| /* |
| * Copyright 2015 Facebook, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // @author Mark Rabkin (mrabkin@fb.com) |
| // @author Andrei Alexandrescu (andrei.alexandrescu@fb.com) |
| |
| #ifndef FOLLY_RANGE_H_ |
| #define FOLLY_RANGE_H_ |
| |
| #include <folly/Portability.h> |
| #include <folly/FBString.h> |
| #include <folly/SpookyHashV2.h> |
| |
| #include <algorithm> |
| #include <boost/operators.hpp> |
| #include <climits> |
| #include <cstring> |
| #include <glog/logging.h> |
| #include <iosfwd> |
| #include <stdexcept> |
| #include <string> |
| #include <type_traits> |
| |
| // libc++ doesn't provide this header, nor does msvc |
| #ifdef FOLLY_HAVE_BITS_CXXCONFIG_H |
| // This file appears in two locations: inside fbcode and in the |
| // libstdc++ source code (when embedding fbstring as std::string). |
| // To aid in this schizophrenic use, two macros are defined in |
| // c++config.h: |
| // _LIBSTDCXX_FBSTRING - Set inside libstdc++. This is useful to |
| // gate use inside fbcode v. libstdc++ |
| #include <bits/c++config.h> |
| #endif |
| |
| #include <folly/Traits.h> |
| #include <folly/Likely.h> |
| |
| // Ignore shadowing warnings within this file, so includers can use -Wshadow. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wshadow" |
| |
| namespace folly { |
| |
| template <class T> class Range; |
| |
| /** |
| * Finds the first occurrence of needle in haystack. The algorithm is on |
| * average faster than O(haystack.size() * needle.size()) but not as fast |
| * as Boyer-Moore. On the upside, it does not do any upfront |
| * preprocessing and does not allocate memory. |
| */ |
| template <class T, class Comp = std::equal_to<typename Range<T>::value_type>> |
| inline size_t qfind(const Range<T> & haystack, |
| const Range<T> & needle, |
| Comp eq = Comp()); |
| |
| /** |
| * Finds the first occurrence of needle in haystack. The result is the |
| * offset reported to the beginning of haystack, or string::npos if |
| * needle wasn't found. |
| */ |
| template <class T> |
| size_t qfind(const Range<T> & haystack, |
| const typename Range<T>::value_type& needle); |
| |
| /** |
| * Finds the last occurrence of needle in haystack. The result is the |
| * offset reported to the beginning of haystack, or string::npos if |
| * needle wasn't found. |
| */ |
| template <class T> |
| size_t rfind(const Range<T> & haystack, |
| const typename Range<T>::value_type& needle); |
| |
| |
| /** |
| * Finds the first occurrence of any element of needle in |
| * haystack. The algorithm is O(haystack.size() * needle.size()). |
| */ |
| template <class T> |
| inline size_t qfind_first_of(const Range<T> & haystack, |
| const Range<T> & needle); |
| |
| /** |
| * Small internal helper - returns the value just before an iterator. |
| */ |
| namespace detail { |
| |
| /** |
| * For random-access iterators, the value before is simply i[-1]. |
| */ |
| template <class Iter> |
| typename std::enable_if< |
| std::is_same<typename std::iterator_traits<Iter>::iterator_category, |
| std::random_access_iterator_tag>::value, |
| typename std::iterator_traits<Iter>::reference>::type |
| value_before(Iter i) { |
| return i[-1]; |
| } |
| |
| /** |
| * For all other iterators, we need to use the decrement operator. |
| */ |
| template <class Iter> |
| typename std::enable_if< |
| !std::is_same<typename std::iterator_traits<Iter>::iterator_category, |
| std::random_access_iterator_tag>::value, |
| typename std::iterator_traits<Iter>::reference>::type |
| value_before(Iter i) { |
| return *--i; |
| } |
| |
| /* |
| * Use IsCharPointer<T>::type to enable const char* or char*. |
| * Use IsCharPointer<T>::const_type to enable only const char*. |
| */ |
| template <class T> struct IsCharPointer {}; |
| |
| template <> |
| struct IsCharPointer<char*> { |
| typedef int type; |
| }; |
| |
| template <> |
| struct IsCharPointer<const char*> { |
| typedef int const_type; |
| typedef int type; |
| }; |
| |
| } // namespace detail |
| |
| /** |
| * Range abstraction keeping a pair of iterators. We couldn't use |
| * boost's similar range abstraction because we need an API identical |
| * with the former StringPiece class, which is used by a lot of other |
| * code. This abstraction does fulfill the needs of boost's |
| * range-oriented algorithms though. |
| * |
| * (Keep memory lifetime in mind when using this class, since it |
