| /* |
| * Copyright 2015 Facebook, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // @author: Andrei Alexandrescu |
| |
| #ifndef FOLLY_BASE_TRAITS_H_ |
| #define FOLLY_BASE_TRAITS_H_ |
| |
| #include <memory> |
| #include <limits> |
| #include <type_traits> |
| #include <functional> |
| |
| #include <folly/Portability.h> |
| |
| // libc++ doesn't provide this header, nor does msvc |
| #ifdef FOLLY_HAVE_BITS_CXXCONFIG_H |
| // This file appears in two locations: inside fbcode and in the |
| // libstdc++ source code (when embedding fbstring as std::string). |
| // To aid in this schizophrenic use, two macros are defined in |
| // c++config.h: |
| // _LIBSTDCXX_FBSTRING - Set inside libstdc++. This is useful to |
| // gate use inside fbcode v. libstdc++ |
| #include <bits/c++config.h> |
| #endif |
| |
| #include <boost/type_traits.hpp> |
| #include <boost/mpl/and.hpp> |
| #include <boost/mpl/has_xxx.hpp> |
| #include <boost/mpl/not.hpp> |
| |
| namespace folly { |
| |
| /** |
| * IsRelocatable<T>::value describes the ability of moving around |
| * memory a value of type T by using memcpy (as opposed to the |
| * conservative approach of calling the copy constructor and then |
| * destroying the old temporary. Essentially for a relocatable type, |
| * the following two sequences of code should be semantically |
| * equivalent: |
| * |
| * void move1(T * from, T * to) { |
| * new(to) T(from); |
| * (*from).~T(); |
| * } |
| * |
| * void move2(T * from, T * to) { |
| * memcpy(to, from, sizeof(T)); |
| * } |
| * |
| * Most C++ types are relocatable; the ones that aren't would include |
| * internal pointers or (very rarely) would need to update remote |
| * pointers to pointers tracking them. All C++ primitive types and |
| * type constructors are relocatable. |
| * |
| * This property can be used in a variety of optimizations. Currently |
| * fbvector uses this property intensively. |
| * |
| * The default conservatively assumes the type is not |
| * relocatable. Several specializations are defined for known |
| * types. You may want to add your own specializations. Do so in |
| * namespace folly and make sure you keep the specialization of |
| * IsRelocatable<SomeStruct> in the same header as SomeStruct. |
| * |
| * You may also declare a type to be relocatable by including |
| * `typedef std::true_type IsRelocatable;` |
| * in the class header. |
| * |
| * It may be unset in a base class by overriding the typedef to false_type. |
| */ |
| /* |
| * IsTriviallyCopyable describes the value semantics property. C++11 contains |
| * the type trait is_trivially_copyable; however, it is not yet implemented |
| * in gcc (as of 4.7.1), and the user may wish to specify otherwise. |
| */ |
| /* |
| * IsZeroInitializable describes the property that default construction is the |
| * same as memset(dst, 0, sizeof(T)). |
| */ |
| |
| namespace traits_detail { |
| |
| #define FOLLY_HAS_TRUE_XXX(name) \ |
| BOOST_MPL_HAS_XXX_TRAIT_DEF(name); \ |
| template <class T> struct name ## _is_true \ |
| : std::is_same<typename T::name, std::true_type> {}; \ |
| template <class T> struct has_true_ ## name \ |
| : std::conditional< \ |
| has_ ## name <T>::value, \ |
| name ## _is_true<T>, \ |
| std::false_type \ |
| >:: type {}; |
| |
| FOLLY_HAS_TRUE_XXX(IsRelocatable) |
| FOLLY_HAS_TRUE_XXX(IsZeroInitializable) |
| FOLLY_HAS_TRUE_XXX(IsTriviallyCopyable) |
| |
| #undef FOLLY_HAS_TRUE_XXX |
| } |
| |
| template <class T> struct IsTriviallyCopyable |
| : std::integral_constant<bool, |
| !std::is_class<T>::value || |
| // TODO: add alternate clause is_trivially_copyable, when available |
| traits_detail::has_true_IsTriviallyCopyable<T>::value |
| > {}; |
| |
| template <class T> struct IsRelocatable |
| : std::integral_constant<bool, |
| !std::is_class<T>::value || |
| // TODO add this line (and some tests for it) when we upgrade to gcc 4.7 |
| //std::is_trivially_move_constructible<T>::value || |
| IsTriviallyCopyable<T>::value || |
| traits_detail::has_true_IsRelocatable<T>::value |
| > {}; |
| |
| template <class T> struct IsZeroInitializable |
| : std::integral_constant<bool, |
| !std::is_class<T>::value || |
| traits_detail::has_true_IsZeroInitializable<T>::value |
| > {}; |
| |
| } // namespace folly |
| |
| /** |
| * Use this macro ONLY inside namespace folly. When using it with a |
| * regular type, use it like this: |
