable( function, frame, code->arg, stack_pop( s ) );
break;
case INSTR_PUSH_LOCAL_FIXED:
{
LIST * value = stack_pop( s );
LIST * * ptr = &frame->module->fixed_variables[ code->arg ];
assert( code->arg < frame->module->num_fixed_variables );
stack_push( s, *ptr );
*ptr = value;
break;
}
case INSTR_POP_LOCAL_FIXED:
{
LIST * value = stack_pop( s );
LIST * * ptr = &frame->module->fixed_variables[ code->arg ];
assert( code->arg < frame->module->num_fixed_variables );
list_free( *ptr );
*ptr = value;
break;
}
case INSTR_PUSH_LOCAL_GROUP:
{
LIST * const value = stack_pop( s );
LISTITER iter;
LISTITER end;
l = stack_pop( s );
for ( iter = list_begin( l ), end = list_end( l ); iter != end;
iter = list_next( iter ) )
stack_push( s, function_swap_named_variable( function, frame,
list_item( iter ), list_copy( value ) ) );
list_free( value );
stack_push( s, l );
break;
}
case INSTR_POP_LOCAL_GROUP:
{
LISTITER iter;
LISTITER end;
r = stack_pop( s );
l = list_reverse( r );
list_free( r );
for ( iter = list_begin( l ), end = list_end( l ); iter != end;
iter = list_next( iter ) )
function_set_named_variable( function, frame, list_item( iter ),
stack_pop( s ) );
list_free( l );
break;
}
/*
* on $(TARGET) variables
*/
case INSTR_PUSH_ON:
{
LIST * targets = stack_top( s );
if ( !list_empty( targets ) )
{
/* FIXME: push the state onto the stack instead of using
* pushsettings.
*/
TARGET * t = bindtarget( list_front( targets ) );
pushsettings( frame->module, t->settings );
}
else
{
/* [ on $(TARGET) ... ] is ignored if $(TARGET) is empty. */
list_free( stack_pop( s ) );
stack_push( s, L0 );
code += code->arg;
}
break;
}
case INSTR_POP_ON:
{
LIST * result = stack_pop( s );
LIST * targets = stack_pop( s );
if ( !list_empty( targets ) )
{
TARGET * t = bindtarget( list_front( targets ) );
popsettings( frame->module, t->settings );
}
list_free( targets );
stack_push( s, result );
break;
}
case INSTR_SET_ON:
{
LIST * targets = stack_pop( s );
LIST * value = stack_pop( s );
LIST * vars = stack_pop( s );
LISTITER iter = list_begin( targets );
LISTITER const end = list_end( targets );
for ( ; iter != end; iter = list_next( iter ) )
{
TARGET * t = bindtarget( list_item( iter ) );
LISTITER vars_iter = list_begin( vars );
LISTITER const vars_end = list_end( vars );
for ( ; vars_iter != vars_end; vars_iter = list_next( vars_iter
) )
t->settings = addsettings( t->settings, VAR_SET, list_item(
vars_iter ), list_copy( value ) );
}
list_free( vars );
list_free( targets );
stack_push( s, value );
break;
}
case INSTR_APPEND_ON:
{
LIST * targets = stack_pop( s );
LIST * value = stack_pop( s );
LIST * vars = stack_pop( s );
LISTITER iter = list_begin( targets );
LISTITER const end = list_end( targets );
for ( ; iter != end; iter = list_next( iter ) )
{
TARGET * const t = bindtarget( list_item( iter ) );
LISTITER vars_iter = list_begin( vars );
LISTITER const vars_end = list_end( vars );
for ( ; vars_iter != vars_end; vars_iter = list_next( vars_iter
) )
t->settings = addsettings( t->settings, VAR_APPEND,
list_item( vars_iter ), list_copy( value ) );
}
list_free( vars );
list_free( targets );
stack_push( s, value );
break;
}
case INSTR_DEFAULT_ON:
{
LIST * targets = stack_pop( s );
LIST * value = stack_pop( s );
LIST * vars = stack_pop( s );
LISTITER iter = list_begin( targets );
LISTITER const end = list_end( targets );
for ( ; iter != end; iter = list_next( iter ) )
{
TARGET * t = bindtarget( list_item( iter ) );
LISTITER vars_iter = list_begin( vars );
LISTITER const vars_end = list_end( vars );
for ( ; vars_iter != vars_end; vars_iter = list_next( vars_iter
) )
t->settings = addsettings( t->settings, VAR_DEFAULT,
list_item( vars_iter ), list_copy( value ) );
}
list_free( vars );
list_free( targets );