| * doesn't manage the data it refers to - just like an iterator |
| * wouldn't.) |
| */ |
| template <class Iter> |
| class Range : private boost::totally_ordered<Range<Iter> > { |
| public: |
| typedef std::size_t size_type; |
| typedef Iter iterator; |
| typedef Iter const_iterator; |
| typedef typename std::remove_reference< |
| typename std::iterator_traits<Iter>::reference>::type |
| value_type; |
| typedef typename std::iterator_traits<Iter>::reference reference; |
| |
| /** |
| * For MutableStringPiece and MutableByteRange we define StringPiece |
| * and ByteRange as const_range_type (for everything else its just |
| * identity). We do that to enable operations such as find with |
| * args which are const. |
| */ |
| typedef typename std::conditional< |
| std::is_same<Iter, char*>::value |
| || std::is_same<Iter, unsigned char*>::value, |
| Range<const value_type*>, |
| Range<Iter>>::type const_range_type; |
| |
| typedef std::char_traits<typename std::remove_const<value_type>::type> |
| traits_type; |
| |
| static const size_type npos; |
| |
| // Works for all iterators |
| constexpr Range() : b_(), e_() { |
| } |
| |
| constexpr Range(const Range&) = default; |
| constexpr Range(Range&&) = default; |
| |
| public: |
| // Works for all iterators |
| constexpr Range(Iter start, Iter end) : b_(start), e_(end) { |
| } |
| |
| // Works only for random-access iterators |
| constexpr Range(Iter start, size_t size) |
| : b_(start), e_(start + size) { } |
| |
| #if FOLLY_HAVE_CONSTEXPR_STRLEN |
| template <class T = Iter, typename detail::IsCharPointer<T>::type = 0> |
| constexpr /* implicit */ Range(Iter str) |
| : b_(str), e_(str + strlen(str)) {} |
| #else |
| template <class T = Iter, typename detail::IsCharPointer<T>::type = 0> |
| /* implicit */ Range(Iter str) |
| : b_(str), e_(str + strlen(str)) {} |
| #endif |
| template <class T = Iter, typename detail::IsCharPointer<T>::const_type = 0> |
| /* implicit */ Range(const std::string& str) |
| : b_(str.data()), e_(b_ + str.size()) {} |
| |
| template <class T = Iter, typename detail::IsCharPointer<T>::const_type = 0> |
| Range(const std::string& str, std::string::size_type startFrom) { |
| if (UNLIKELY(startFrom > str.size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| b_ = str.data() + startFrom; |
| e_ = str.data() + str.size(); |
| } |
| |
| template <class T = Iter, typename detail::IsCharPointer<T>::const_type = 0> |
| Range(const std::string& str, |
| std::string::size_type startFrom, |
| std::string::size_type size) { |
| if (UNLIKELY(startFrom > str.size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| b_ = str.data() + startFrom; |
| if (str.size() - startFrom < size) { |
| e_ = str.data() + str.size(); |
| } else { |
| e_ = b_ + size; |
| } |
| } |
| |
| Range(const Range& other, |
| size_type first, |
| size_type length = npos) |
| : Range(other.subpiece(first, length)) |
| { } |
| |
| template <class T = Iter, typename detail::IsCharPointer<T>::const_type = 0> |
| /* implicit */ Range(const fbstring& str) |
| : b_(str.data()), e_(b_ + str.size()) { } |
| |
| template <class T = Iter, typename detail::IsCharPointer<T>::const_type = 0> |
| Range(const fbstring& str, fbstring::size_type startFrom) { |
| if (UNLIKELY(startFrom > str.size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| b_ = str.data() + startFrom; |
| e_ = str.data() + str.size(); |
| } |
| |
| template <class T = Iter, typename detail::IsCharPointer<T>::const_type = 0> |
| Range(const fbstring& str, fbstring::size_type startFrom, |
| fbstring::size_type size) { |
| if (UNLIKELY(startFrom > str.size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| b_ = str.data() + startFrom; |
| if (str.size() - startFrom < size) { |
| e_ = str.data() + str.size(); |
| } else { |
| e_ = b_ + size; |
| } |
| } |
| |
| // Allow implicit conversion from Range<const char*> (aka StringPiece) to |
| // Range<const unsigned char*> (aka ByteRange), as they're both frequently |
| // used to represent ranges of bytes. Allow explicit conversion in the other |
| // direction. |
| template <class OtherIter, typename std::enable_if< |
| (std::is_same<Iter, const unsigned char*>::value && |
| (std::is_same<OtherIter, const char*>::value || |
| std::is_same<OtherIter, char*>::value)), int>::type = 0> |
| /* implicit */ Range(const Range<OtherIter>& other) |