| * |
| * // Make sure you're at namespace ::folly scope |
| * template<> FOLLY_ASSUME_RELOCATABLE(MyType) |
| * |
| * When using it with a template type, use it like this: |
| * |
| * // Make sure you're at namespace ::folly scope |
| * template<class T1, class T2> |
| * FOLLY_ASSUME_RELOCATABLE(MyType<T1, T2>) |
| */ |
| #define FOLLY_ASSUME_RELOCATABLE(...) \ |
| struct IsRelocatable< __VA_ARGS__ > : std::true_type {}; |
| |
| /** |
| * Use this macro ONLY inside namespace boost. When using it with a |
| * regular type, use it like this: |
| * |
| * // Make sure you're at namespace ::boost scope |
| * template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType) |
| * |
| * When using it with a template type, use it like this: |
| * |
| * // Make sure you're at namespace ::boost scope |
| * template<class T1, class T2> |
| * FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(MyType<T1, T2>) |
| */ |
| #define FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(...) \ |
| struct has_nothrow_constructor< __VA_ARGS__ > : ::boost::true_type {}; |
| |
| /** |
| * The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode two |
| * assumptions: first, that the type is relocatable per IsRelocatable |
| * above, and that it has a nothrow constructor. Most types can be |
| * assumed to satisfy both conditions, but it is the responsibility of |
| * the user to state that assumption. User-defined classes will not |
| * work with fbvector (see FBVector.h) unless they state this |
| * combination of properties. |
| * |
| * Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this: |
| * |
| * FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType) |
| * |
| * The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4 |
| * allow using the macro for describing templatized classes with 1, 2, |
| * 3, and 4 template parameters respectively. For template classes |
| * just use the macro with the appropriate number and pass the name of |
| * the template to it. Example: |
| * |
| * template <class T1, class T2> class MyType { ... }; |
| * ... |
| * // Make sure you're at global scope |
| * FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType) |
| */ |
| |
| // Use this macro ONLY at global level (no namespace) |
| #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \ |
| namespace folly { template<> FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__) } \ |
| namespace boost { \ |
| template<> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__) } |
| // Use this macro ONLY at global level (no namespace) |
| #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \ |
| namespace folly { \ |
| template <class T1> FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1>) } \ |
| namespace boost { \ |
| template <class T1> FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1>) } |
| // Use this macro ONLY at global level (no namespace) |
| #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \ |
| namespace folly { \ |
| template <class T1, class T2> \ |
| FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2>) } \ |
| namespace boost { \ |
| template <class T1, class T2> \ |
| FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1, T2>) } |
| // Use this macro ONLY at global level (no namespace) |
| #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \ |
| namespace folly { \ |
| template <class T1, class T2, class T3> \ |
| FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3>) } \ |
| namespace boost { \ |
| template <class T1, class T2, class T3> \ |
| FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1, T2, T3>) } |
| // Use this macro ONLY at global level (no namespace) |
| #define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \ |
| namespace folly { \ |
| template <class T1, class T2, class T3, class T4> \ |
| FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3, T4>) } \ |
| namespace boost { \ |
| template <class T1, class T2, class T3, class T4> \ |
| FOLLY_ASSUME_HAS_NOTHROW_CONSTRUCTOR(__VA_ARGS__<T1, T2, T3, T4>) } |
| |
| /** |
| * Instantiate FOLLY_ASSUME_FBVECTOR_COMPATIBLE for a few types. It is |
| * safe to assume that pair is compatible if both of its components |
| * are. Furthermore, all STL containers can be assumed to comply, |
| * although that is not guaranteed by the standard. |
| */ |
| |
| FOLLY_NAMESPACE_STD_BEGIN |
| |
