blob: ce1dedd4876eaebd835947994067836c23e18f9d [file] [log] [blame]
/*
* Copyright 2015 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FOLLY_ATOMIC_STRUCT_H_
#define FOLLY_ATOMIC_STRUCT_H_
#include <atomic>
#include <type_traits>
#include <folly/Traits.h>
#include <string.h>
#include <stdint.h>
namespace folly {
namespace detail {
template <int N> struct AtomicStructIntPick {};
}
/// AtomicStruct<T> work like C++ atomics, but can be used on any POD
/// type <= 8 bytes.
template <
typename T,
template<typename> class Atom = std::atomic,
typename Raw = typename detail::AtomicStructIntPick<sizeof(T)>::type>
class AtomicStruct {
static_assert(alignof(T) <= alignof(Raw),
"target type can't have stricter alignment than matching int");
static_assert(sizeof(T) <= sizeof(Raw),
"underlying type isn't big enough");
static_assert(std::is_trivial<T>::value ||
folly::IsTriviallyCopyable<T>::value,
"target type must be trivially copyable");
Atom<Raw> data;
static Raw encode(T v) noexcept {
// we expect the compiler to optimize away the memcpy, but without
// it we would violate strict aliasing rules
Raw d = 0;
memcpy(&d, &v, sizeof(T));
return d;
}
static T decode(Raw d) noexcept {
T v;
memcpy(&v, &d, sizeof(T));
return v;
}
public:
AtomicStruct() = default;
~AtomicStruct() = default;
AtomicStruct(AtomicStruct<T> const &) = delete;
AtomicStruct<T>& operator= (AtomicStruct<T> const &) = delete;
constexpr /* implicit */ AtomicStruct(T v) noexcept : data(encode(v)) {}
bool is_lock_free() const noexcept {
return data.is_lock_free();
}
bool compare_exchange_strong(
T& v0, T v1,
std::memory_order mo = std::memory_order_seq_cst) noexcept {
Raw d0 = encode(v0);
bool rv = data.compare_exchange_strong(d0, encode(v1), mo);
if (!rv) {
v0 = decode(d0);
}
return rv;
}
bool compare_exchange_weak(
T& v0, T v1,
std::memory_order mo = std::memory_order_seq_cst) noexcept {
Raw d0 = encode(v0);
bool rv = data.compare_exchange_weak(d0, encode(v1), mo);
if (!rv) {
v0 = decode(d0);
}
return rv;
}
T exchange(T v, std::memory_order mo = std::memory_order_seq_cst) noexcept {
return decode(data.exchange(encode(v), mo));
}
/* implicit */ operator T () const noexcept {
return decode(data);
}
T load(std::memory_order mo = std::memory_order_seq_cst) const noexcept {
return decode(data.load(mo));
}
T operator= (T v) noexcept {
return decode(data = encode(v));
}
void store(T v, std::memory_order mo = std::memory_order_seq_cst) noexcept {
data.store(encode(v), mo);
}
// std::atomic also provides volatile versions of all of the access
// methods. These are callable on volatile objects, and also can
// theoretically have different implementations than their non-volatile
// counterpart. If someone wants them here they can easily be added
// by duplicating the above code and the corresponding unit tests.
};
namespace detail {
template <> struct AtomicStructIntPick<1> { typedef uint8_t type; };
template <> struct AtomicStructIntPick<2> { typedef uint16_t type; };
template <> struct AtomicStructIntPick<3> { typedef uint32_t type; };
template <> struct AtomicStructIntPick<4> { typedef uint32_t type; };
template <> struct AtomicStructIntPick<5> { typedef uint64_t type; };
template <> struct AtomicStructIntPick<6> { typedef uint64_t type; };
template <> struct AtomicStructIntPick<7> { typedef uint64_t type; };
template <> struct AtomicStructIntPick<8> { typedef uint64_t type; };
} // namespace detail
} // namespace folly
#endif