blob: 913c8c0a3f9a1b490534b6e269bb8c264ece0eba [file] [log] [blame]
/******************************************************************************
*
* Copyright (C) 2014 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
#include <gtest/gtest.h>
#include "AlarmTestHarness.h"
#include <stdint.h>
#include "btsnoop.h"
#include "device/include/controller.h"
#include "hci_hal.h"
#include "hci_inject.h"
#include "hci_layer.h"
#include "hcimsgs.h"
#include "low_power_manager.h"
#include "module.h"
#include "osi/include/allocation_tracker.h"
#include "osi/include/allocator.h"
#include "osi/include/osi.h"
#include "osi/include/semaphore.h"
#include "packet_fragmenter.h"
#include "test_stubs.h"
#include "vendor.h"
extern const module_t hci_module;
DECLARE_TEST_MODES(start_up_async, shut_down, postload, transmit_simple,
receive_simple, transmit_command_no_callbacks,
transmit_command_command_status,
transmit_command_command_complete,
ignoring_packets_ignored_packet,
ignoring_packets_following_packet);
// TODO: Ugly hack to get around another ugly hack in hci_layer.cc
bt_bdaddr_t btif_local_bd_addr;
static const char* small_sample_data =
"\"It is easy to see,\" replied Don Quixote";
static const char* command_sample_data =
"that thou art not used to this business of adventures; those are giants";
static const char* ignored_data =
"and if thou art afraid, away with thee out of this and betake thyself to "
"prayer";
static const char* unignored_data =
"while I engage them in fierce and unequal combat";
static const hci_t* hci;
static const hci_hal_callbacks_t* hal_callbacks;
static thread_t* internal_thread;
static vendor_cb firmware_config_callback;
static vendor_cb sco_config_callback;
static vendor_cb epilog_callback;
static semaphore_t* done;
static const uint16_t test_handle = (0x1992 & 0xCFFF);
static const uint16_t test_handle_continuation = (0x1992 & 0xCFFF) | 0x1000;
static int packet_index;
static unsigned int data_size_sum;
static BT_HDR* data_to_receive;
static void signal_work_item(UNUSED_ATTR void* context) {
semaphore_post(done);
}
static void flush_thread(thread_t* thread) {
// Double flush to ensure we get the next reactor cycle
thread_post(thread, signal_work_item, NULL);
semaphore_wait(done);
thread_post(thread, signal_work_item, NULL);
semaphore_wait(done);
}
// TODO move this to a common packet testing helper
static BT_HDR* manufacture_packet(uint16_t event, const char* data) {
uint16_t data_length = strlen(data);
uint16_t size = data_length;
if (event == MSG_STACK_TO_HC_HCI_ACL) {
size += 4; // 2 for the handle, 2 for the length;
}
BT_HDR* packet = (BT_HDR*)osi_malloc(size + sizeof(BT_HDR));
packet->len = size;
packet->offset = 0;
packet->layer_specific = 0;
// The command transmit interface adds the event type automatically.
// Make sure it works but omitting it here.
if (event != MSG_STACK_TO_HC_HCI_CMD) packet->event = event;
uint8_t* packet_data = packet->data;
if (event == MSG_STACK_TO_HC_HCI_ACL) {
UINT16_TO_STREAM(packet_data, test_handle);
UINT16_TO_STREAM(packet_data, data_length);
}
for (int i = 0; i < data_length; i++) {
packet_data[i] = data[i];
}
if (event == MSG_STACK_TO_HC_HCI_CMD) {
STREAM_SKIP_UINT16(packet_data);
UINT8_TO_STREAM(packet_data, data_length - 3);
} else if (event == MSG_HC_TO_STACK_HCI_EVT) {
STREAM_SKIP_UINT8(packet_data);
UINT8_TO_STREAM(packet_data, data_length - 2);
}
return packet;
}
static void expect_packet(uint16_t event, int max_acl_data_size,
const uint8_t* data, uint16_t data_length,
const char* expected_data) {
int expected_data_offset;
int length_to_check;
if (event == MSG_STACK_TO_HC_HCI_ACL) {
uint16_t handle;
uint16_t length;
STREAM_TO_UINT16(handle, data);
STREAM_TO_UINT16(length, data);
if (packet_index == 0)
EXPECT_EQ(test_handle, handle);
else
EXPECT_EQ(test_handle_continuation, handle);
int length_remaining = strlen(expected_data) - data_size_sum;
int packet_data_length = data_length - HCI_ACL_PREAMBLE_SIZE;
EXPECT_EQ(length_remaining, length);
if (length_remaining < max_acl_data_size)
EXPECT_EQ(length, packet_data_length);
else
EXPECT_EQ(max_acl_data_size, packet_data_length);
length_to_check = packet_data_length;
expected_data_offset = packet_index * max_acl_data_size;
packet_index++;
} else {
length_to_check = strlen(expected_data);
expected_data_offset = 0;
}
for (int i = 0; i < length_to_check; i++) {
if (event == MSG_STACK_TO_HC_HCI_CMD && (i == 2))
EXPECT_EQ(data_length - 3, data[i]);
else
EXPECT_EQ(expected_data[expected_data_offset + i], data[i]);
data_size_sum++;
}
}
STUB_FUNCTION(bool, hal_init,