| template <class T, class U> |
| struct pair; |
| #ifndef _GLIBCXX_USE_FB |
| template <class T, class R, class A> |
| class basic_string; |
| #else |
| template <class T, class R, class A, class S> |
| class basic_string; |
| #endif |
| template <class T, class A> |
| class vector; |
| template <class T, class A> |
| class deque; |
| template <class T, class A> |
| class list; |
| template <class T, class C, class A> |
| class set; |
| template <class K, class V, class C, class A> |
| class map; |
| template <class T> |
| class shared_ptr; |
| |
| FOLLY_NAMESPACE_STD_END |
| |
| namespace boost { |
| |
| template <class T> class shared_ptr; |
| |
| template <class T, class U> |
| struct has_nothrow_constructor< std::pair<T, U> > |
| : ::boost::mpl::and_< has_nothrow_constructor<T>, |
| has_nothrow_constructor<U> > {}; |
| |
| } // namespace boost |
| |
| namespace folly { |
| |
| // STL commonly-used types |
| template <class T, class U> |
| struct IsRelocatable< std::pair<T, U> > |
| : ::boost::mpl::and_< IsRelocatable<T>, IsRelocatable<U> > {}; |
| |
| // Is T one of T1, T2, ..., Tn? |
| template <class T, class... Ts> |
| struct IsOneOf { |
| enum { value = false }; |
| }; |
| |
| template <class T, class T1, class... Ts> |
| struct IsOneOf<T, T1, Ts...> { |
| enum { value = std::is_same<T, T1>::value || IsOneOf<T, Ts...>::value }; |
| }; |
| |
| /* |
| * Complementary type traits for integral comparisons. |
| * |
| * For instance, `if(x < 0)` yields an error in clang for unsigned types |
| * when -Werror is used due to -Wtautological-compare |
| * |
| * |
| * @author: Marcelo Juchem <marcelo@fb.com> |
| */ |
| |
| namespace detail { |
| |
| template <typename T, bool> |
| struct is_negative_impl { |
| constexpr static bool check(T x) { return x < 0; } |
| }; |
| |
| template <typename T> |
| struct is_negative_impl<T, false> { |
| constexpr static bool check(T) { return false; } |
| }; |
| |
| // folly::to integral specializations can end up generating code |
| // inside what are really static ifs (not executed because of the templated |
| // types) that violate -Wsign-compare so suppress them in order to not prevent |
| // all calling code from using it. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wsign-compare" |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool less_than_impl( |
| typename std::enable_if< |
| (rhs <= std::numeric_limits<LHS>::max() |
| && rhs > std::numeric_limits<LHS>::min()), |
| LHS |
| >::type const lhs |
| ) { |
| return lhs < rhs; |
| } |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool less_than_impl( |
| typename std::enable_if< |
| (rhs > std::numeric_limits<LHS>::max()), |
| LHS |
| >::type const |
| ) { |
| return true; |
| } |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool less_than_impl( |
| typename std::enable_if< |
| (rhs <= std::numeric_limits<LHS>::min()), |
| LHS |
| >::type const |
| ) { |
| return false; |
| } |
| |
| #pragma GCC diagnostic pop |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool greater_than_impl( |
| typename std::enable_if< |
| (rhs <= std::numeric_limits<LHS>::max() |
| && rhs >= std::numeric_limits<LHS>::min()), |
| LHS |
| >::type const lhs |
| ) { |
| return lhs > rhs; |
| } |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool greater_than_impl( |
| typename std::enable_if< |
| (rhs > std::numeric_limits<LHS>::max()), |
| LHS |
| >::type const |
| ) { |
| return false; |
| } |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool greater_than_impl( |
| typename std::enable_if< |
| (rhs < std::numeric_limits<LHS>::min()), |
| LHS |
| >::type const |
| ) { |
| return true; |
| } |
| |
| } // namespace detail { |
| |
| // same as `x < 0` |
| template <typename T> |
| constexpr bool is_negative(T x) { |
| return folly::detail::is_negative_impl<T, std::is_signed<T>::value>::check(x); |
| } |
| |
| // same as `x <= 0` |
| template <typename T> |
| constexpr bool is_non_positive(T x) { return !x || folly::is_negative(x); } |
| |
| // same as `x > 0` |
| template <typename T> |
| constexpr bool is_positive(T x) { return !is_non_positive(x); } |
| |
| // same as `x >= 0` |
| template <typename T> |
| constexpr bool is_non_negative(T x) { |
| return !x || is_positive(x); |
| } |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool less_than(LHS const lhs) { |
| return detail::less_than_impl< |