| : b_(reinterpret_cast<const unsigned char*>(other.begin())), |
| e_(reinterpret_cast<const unsigned char*>(other.end())) { |
| } |
| |
| template <class OtherIter, typename std::enable_if< |
| (std::is_same<Iter, unsigned char*>::value && |
| std::is_same<OtherIter, char*>::value), int>::type = 0> |
| /* implicit */ Range(const Range<OtherIter>& other) |
| : b_(reinterpret_cast<unsigned char*>(other.begin())), |
| e_(reinterpret_cast<unsigned char*>(other.end())) { |
| } |
| |
| template <class OtherIter, typename std::enable_if< |
| (std::is_same<Iter, const char*>::value && |
| (std::is_same<OtherIter, const unsigned char*>::value || |
| std::is_same<OtherIter, unsigned char*>::value)), int>::type = 0> |
| explicit Range(const Range<OtherIter>& other) |
| : b_(reinterpret_cast<const char*>(other.begin())), |
| e_(reinterpret_cast<const char*>(other.end())) { |
| } |
| |
| template <class OtherIter, typename std::enable_if< |
| (std::is_same<Iter, char*>::value && |
| std::is_same<OtherIter, unsigned char*>::value), int>::type = 0> |
| explicit Range(const Range<OtherIter>& other) |
| : b_(reinterpret_cast<char*>(other.begin())), |
| e_(reinterpret_cast<char*>(other.end())) { |
| } |
| |
| // Allow implicit conversion from Range<From> to Range<To> if From is |
| // implicitly convertible to To. |
| template <class OtherIter, typename std::enable_if< |
| (!std::is_same<Iter, OtherIter>::value && |
| std::is_convertible<OtherIter, Iter>::value), int>::type = 0> |
| constexpr /* implicit */ Range(const Range<OtherIter>& other) |
| : b_(other.begin()), |
| e_(other.end()) { |
| } |
| |
| // Allow explicit conversion from Range<From> to Range<To> if From is |
| // explicitly convertible to To. |
| template <class OtherIter, typename std::enable_if< |
| (!std::is_same<Iter, OtherIter>::value && |
| !std::is_convertible<OtherIter, Iter>::value && |
| std::is_constructible<Iter, const OtherIter&>::value), int>::type = 0> |
| constexpr explicit Range(const Range<OtherIter>& other) |
| : b_(other.begin()), |
| e_(other.end()) { |
| } |
| |
| Range& operator=(const Range& rhs) & = default; |
| Range& operator=(Range&& rhs) & = default; |
| |
| void clear() { |
| b_ = Iter(); |
| e_ = Iter(); |
| } |
| |
| void assign(Iter start, Iter end) { |
| b_ = start; |
| e_ = end; |
| } |
| |
| void reset(Iter start, size_type size) { |
| b_ = start; |
| e_ = start + size; |
| } |
| |
| // Works only for Range<const char*> |
| void reset(const std::string& str) { |
| reset(str.data(), str.size()); |
| } |
| |
| size_type size() const { |
| assert(b_ <= e_); |
| return e_ - b_; |
| } |
| size_type walk_size() const { |
| assert(b_ <= e_); |
| return std::distance(b_, e_); |
| } |
| bool empty() const { return b_ == e_; } |
| Iter data() const { return b_; } |
| Iter start() const { return b_; } |
| Iter begin() const { return b_; } |
| Iter end() const { return e_; } |
| Iter cbegin() const { return b_; } |
| Iter cend() const { return e_; } |
| value_type& front() { |
| assert(b_ < e_); |
| return *b_; |
| } |
| value_type& back() { |
| assert(b_ < e_); |
| return detail::value_before(e_); |
| } |
| const value_type& front() const { |
| assert(b_ < e_); |
| return *b_; |
| } |
| const value_type& back() const { |
| assert(b_ < e_); |
| return detail::value_before(e_); |
| } |
| // Works only for Range<const char*> and Range<char*> |
| std::string str() const { return std::string(b_, size()); } |
| std::string toString() const { return str(); } |
| // Works only for Range<const char*> and Range<char*> |
| fbstring fbstr() const { return fbstring(b_, size()); } |
| fbstring toFbstring() const { return fbstr(); } |
| |
| const_range_type castToConst() const { |
| return const_range_type(*this); |
| }; |
| |
| // Works only for Range<const char*> and Range<char*> |
| int compare(const const_range_type& o) const { |
| const size_type tsize = this->size(); |
| const size_type osize = o.size(); |
| const size_type msize = std::min(tsize, osize); |
| int r = traits_type::compare(data(), o.data(), msize); |
| if (r == 0 && tsize != osize) { |
| // We check the signed bit of the subtraction and bit shift it |
| // to produce either 0 or 2. The subtraction yields the |
| // comparison values of either -1 or 1. |
| r = (static_cast<int>( |
| (osize - tsize) >> (CHAR_BIT * sizeof(size_t) - 1)) << 1) - 1; |