stack_push( s, value );
break;
}
/* [ on $(target) return $(variable) ] */
case INSTR_GET_ON:
{
LIST * targets = stack_pop( s );
LIST * result = L0;
if ( !list_empty( targets ) )
{
OBJECT * varname = function->constants[ code->arg ];
TARGET * t = bindtarget( list_front( targets ) );
SETTINGS * s = t->settings;
int found = 0;
for ( ; s != 0; s = s->next )
{
if ( object_equal( s->symbol, varname ) )
{
result = s->value;
found = 1;
break;
}
}
if ( !found )
{
result = var_get( frame->module, varname ) ;
}
}
stack_push( s, list_copy( result ) );
break;
}
/*
* Variable setting
*/
case INSTR_SET:
function_set_variable( function, frame, code->arg,
stack_pop( s ) );
break;
case INSTR_APPEND:
function_append_variable( function, frame, code->arg,
stack_pop( s ) );
break;
case INSTR_DEFAULT:
function_default_variable( function, frame, code->arg,
stack_pop( s ) );
break;
case INSTR_SET_FIXED:
{
LIST * * ptr = &frame->module->fixed_variables[ code->arg ];
assert( code->arg < frame->module->num_fixed_variables );
list_free( *ptr );
*ptr = stack_pop( s );
break;
}
case INSTR_APPEND_FIXED:
{
LIST * * ptr = &frame->module->fixed_variables[ code->arg ];
assert( code->arg < frame->module->num_fixed_variables );
*ptr = list_append( *ptr, stack_pop( s ) );
break;
}
case INSTR_DEFAULT_FIXED:
{
LIST * * ptr = &frame->module->fixed_variables[ code->arg ];
LIST * value = stack_pop( s );
assert( code->arg < frame->module->num_fixed_variables );
if ( list_empty( *ptr ) )
*ptr = value;
else
list_free( value );
break;
}
case INSTR_SET_GROUP:
{
LIST * value = stack_pop( s );
LIST * vars = stack_pop( s );
LISTITER iter = list_begin( vars );
LISTITER const end = list_end( vars );
for ( ; iter != end; iter = list_next( iter ) )
function_set_named_variable( function, frame, list_item( iter ),
list_copy( value ) );
list_free( vars );
list_free( value );
break;
}
case INSTR_APPEND_GROUP:
{
LIST * value = stack_pop( s );
LIST * vars = stack_pop( s );
LISTITER iter = list_begin( vars );
LISTITER const end = list_end( vars );
for ( ; iter != end; iter = list_next( iter ) )
function_append_named_variable( function, frame, list_item( iter
), list_copy( value ) );
list_free( vars );
list_free( value );
break;
}
case INSTR_DEFAULT_GROUP:
{
LIST * value = stack_pop( s );
LIST * vars = stack_pop( s );
LISTITER iter = list_begin( vars );
LISTITER const end = list_end( vars );
for ( ; iter != end; iter = list_next( iter ) )
function_default_named_variable( function, frame, list_item(
iter ), list_copy( value ) );
list_free( vars );
list_free( value );
break;
}
/*
* Rules
*/
case INSTR_CALL_RULE:
{
char const * unexpanded = object_str( function_get_constant(
function, code[ 1 ].op_code ) );
LIST * result = function_call_rule( function, frame, s, code->arg,
unexpanded, function->file, code[ 1 ].arg );
stack_push( s, result );
++code;
break;
}
case INSTR_CALL_MEMBER_RULE:
{
OBJECT * rule_name = function_get_constant( function, code[1].op_code );
LIST * result = function_call_member_rule( function, frame, s, code->arg, rule_name, function->file, code[1].arg );
stack_push( s, result );
++code;
break;
}
case INSTR_RULE:
function_set_rule( function, frame, s, code->arg );
break;
case INSTR_ACTIONS:
function_set_actions( function, frame, s, code->arg );
break;
/*
* Variable expansion
*/
case INSTR_APPLY_MODIFIERS:
{
int n;
int i;
l = stack_pop( s );
n = expand_modifiers( s, code->arg );
stack_push( s, l );
l = apply_modifiers( s, n );
list_free( stack_pop( s ) );
stack_deallocate( s, n * sizeof( VAR_EDITS ) );
for ( i = 0; i < code->arg; ++i )
list_free( stack_pop( s ) ); /* pop modifiers */
stack_push( s, l );
break;
}
case INSTR_APPLY_INDEX:
l = apply_subscript( s );
list_free( stack_pop( s ) );