| RHS, rhs, typename std::remove_reference<LHS>::type |
| >(lhs); |
| } |
| |
| template <typename RHS, RHS rhs, typename LHS> |
| bool greater_than(LHS const lhs) { |
| return detail::greater_than_impl< |
| RHS, rhs, typename std::remove_reference<LHS>::type |
| >(lhs); |
| } |
| |
| } // namespace folly |
| |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(std::basic_string); |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::vector); |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::list); |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::deque); |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr); |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr); |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::function); |
| |
| // Boost |
| FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(boost::shared_ptr); |
| |
| #define FOLLY_CREATE_HAS_MEMBER_TYPE_TRAITS(classname, type_name) \ |
| template <typename T> \ |
| struct classname { \ |
| template <typename C> \ |
| constexpr static bool test(typename C::type_name*) { return true; } \ |
| template <typename> \ |
| constexpr static bool test(...) { return false; } \ |
| constexpr static bool value = test<T>(nullptr); \ |
| } |
| |
| #define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, cv_qual) \ |
| template <typename TTheClass_, typename RTheReturn_, typename... TTheArgs_> \ |
| class classname<TTheClass_, RTheReturn_(TTheArgs_...) cv_qual> { \ |
| template < \ |
| typename UTheClass_, RTheReturn_ (UTheClass_::*)(TTheArgs_...) cv_qual \ |
| > struct sfinae {}; \ |
| template <typename UTheClass_> \ |
| constexpr static bool test(sfinae<UTheClass_, &UTheClass_::func_name>*) \ |
| { return true; } \ |
| template <typename> \ |
| constexpr static bool test(...) { return false; } \ |
| public: \ |
| constexpr static bool value = test<TTheClass_>(nullptr); \ |
| } |
| |
| /* |
| * The FOLLY_CREATE_HAS_MEMBER_FN_TRAITS is used to create traits |
| * classes that check for the existence of a member function with |
| * a given name and signature. It currently does not support |
| * checking for inherited members. |
| * |
| * Such classes receive two template parameters: the class to be checked |
| * and the signature of the member function. A static boolean field |
| * named `value` (which is also constexpr) tells whether such member |
| * function exists. |
| * |
| * Each traits class created is bound only to the member name, not to |
| * its signature nor to the type of the class containing it. |
| * |
| * Say you need to know if a given class has a member function named |
| * `test` with the following signature: |
| * |
| * int test() const; |
| * |
| * You'd need this macro to create a traits class to check for a member |
| * named `test`, and then use this traits class to check for the signature: |
| * |
| * namespace { |
| * |
| * FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(has_test_traits, test); |
| * |
| * } // unnamed-namespace |
| * |
| * void some_func() { |
| * cout << "Does class Foo have a member int test() const? " |
| * << boolalpha << has_test_traits<Foo, int() const>::value; |
| * } |
| * |
| * You can use the same traits class to test for a completely different |
| * signature, on a completely different class, as long as the member name |
| * is the same: |
| * |
| * void some_func() { |
| * cout << "Does class Foo have a member int test()? " |
| * << boolalpha << has_test_traits<Foo, int()>::value; |
| * cout << "Does class Foo have a member int test() const? " |
| * << boolalpha << has_test_traits<Foo, int() const>::value; |
| * cout << "Does class Bar have a member double test(const string&, long)? " |
| * << boolalpha << has_test_traits<Bar, double(const string&, long)>::value; |
| * } |
| * |
| * @author: Marcelo Juchem <marcelo@fb.com> |
| */ |
| #define FOLLY_CREATE_HAS_MEMBER_FN_TRAITS(classname, func_name) \ |
| template <typename, typename> class classname; \ |
| FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, ); \ |
| FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL(classname, func_name, const); \ |
| FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \ |
| classname, func_name, /* nolint */ volatile); \ |
| FOLLY_CREATE_HAS_MEMBER_FN_TRAITS_IMPL( \ |
| classname, func_name, /* nolint */ volatile const) |
| |
| #endif //FOLLY_BASE_TRAITS_H_ |