| } |
| return r; |
| } |
| |
| value_type& operator[](size_t i) { |
| DCHECK_GT(size(), i); |
| return b_[i]; |
| } |
| |
| const value_type& operator[](size_t i) const { |
| DCHECK_GT(size(), i); |
| return b_[i]; |
| } |
| |
| value_type& at(size_t i) { |
| if (i >= size()) throw std::out_of_range("index out of range"); |
| return b_[i]; |
| } |
| |
| const value_type& at(size_t i) const { |
| if (i >= size()) throw std::out_of_range("index out of range"); |
| return b_[i]; |
| } |
| |
| // Do NOT use this function, which was left behind for backwards |
| // compatibility. Use SpookyHashV2 instead -- it is faster, and produces |
| // a 64-bit hash, which means dramatically fewer collisions in large maps. |
| // (The above advice does not apply if you are targeting a 32-bit system.) |
| // |
| // Works only for Range<const char*> and Range<char*> |
| uint32_t hash() const { |
| // Taken from fbi/nstring.h: |
| // Quick and dirty bernstein hash...fine for short ascii strings |
| uint32_t hash = 5381; |
| for (size_t ix = 0; ix < size(); ix++) { |
| hash = ((hash << 5) + hash) + b_[ix]; |
| } |
| return hash; |
| } |
| |
| void advance(size_type n) { |
| if (UNLIKELY(n > size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| b_ += n; |
| } |
| |
| void subtract(size_type n) { |
| if (UNLIKELY(n > size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| e_ -= n; |
| } |
| |
| void pop_front() { |
| assert(b_ < e_); |
| ++b_; |
| } |
| |
| void pop_back() { |
| assert(b_ < e_); |
| --e_; |
| } |
| |
| Range subpiece(size_type first, size_type length = npos) const { |
| if (UNLIKELY(first > size())) { |
| throw std::out_of_range("index out of range"); |
| } |
| |
| return Range(b_ + first, std::min(length, size() - first)); |
| } |
| |
| // string work-alike functions |
| size_type find(const_range_type str) const { |
| return qfind(castToConst(), str); |
| } |
| |
| size_type find(const_range_type str, size_t pos) const { |
| if (pos > size()) return std::string::npos; |
| size_t ret = qfind(castToConst().subpiece(pos), str); |
| return ret == npos ? ret : ret + pos; |
| } |
| |
| size_type find(Iter s, size_t pos, size_t n) const { |
| if (pos > size()) return std::string::npos; |
| auto forFinding = castToConst(); |
| size_t ret = qfind( |
| pos ? forFinding.subpiece(pos) : forFinding, const_range_type(s, n)); |
| return ret == npos ? ret : ret + pos; |
| } |
| |
| // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor |
| size_type find(const Iter s) const { |
| return qfind(castToConst(), const_range_type(s)); |
| } |
| |
| // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor |
| size_type find(const Iter s, size_t pos) const { |
| if (pos > size()) return std::string::npos; |
| size_type ret = qfind(castToConst().subpiece(pos), const_range_type(s)); |
| return ret == npos ? ret : ret + pos; |
| } |
| |
| size_type find(value_type c) const { |
| return qfind(castToConst(), c); |
| } |
| |
| size_type rfind(value_type c) const { |
| return folly::rfind(castToConst(), c); |
| } |
| |
| size_type find(value_type c, size_t pos) const { |
| if (pos > size()) return std::string::npos; |
| size_type ret = qfind(castToConst().subpiece(pos), c); |
| return ret == npos ? ret : ret + pos; |
| } |
| |
| size_type find_first_of(const_range_type needles) const { |
| return qfind_first_of(castToConst(), needles); |
| } |
| |
| size_type find_first_of(const_range_type needles, size_t pos) const { |
| if (pos > size()) return std::string::npos; |
| size_type ret = qfind_first_of(castToConst().subpiece(pos), needles); |
| return ret == npos ? ret : ret + pos; |
| } |
| |
| // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor |
| size_type find_first_of(Iter needles) const { |
| return find_first_of(const_range_type(needles)); |
| } |
| |
| // Works only for Range<(const) (unsigned) char*> which have Range(Iter) ctor |
| size_type find_first_of(Iter needles, size_t pos) const { |
| return find_first_of(const_range_type(needles), pos); |
| } |
| |
| size_type find_first_of(Iter needles, size_t pos, size_t n) const { |
| return find_first_of(const_range_type(needles, n), pos); |
| } |
| |
| size_type find_first_of(value_type c) const { |
| return find(c); |
| } |
| |
| size_type find_first_of(value_type c, size_t pos) const { |
| return find(c, pos); |
| } |
| |
| /** |