list_free( stack_pop( s ) );
stack_push( s, l );
break;
case INSTR_APPLY_INDEX_MODIFIERS:
{
int i;
int n;
l = stack_pop( s );
r = stack_pop( s );
n = expand_modifiers( s, code->arg );
stack_push( s, r );
stack_push( s, l );
l = apply_subscript_and_modifiers( s, n );
list_free( stack_pop( s ) );
list_free( stack_pop( s ) );
stack_deallocate( s, n * sizeof( VAR_EDITS ) );
for ( i = 0; i < code->arg; ++i )
list_free( stack_pop( s ) ); /* pop modifiers */
stack_push( s, l );
break;
}
case INSTR_APPLY_MODIFIERS_GROUP:
{
int i;
LIST * const vars = stack_pop( s );
int const n = expand_modifiers( s, code->arg );
LIST * result = L0;
LISTITER iter = list_begin( vars );
LISTITER const end = list_end( vars );
for ( ; iter != end; iter = list_next( iter ) )
{
stack_push( s, function_get_named_variable( function, frame,
list_item( iter ) ) );
result = list_append( result, apply_modifiers( s, n ) );
list_free( stack_pop( s ) );
}
list_free( vars );
stack_deallocate( s, n * sizeof( VAR_EDITS ) );
for ( i = 0; i < code->arg; ++i )
list_free( stack_pop( s ) ); /* pop modifiers */
stack_push( s, result );
break;
}
case INSTR_APPLY_INDEX_GROUP:
{
LIST * vars = stack_pop( s );
LIST * result = L0;
LISTITER iter = list_begin( vars );
LISTITER const end = list_end( vars );
for ( ; iter != end; iter = list_next( iter ) )
{
stack_push( s, function_get_named_variable( function, frame,
list_item( iter ) ) );
result = list_append( result, apply_subscript( s ) );
list_free( stack_pop( s ) );
}
list_free( vars );
list_free( stack_pop( s ) );
stack_push( s, result );
break;
}
case INSTR_APPLY_INDEX_MODIFIERS_GROUP:
{
int i;
LIST * const vars = stack_pop( s );
LIST * const r = stack_pop( s );
int const n = expand_modifiers( s, code->arg );
LIST * result = L0;
LISTITER iter = list_begin( vars );
LISTITER const end = list_end( vars );
stack_push( s, r );
for ( ; iter != end; iter = list_next( iter ) )
{
stack_push( s, function_get_named_variable( function, frame,
list_item( iter ) ) );
result = list_append( result, apply_subscript_and_modifiers( s,
n ) );
list_free( stack_pop( s ) );
}
list_free( stack_pop( s ) );
list_free( vars );
stack_deallocate( s, n * sizeof( VAR_EDITS ) );
for ( i = 0; i < code->arg; ++i )
list_free( stack_pop( s ) ); /* pop modifiers */
stack_push( s, result );
break;
}
case INSTR_COMBINE_STRINGS:
{
size_t const buffer_size = code->arg * sizeof( expansion_item );
LIST * * const stack_pos = stack_get( s );
expansion_item * items = stack_allocate( s, buffer_size );
LIST * result;
int i;
for ( i = 0; i < code->arg; ++i )
items[ i ].values = stack_pos[ i ];
result = expand( items, code->arg );
stack_deallocate( s, buffer_size );
for ( i = 0; i < code->arg; ++i )
list_free( stack_pop( s ) );
stack_push( s, result );
break;
}
case INSTR_GET_GRIST:
{
LIST * vals = stack_pop( s );
LIST * result = L0;
LISTITER iter, end;
for ( iter = list_begin( vals ), end = list_end( vals ); iter != end; ++iter )
{
OBJECT * new_object;
const char * value = object_str( list_item( iter ) );
const char * p;
if ( value[ 0 ] == '<' && ( p = strchr( value, '>' ) ) )
{
if( p[ 1 ] )
new_object = object_new_range( value, p - value + 1 );
else
new_object = object_copy( list_item( iter ) );
}
else
{
new_object = object_copy( constant_empty );
}
result = list_push_back( result, new_object );
}
list_free( vals );
stack_push( s, result );
break;
}
case INSTR_INCLUDE:
{
LIST * nt = stack_pop( s );
if ( !list_empty( nt ) )
{
TARGET * const t = bindtarget( list_front( nt ) );
list_free( nt );
/* DWA 2001/10/22 - Perforce Jam cleared the arguments here,
* which prevented an included file from being treated as part
* of the body of a rule. I did not see any reason to do that,
* so I lifted the restriction.