| * Determine whether the range contains the given subrange or item. |
| * |
| * Note: Call find() directly if the index is needed. |
| */ |
| bool contains(const const_range_type& other) const { |
| return find(other) != std::string::npos; |
| } |
| |
| bool contains(const value_type& other) const { |
| return find(other) != std::string::npos; |
| } |
| |
| void swap(Range& rhs) { |
| std::swap(b_, rhs.b_); |
| std::swap(e_, rhs.e_); |
| } |
| |
| /** |
| * Does this Range start with another range? |
| */ |
| bool startsWith(const const_range_type& other) const { |
| return size() >= other.size() |
| && castToConst().subpiece(0, other.size()) == other; |
| } |
| bool startsWith(value_type c) const { |
| return !empty() && front() == c; |
| } |
| |
| /** |
| * Does this Range end with another range? |
| */ |
| bool endsWith(const const_range_type& other) const { |
| return size() >= other.size() |
| && castToConst().subpiece(size() - other.size()) == other; |
| } |
| bool endsWith(value_type c) const { |
| return !empty() && back() == c; |
| } |
| |
| /** |
| * Remove the given prefix and return true if the range starts with the given |
| * prefix; return false otherwise. |
| */ |
| bool removePrefix(const const_range_type& prefix) { |
| return startsWith(prefix) && (b_ += prefix.size(), true); |
| } |
| bool removePrefix(value_type prefix) { |
| return startsWith(prefix) && (++b_, true); |
| } |
| |
| /** |
| * Remove the given suffix and return true if the range ends with the given |
| * suffix; return false otherwise. |
| */ |
| bool removeSuffix(const const_range_type& suffix) { |
| return endsWith(suffix) && (e_ -= suffix.size(), true); |
| } |
| bool removeSuffix(value_type suffix) { |
| return endsWith(suffix) && (--e_, true); |
| } |
| |
| /** |
| * Replaces the content of the range, starting at position 'pos', with |
| * contents of 'replacement'. Entire 'replacement' must fit into the |
| * range. Returns false if 'replacements' does not fit. Example use: |
| * |
| * char in[] = "buffer"; |
| * auto msp = MutablesStringPiece(input); |
| * EXPECT_TRUE(msp.replaceAt(2, "tt")); |
| * EXPECT_EQ(msp, "butter"); |
| * |
| * // not enough space |
| * EXPECT_FALSE(msp.replace(msp.size() - 1, "rr")); |
| * EXPECT_EQ(msp, "butter"); // unchanged |
| */ |
| bool replaceAt(size_t pos, const_range_type replacement) { |
| if (size() < pos + replacement.size()) { |
| return false; |
| } |
| |
| std::copy(replacement.begin(), replacement.end(), begin() + pos); |
| |
| return true; |
| } |
| |
| /** |
| * Replaces all occurences of 'source' with 'dest'. Returns number |
| * of replacements made. Source and dest have to have the same |
| * length. Throws if the lengths are different. If 'source' is a |
| * pattern that is overlapping with itself, we perform sequential |
| * replacement: "aaaaaaa".replaceAll("aa", "ba") --> "bababaa" |
| * |
| * Example use: |
| * |
| * char in[] = "buffer"; |
| * auto msp = MutablesStringPiece(input); |
| * EXPECT_EQ(msp.replaceAll("ff","tt"), 1); |
| * EXPECT_EQ(msp, "butter"); |
| */ |
| size_t replaceAll(const_range_type source, const_range_type dest) { |
| if (source.size() != dest.size()) { |
| throw std::invalid_argument( |
| "replacement must have the same size as source"); |
| } |
| |
| if (dest.empty()) { |
| return 0; |
| } |
| |
| size_t pos = 0; |
| size_t num_replaced = 0; |
| size_type found = std::string::npos; |
| while ((found = find(source, pos)) != std::string::npos) { |
| replaceAt(found, dest); |
| pos += source.size(); |
| ++num_replaced; |
| } |
| |
| return num_replaced; |
| } |
| |
| /** |
| * Splits this `Range` `[b, e)` in the position `i` dictated by the next |
| * occurence of `delimiter`. |
| * |
| * Returns a new `Range` `[b, i)` and adjusts this range to start right after |
| * the delimiter's position. This range will be empty if the delimiter is not |
| * found. If called on an empty `Range`, both this and the returned `Range` |
| * will be empty. |
| * |
| * Example: |
| * |
| * folly::StringPiece s("sample string for split_next"); |
| * auto p = s.split_step(' '); |
| * |
| * // prints "string for split_next" |
| * cout << s << endl; |
| * |
| * // prints "sample" |
| * cout << p << endl; |
| * |
| * Example 2: |
| * |
| * void tokenize(StringPiece s, char delimiter) { |
| * while (!s.empty()) { |
| * cout << s.split_step(delimiter); |
| * } |
| * } |
| * |
| * @author: Marcelo Juchem <marcelo@fb.com> |
| */ |
| Range split_step(value_type delimiter) { |
| auto i = std::find(b_, e_, delimiter); |
| Range result(b_, i); |
| |
| b_ = i == e_ ? e_ : std::next(i); |
| |
| return result; |
| } |
| |
| Range split_step(Range delimiter) { |
| auto i = find(delimiter); |
| Range result(b_, i == std::string::npos ? size() : i); |
| |
| b_ = result.end() == e_ ? e_ : std::next(result.end(), delimiter.size()); |
| |
| return result; |
| } |
| |
| /** |
| * Convenience method that calls `split_step()` and passes the result to a |
| * functor, returning whatever the functor does. Any additional arguments |
| * `args` passed to this function are perfectly forwarded to the functor. |
| * |
| * Say you have a functor with this signature: |
| * |
| * Foo fn(Range r) { } |
| * |
| * `split_step()`'s return type will be `Foo`. It works just like: |
| * |
| * auto result = fn(myRange.split_step(' ')); |
| * |
| * A functor returning `void` is also supported. |
| * |
| * Example: |
| * |
| * void do_some_parsing(folly::StringPiece s) { |
| * auto version = s.split_step(' ', [&](folly::StringPiece x) { |
| * if (x.empty()) { |
| * throw std::invalid_argument("empty string"); |
| * } |
| * return std::strtoull(x.begin(), x.end(), 16); |
| * }); |
| * |
| * // ... |
| * } |
| * |
| * struct Foo { |
| * void parse(folly::StringPiece s) { |
| * s.split_step(' ', parse_field, bar, 10); |
| * s.split_step('\t', parse_field, baz, 20); |
| * |
| * auto const kludge = [](folly::StringPiece x, int &out, int def) { |
| * if (x == "null") { |
| * out = 0; |
| * } else { |
| * parse_field(x, out, def); |
| * } |
| * }; |
| * |
| * s.split_step('\t', kludge, gaz); |
| * s.split_step(' ', kludge, foo); |
| * } |
| * |
| * private: |
| * int bar; |
| * int baz; |
| * int gaz; |
| * int foo; |
| * |
| * static parse_field(folly::StringPiece s, int &out, int def) { |
| * try { |
| * out = folly::to<int>(s); |
| * } catch (std::exception const &) { |
| * value = def; |
| * } |
| * } |
| * }; |
| * |
| * @author: Marcelo Juchem <marcelo@fb.com> |
| */ |
| template <typename TProcess, typename... Args> |
| auto split_step(value_type delimiter, TProcess &&process, Args &&...args) |
| -> decltype(process(std::declval<Range>(), std::forward<Args>(args)...)) |
| { return process(split_step(delimiter), std::forward<Args>(args)...); } |
| |
| template <typename TProcess, typename... Args> |
| auto split_step(Range delimiter, TProcess &&process, Args &&...args) |
| -> decltype(process(std::declval<Range>(), std::forward<Args>(args)...)) |
| { return process(split_step(delimiter), std::forward<Args>(args)...); } |
| |
| private: |
| Iter b_, e_; |
| }; |
| |
| template <class Iter> |
| const typename Range<Iter>::size_type Range<Iter>::npos = std::string::npos; |
| |
| template <class T> |
| void swap(Range<T>& lhs, Range<T>& rhs) { |
| lhs.swap(rhs); |
| } |
| |
| /** |
| * Create a range from two iterators, with type deduction. |
| */ |
| template <class Iter> |
| Range<Iter> range(Iter first, Iter last) { |
| return Range<Iter>(first, last); |
| } |
| |
| /* |
| * Creates a range to reference the contents of a contiguous-storage container. |
| */ |
| // Use pointers for types with '.data()' member |
| template <class Collection, |
| class T = typename std::remove_pointer< |
| decltype(std::declval<Collection>().data())>::type> |
| Range<T*> range(Collection&& v) { |
| return Range<T*>(v.data(), v.data() + v.size()); |
| } |
| |
| template <class T, size_t n> |
| Range<T*> range(T (&array)[n]) { |
| return Range<T*>(array, array + n); |
| } |
| |
| typedef Range<const char*> StringPiece; |
| typedef Range<char*> MutableStringPiece; |
| typedef Range<const unsigned char*> ByteRange; |
| typedef Range<unsigned char*> MutableByteRange; |
| |
| inline std::ostream& operator<<(std::ostream& os, |
| const StringPiece piece) { |
| os.write(piece.start(), piece.size()); |
| return os; |
| } |
| |
| inline std::ostream& operator<<(std::ostream& os, |
| const MutableStringPiece piece) { |
| os.write(piece.start(), piece.size()); |
| return os; |
| } |
| |
| /** |
| * Templated comparison operators |
| */ |
| |
| template <class T> |
| inline bool operator==(const Range<T>& lhs, const Range<T>& rhs) { |
| return lhs.size() == rhs.size() && lhs.compare(rhs) == 0; |