*/
/* Bind the include file under the influence of "on-target"
* variables. Though they are targets, include files are not
* built with make().
*/
pushsettings( root_module(), t->settings );
/* We do not expect that a file to be included is generated by
* some action. Therefore, pass 0 as third argument. If the name
* resolves to a directory, let it error out.
*/
object_free( t->boundname );
t->boundname = search( t->name, &t->time, 0, 0 );
popsettings( root_module(), t->settings );
parse_file( t->boundname, frame );
}
break;
}
/*
* Classes and modules
*/
case INSTR_PUSH_MODULE:
{
LIST * const module_name = stack_pop( s );
module_t * const outer_module = frame->module;
frame->module = !list_empty( module_name )
? bindmodule( list_front( module_name ) )
: root_module();
list_free( module_name );
*(module_t * *)stack_allocate( s, sizeof( module_t * ) ) =
outer_module;
break;
}
case INSTR_POP_MODULE:
{
module_t * const outer_module = *(module_t * *)stack_get( s );
stack_deallocate( s, sizeof( module_t * ) );
frame->module = outer_module;
break;
}
case INSTR_CLASS:
{
LIST * bases = stack_pop( s );
LIST * name = stack_pop( s );
OBJECT * class_module = make_class_module( name, bases, frame );
module_t * const outer_module = frame->module;
frame->module = bindmodule( class_module );
object_free( class_module );
*(module_t * *)stack_allocate( s, sizeof( module_t * ) ) =
outer_module;
break;
}
case INSTR_BIND_MODULE_VARIABLES:
module_bind_variables( frame->module );
break;
case INSTR_APPEND_STRINGS:
{
string buf[ 1 ];
string_new( buf );
combine_strings( s, code->arg, buf );
stack_push( s, list_new( object_new( buf->value ) ) );
string_free( buf );
break;
}
case INSTR_WRITE_FILE:
{
string buf[ 1 ];
char const * out;
OBJECT * tmp_filename = 0;
int out_debug = DEBUG_EXEC ? 1 : 0;
FILE * out_file = 0;
string_new( buf );
combine_strings( s, code->arg, buf );
out = object_str( list_front( stack_top( s ) ) );
/* For stdout/stderr we will create a temp file and generate a
* command that outputs the content as needed.