| } |
| |
| template <class T> |
| inline bool operator<(const Range<T>& lhs, const Range<T>& rhs) { |
| return lhs.compare(rhs) < 0; |
| } |
| |
| /** |
| * Specializations of comparison operators for StringPiece |
| */ |
| |
| namespace detail { |
| |
| template <class A, class B> |
| struct ComparableAsStringPiece { |
| enum { |
| value = |
| (std::is_convertible<A, StringPiece>::value |
| && std::is_same<B, StringPiece>::value) |
| || |
| (std::is_convertible<B, StringPiece>::value |
| && std::is_same<A, StringPiece>::value) |
| }; |
| }; |
| |
| } // namespace detail |
| |
| /** |
| * operator== through conversion for Range<const char*> |
| */ |
| template <class T, class U> |
| typename |
| std::enable_if<detail::ComparableAsStringPiece<T, U>::value, bool>::type |
| operator==(const T& lhs, const U& rhs) { |
| return StringPiece(lhs) == StringPiece(rhs); |
| } |
| |
| /** |
| * operator< through conversion for Range<const char*> |
| */ |
| template <class T, class U> |
| typename |
| std::enable_if<detail::ComparableAsStringPiece<T, U>::value, bool>::type |
| operator<(const T& lhs, const U& rhs) { |
| return StringPiece(lhs) < StringPiece(rhs); |
| } |
| |
| /** |
| * operator> through conversion for Range<const char*> |
| */ |
| template <class T, class U> |
| typename |
| std::enable_if<detail::ComparableAsStringPiece<T, U>::value, bool>::type |
| operator>(const T& lhs, const U& rhs) { |
| return StringPiece(lhs) > StringPiece(rhs); |
| } |
| |
| /** |
| * operator< through conversion for Range<const char*> |
| */ |
| template <class T, class U> |
| typename |
| std::enable_if<detail::ComparableAsStringPiece<T, U>::value, bool>::type |
| operator<=(const T& lhs, const U& rhs) { |
| return StringPiece(lhs) <= StringPiece(rhs); |
| } |
| |
| /** |
| * operator> through conversion for Range<const char*> |
| */ |
| template <class T, class U> |
| typename |
| std::enable_if<detail::ComparableAsStringPiece<T, U>::value, bool>::type |
| operator>=(const T& lhs, const U& rhs) { |
| return StringPiece(lhs) >= StringPiece(rhs); |
| } |
| |
| // Do NOT use this, use SpookyHashV2 instead, see commment on hash() above. |
| struct StringPieceHash { |
| std::size_t operator()(const StringPiece str) const { |
| return static_cast<std::size_t>(str.hash()); |
| } |
| }; |
| |
| /** |
| * Finds substrings faster than brute force by borrowing from Boyer-Moore |
| */ |
| template <class T, class Comp> |
| size_t qfind(const Range<T>& haystack, |
| const Range<T>& needle, |
| Comp eq) { |
| // Don't use std::search, use a Boyer-Moore-like trick by comparing |
| // the last characters first |
| auto const nsize = needle.size(); |
| if (haystack.size() < nsize) { |
| return std::string::npos; |
| } |
| if (!nsize) return 0; |
| auto const nsize_1 = nsize - 1; |
| auto const lastNeedle = needle[nsize_1]; |
| |
| // Boyer-Moore skip value for the last char in the needle. Zero is |
| // not a valid value; skip will be computed the first time it's |
| // needed. |
| std::string::size_type skip = 0; |
| |
| auto i = haystack.begin(); |
| auto iEnd = haystack.end() - nsize_1; |
| |
| while (i < iEnd) { |
| // Boyer-Moore: match the last element in the needle |
| while (!eq(i[nsize_1], lastNeedle)) { |
| if (++i == iEnd) { |
| // not found |
| return std::string::npos; |
| } |
| } |
| // Here we know that the last char matches |
| // Continue in pedestrian mode |
| for (size_t j = 0; ; ) { |
| assert(j < nsize); |
| if (!eq(i[j], needle[j])) { |
| // Not found, we can skip |
| // Compute the skip value lazily |
| if (skip == 0) { |
| skip = 1; |
| while (skip <= nsize_1 && !eq(needle[nsize_1 - skip], lastNeedle)) { |
| ++skip; |
| } |
| } |
| i += skip; |
| break; |
| } |
| // Check if done searching |
| if (++j == nsize) { |
| // Yay |
| return i - haystack.begin(); |
| } |
| } |
| } |
| return std::string::npos; |
| } |
| |
| namespace detail { |
| |
| size_t qfind_first_byte_of_nosse(const StringPiece haystack, |
| const StringPiece needles); |
| |
| #if FOLLY_HAVE_EMMINTRIN_H && __GNUC_PREREQ(4, 6) |
| size_t qfind_first_byte_of_sse42(const StringPiece haystack, |
| const StringPiece needles); |
| |
| inline size_t qfind_first_byte_of(const StringPiece haystack, |
| const StringPiece needles) { |
| static auto const qfind_first_byte_of_fn = |
| qfind_first_byte_of_nosse; |