*/
if ( ( strcmp( "STDOUT", out ) == 0 ) ||
( strcmp( "STDERR", out ) == 0 ) )
{
int err_redir = strcmp( "STDERR", out ) == 0;
string result[ 1 ];
tmp_filename = path_tmpfile();
string_new( result );
#ifdef OS_NT
string_append( result, "type \"" );
#else
string_append( result, "cat \"" );
#endif
string_append( result, object_str( tmp_filename ) );
string_push_back( result, '\"' );
if ( err_redir )
string_append( result, " 1>&2" );
/* Replace STDXXX with the temporary file. */
list_free( stack_pop( s ) );
stack_push( s, list_new( object_new( result->value ) ) );
out = object_str( tmp_filename );
string_free( result );
/* Make sure temp files created by this get nuked eventually. */
file_remove_atexit( tmp_filename );
}
if ( !globs.noexec )
{
string out_name[ 1 ];
/* Handle "path to file" filenames. */
if ( ( out[ 0 ] == '"' ) && ( out[ strlen( out ) - 1 ] == '"' )
)
{
string_copy( out_name, out + 1 );
string_truncate( out_name, out_name->size - 1 );
}
else
string_copy( out_name, out );
out_file = fopen( out_name->value, "w" );
if ( !out_file )
{
printf( "failed to write output file '%s'!\n",
out_name->value );
exit( EXITBAD );
}
string_free( out_name );
}
if ( out_debug ) printf( "\nfile %s\n", out );
if ( out_file ) fputs( buf->value, out_file );
if ( out_debug ) fputs( buf->value, stdout );
if ( out_file )
{
fflush( out_file );
fclose( out_file );
}
string_free( buf );
if ( tmp_filename )
object_free( tmp_filename );
if ( out_debug ) fputc( '\n', stdout );
break;
}
case INSTR_OUTPUT_STRINGS:
{
string * const buf = *(string * *)( (char *)stack_get( s ) + (
code->arg * sizeof( LIST * ) ) );
combine_strings( s, code->arg, buf );
break;
}
}
++code;
}
}
#ifdef HAVE_PYTHON
static struct arg_list * arg_list_compile_python( PyObject * bjam_signature,
int * num_arguments )
{
if ( bjam_signature )
{
struct argument_list_compiler c[ 1 ];
struct arg_list * result;
Py_ssize_t s;
Py_ssize_t i;
argument_list_compiler_init( c );
s = PySequence_Size( bjam_signature );
for ( i = 0; i < s; ++i )
{
struct argument_compiler arg_comp[ 1 ];
struct arg_list arg;
PyObject * v = PySequence_GetItem( bjam_signature, i );
Py_ssize_t j;
Py_ssize_t inner;
argument_compiler_init( arg_comp );
inner = PySequence_Size( v );
for ( j = 0; j < inner; ++j )
argument_compiler_add( arg_comp, object_new( PyString_AsString(
PySequence_GetItem( v, j ) ) ), constant_builtin, -1 );
arg = arg_compile_impl( arg_comp, constant_builtin, -1 );
dynamic_array_push( c->args, arg );
argument_compiler_free( arg_comp );
Py_DECREF( v );
}
*num_arguments = c->args->size;
result = BJAM_MALLOC( c->args->size * sizeof( struct arg_list ) );
memcpy( result, c->args->data, c->args->size * sizeof( struct arg_list )
);
argument_list_compiler_free( c );
return result;
}
*num_arguments = 0;
return 0;
}
FUNCTION * function_python( PyObject * function, PyObject * bjam_signature )
{
PYTHON_FUNCTION * result = BJAM_MALLOC( sizeof( PYTHON_FUNCTION ) );
result->base.type = FUNCTION_PYTHON;
result->base.reference_count = 1;
result->base.rulename = 0;
result->base.formal_arguments = arg_list_compile_python( bjam_signature,
&result->base.num_formal_arguments );
Py_INCREF( function );
result->python_function = function;
return (FUNCTION *)result;
}
static void argument_list_to_python( struct arg_list * formal, int formal_count,
FUNCTION * function, FRAME * frame, PyObject * kw )
{
LOL * all_actual = frame->args;
int i;
for ( i = 0; i < formal_count; ++i )
{
LIST * actual = lol_get( all_actual, i );
LISTITER actual_iter = list_begin( actual );
LISTITER const actual_end = list_end( actual );
int j;
for ( j = 0; j < formal[ i ].size; ++j )
{
struct argument * formal_arg = &formal[ i ].args[ j ];
PyObject * value;
LIST * l;
switch ( formal_arg->flags )
{
case ARG_ONE:
if ( actual_iter == actual_end )
argument_error( "missing argument", function, frame,
formal_arg->arg_name );
type_check_range( formal_arg->type_name, actual_iter, list_next(
actual_iter ), frame, function, formal_arg->arg_name );
value = PyString_FromString( object_str( list_item( actual_iter
) ) );
actual_iter = list_next( actual_iter );
break;
case ARG_OPTIONAL:
if ( actual_iter == actual_end )
value = 0;
else
{
type_check_range( formal_arg->type_name, actual_iter,
list_next( actual_iter ), frame, function,
formal_arg->arg_name );
value = PyString_FromString( object_str( list_item(
actual_iter ) ) );
actual_iter = list_next( actual_iter );
}
break;
case ARG_PLUS:
if ( actual_iter == actual_end )
argument_error( "missing argument", function, frame,
formal_arg->arg_name );
/* fallthrough */
case ARG_STAR:
type_check_range( formal_arg->type_name, actual_iter,
actual_end, frame, function, formal_arg->arg_name );
l = list_copy_range( actual, actual_iter, actual_end );
value = list_to_python( l );
list_free( l );
actual_iter = actual_end;
break;
case ARG_VARIADIC:
return;
}
if ( value )
{
PyObject * key = PyString_FromString( object_str(
formal_arg->arg_name ) );
PyDict_SetItem( kw, key, value );
Py_DECREF( key );
Py_DECREF( value );
}
}
if ( actual_iter != actual_end )
argument_error( "extra argument", function, frame, list_item(
actual_iter ) );
}
for ( ; i < all_actual->count; ++i )
{
LIST * const actual = lol_get( all_actual, i );
if ( !list_empty( actual ) )
argument_error( "extra argument", function, frame, list_front(
actual ) );
}
}
/* Given a Python object, return a string to use in Jam code instead of the said
* object.
*
* If the object is a string, use the string value.
* If the object implemenets __jam_repr__ method, use that.
* Otherwise return 0.
*/
OBJECT * python_to_string( PyObject * value )
{
if ( PyString_Check( value ) )
return object_new( PyString_AS_STRING( value ) );
/* See if this instance defines the special __jam_repr__ method. */
if ( PyInstance_Check( value )
&& PyObject_HasAttrString( value, "__jam_repr__" ) )
{
PyObject * repr = PyObject_GetAttrString( value, "__jam_repr__" );
if ( repr )
{
PyObject * arguments2 = PyTuple_New( 0 );
PyObject * value2 = PyObject_Call( repr, arguments2, 0 );
Py_DECREF( repr );
Py_DECREF( arguments2 );
if ( PyString_Check( value2 ) )
return object_new( PyString_AS_STRING( value2 ) );
Py_DECREF( value2 );
}
}
return 0;
}
static module_t * python_module()
{
static module_t * python = 0;
if ( !python )
python = bindmodule( constant_python );
return python;
}
static LIST * call_python_function( PYTHON_FUNCTION * function, FRAME * frame )
{
LIST * result = 0;
PyObject * arguments = 0;
PyObject * kw = NULL;
int i;
PyObject * py_result;
FRAME * prev_frame_before_python_call;
if ( function->base.formal_arguments )
{
arguments = PyTuple_New( 0 );
kw = PyDict_New();
argument_list_to_python( function->base.formal_arguments,
function->base.num_formal_arguments, &function->base, frame, kw );
}
else
{
arguments = PyTuple_New( frame->args->count );
for ( i = 0; i < frame->args->count; ++i )
PyTuple_SetItem( arguments, i, list_to_python( lol_get( frame->args,
i ) ) );
}
frame->module = python_module();
prev_frame_before_python_call = frame_before_python_call;
frame_before_python_call = frame;
py_result = PyObject_Call( function->python_function, arguments, kw );
frame_before_python_call = prev_frame_before_python_call;
Py_DECREF( arguments );
Py_XDECREF( kw );
if ( py_result != NULL )
{
if ( PyList_Check( py_result ) )
{
int size = PyList_Size( py_result );
int i;
for ( i = 0; i < size; ++i )
{
OBJECT * s = python_to_string( PyList_GetItem( py_result, i ) );
if ( !s )
fprintf( stderr,
"Non-string object returned by Python call.\n" );
else
result = list_push_back( result, s );
}
}
else if ( py_result == Py_None )
{
result = L0;
}
else
{
OBJECT * const s = python_to_string( py_result );
if ( s )
result = list_new( s );
else
/* We have tried all we could. Return empty list. There are
* cases, e.g. feature.feature function that should return a
* value for the benefit of Python code and which also can be
* called by Jam code, where no sensible value can be returned.
* We cannot even emit a warning, since there would be a pile of
* them.
*/
result = L0;
}
Py_DECREF( py_result );
}
else
{
PyErr_Print();
fprintf( stderr, "Call failed\n" );
}
return result;
}
#endif
void function_done( void )
{
BJAM_FREE( stack );
}