| return qfind_first_byte_of_fn(haystack, needles); |
| } |
| |
| #else |
| inline size_t qfind_first_byte_of(const StringPiece haystack, |
| const StringPiece needles) { |
| return qfind_first_byte_of_nosse(haystack, needles); |
| } |
| #endif // FOLLY_HAVE_EMMINTRIN_H |
| |
| } // namespace detail |
| |
| template <class T, class Comp> |
| size_t qfind_first_of(const Range<T> & haystack, |
| const Range<T> & needles, |
| Comp eq) { |
| auto ret = std::find_first_of(haystack.begin(), haystack.end(), |
| needles.begin(), needles.end(), |
| eq); |
| return ret == haystack.end() ? std::string::npos : ret - haystack.begin(); |
| } |
| |
| struct AsciiCaseSensitive { |
| bool operator()(char lhs, char rhs) const { |
| return lhs == rhs; |
| } |
| }; |
| |
| /** |
| * Check if two ascii characters are case insensitive equal. |
| * The difference between the lower/upper case characters are the 6-th bit. |
| * We also check they are alpha chars, in case of xor = 32. |
| */ |
| struct AsciiCaseInsensitive { |
| bool operator()(char lhs, char rhs) const { |
| char k = lhs ^ rhs; |
| if (k == 0) return true; |
| if (k != 32) return false; |
| k = lhs | rhs; |
| return (k >= 'a' && k <= 'z'); |
| } |
| }; |
| |
| extern const AsciiCaseSensitive asciiCaseSensitive; |
| extern const AsciiCaseInsensitive asciiCaseInsensitive; |
| |
| template <class T> |
| size_t qfind(const Range<T>& haystack, |
| const typename Range<T>::value_type& needle) { |
| auto pos = std::find(haystack.begin(), haystack.end(), needle); |
| return pos == haystack.end() ? std::string::npos : pos - haystack.data(); |
| } |
| |
| template <class T> |
| size_t rfind(const Range<T>& haystack, |
| const typename Range<T>::value_type& needle) { |
| for (auto i = haystack.size(); i-- > 0; ) { |
| if (haystack[i] == needle) { |
| return i; |
| } |
| } |
| return std::string::npos; |
| } |
| |
| // specialization for StringPiece |
| template <> |
| inline size_t qfind(const Range<const char*>& haystack, const char& needle) { |
| auto pos = static_cast<const char*>( |
| ::memchr(haystack.data(), needle, haystack.size())); |
| return pos == nullptr ? std::string::npos : pos - haystack.data(); |
| } |
| |
| #if FOLLY_HAVE_MEMRCHR |
| template <> |
| inline size_t rfind(const Range<const char*>& haystack, const char& needle) { |
| auto pos = static_cast<const char*>( |
| ::memrchr(haystack.data(), needle, haystack.size())); |
| return pos == nullptr ? std::string::npos : pos - haystack.data(); |
| } |
| #endif |
| |
| // specialization for ByteRange |
| template <> |
| inline size_t qfind(const Range<const unsigned char*>& haystack, |
| const unsigned char& needle) { |
| auto pos = static_cast<const unsigned char*>( |
| ::memchr(haystack.data(), needle, haystack.size())); |
| return pos == nullptr ? std::string::npos : pos - haystack.data(); |
| } |
| |
| #if FOLLY_HAVE_MEMRCHR |
| template <> |
| inline size_t rfind(const Range<const unsigned char*>& haystack, |
| const unsigned char& needle) { |
| auto pos = static_cast<const unsigned char*>( |
| ::memrchr(haystack.data(), needle, haystack.size())); |
| return pos == nullptr ? std::string::npos : pos - haystack.data(); |
| } |
| #endif |
| |
| template <class T> |
| size_t qfind_first_of(const Range<T>& haystack, |
| const Range<T>& needles) { |
| return qfind_first_of(haystack, needles, asciiCaseSensitive); |
| } |
| |
| // specialization for StringPiece |
| template <> |
| inline size_t qfind_first_of(const Range<const char*>& haystack, |
| const Range<const char*>& needles) { |
| return detail::qfind_first_byte_of(haystack, needles); |
| } |
| |
| // specialization for ByteRange |
| template <> |
| inline size_t qfind_first_of(const Range<const unsigned char*>& haystack, |
| const Range<const unsigned char*>& needles) { |
| return detail::qfind_first_byte_of(StringPiece(haystack), |
| StringPiece(needles)); |
| } |
| |
| template<class Key, class Enable> |
| struct hasher; |
| |
| template <class T> |
| struct hasher<folly::Range<T*>, |
| typename std::enable_if<std::is_pod<T>::value, void>::type> { |
| size_t operator()(folly::Range<T*> r) const { |
| return hash::SpookyHashV2::Hash64(r.begin(), r.size() * sizeof(T), 0); |
| } |
| }; |
| |
| } // !namespace folly |
| |
| #pragma GCC diagnostic pop |
| |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(folly::Range); |
| |
| #endif // FOLLY_RANGE_H_ |