(const hci_hal_callbacks_t* callbacks, thread_t* working_thread))
DURING(start_up_async) AT_CALL(0) {
hal_callbacks = callbacks;
internal_thread = working_thread;
return true;
}
UNEXPECTED_CALL;
return false;
}
STUB_FUNCTION(bool, hal_open, ())
DURING(start_up_async) AT_CALL(0) return true;
UNEXPECTED_CALL;
return false;
}
STUB_FUNCTION(void, hal_close, ())
DURING(shut_down) AT_CALL(0) return;
UNEXPECTED_CALL;
}
STUB_FUNCTION(uint16_t, hal_transmit_data,
(serial_data_type_t type, uint8_t* data, uint16_t length))
DURING(transmit_simple) AT_CALL(0) {
EXPECT_EQ(DATA_TYPE_ACL, type);
expect_packet(MSG_STACK_TO_HC_HCI_ACL, 1021, data, length, small_sample_data);
return length;
}
DURING(transmit_command_no_callbacks, transmit_command_command_status,
transmit_command_command_complete)
AT_CALL(0) {
EXPECT_EQ(DATA_TYPE_COMMAND, type);
expect_packet(MSG_STACK_TO_HC_HCI_CMD, 1021, data, length,
command_sample_data);
return length;
}
UNEXPECTED_CALL;
return 0;
}
static size_t replay_data_to_receive(size_t max_size, uint8_t* buffer) {
for (size_t i = 0; i < max_size; i++) {
if (data_to_receive->offset >= data_to_receive->len) break;
buffer[i] = data_to_receive->data[data_to_receive->offset++];
if (i == (max_size - 1))
return i + 1; // We return the length, not the index;
}
return 0;
}
STUB_FUNCTION(size_t, hal_read_data,
(serial_data_type_t type, uint8_t* buffer, size_t max_size))
DURING(receive_simple, ignoring_packets_following_packet) {
EXPECT_EQ(DATA_TYPE_ACL, type);
return replay_data_to_receive(max_size, buffer);
}
DURING(ignoring_packets_ignored_packet) {
EXPECT_EQ(DATA_TYPE_EVENT, type);
return replay_data_to_receive(max_size, buffer);
}
DURING(transmit_command_no_callbacks, transmit_command_command_status,
transmit_command_command_complete) {
EXPECT_EQ(DATA_TYPE_EVENT, type);
return replay_data_to_receive(max_size, buffer);
}
UNEXPECTED_CALL;
return 0;
}
STUB_FUNCTION(void, hal_packet_finished, (serial_data_type_t type))
DURING(receive_simple, ignoring_packets_following_packet) AT_CALL(0) {
EXPECT_EQ(DATA_TYPE_ACL, type);
return;
}
DURING(ignoring_packets_ignored_packet) AT_CALL(0) {
EXPECT_EQ(DATA_TYPE_EVENT, type);
return;
}
DURING(transmit_command_no_callbacks, transmit_command_command_status,
transmit_command_command_complete)
AT_CALL(0) {
EXPECT_EQ(DATA_TYPE_EVENT, type);
return;
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(bool, hci_inject_open, (UNUSED_ATTR const hci_t* hci_interface))
DURING(start_up_async) AT_CALL(0) return true;
UNEXPECTED_CALL;
return false;
}
STUB_FUNCTION(void, hci_inject_close, ())
DURING(shut_down) AT_CALL(0) return;
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, btsnoop_capture, (const BT_HDR* buffer, bool is_received))
DURING(transmit_simple) AT_CALL(0) {
EXPECT_FALSE(is_received);
expect_packet(MSG_STACK_TO_HC_HCI_ACL, 1021, buffer->data + buffer->offset,
buffer->len, small_sample_data);
packet_index = 0;
data_size_sum = 0;
return;
}
DURING(transmit_command_no_callbacks, transmit_command_command_status,
transmit_command_command_complete) {
AT_CALL(0) {
EXPECT_FALSE(is_received);
expect_packet(MSG_STACK_TO_HC_HCI_CMD, 1021, buffer->data + buffer->offset,
buffer->len, command_sample_data);
packet_index = 0;
data_size_sum = 0;
return;
}
AT_CALL(1) {
EXPECT_TRUE(is_received);
// not super important to verify the contents right now
return;
}
}
DURING(receive_simple, ignoring_packets_following_packet) AT_CALL(0) {
EXPECT_TRUE(is_received);
EXPECT_TRUE(buffer->len == data_to_receive->len);
const uint8_t* buffer_base = buffer->data + buffer->offset;
const uint8_t* expected_base = data_to_receive->data;
for (int i = 0; i < buffer->len; i++) {
EXPECT_EQ(expected_base[i], buffer_base[i]);
}
return;
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, low_power_init, (UNUSED_ATTR thread_t * thread))
DURING(start_up_async) AT_CALL(0) return;
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, low_power_cleanup, ())
DURING(shut_down) AT_CALL(0) return;
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, low_power_wake_assert, ())
DURING(transmit_simple, transmit_command_no_callbacks,
transmit_command_command_status, transmit_command_command_complete) {
AT_CALL(0) return;
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, low_power_transmit_done, ())
DURING(transmit_simple, transmit_command_no_callbacks,
transmit_command_command_status, transmit_command_command_complete) {
AT_CALL(0) return;
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(bool, vendor_open,
(UNUSED_ATTR const uint8_t* addr, const hci_t* hci_interface))
DURING(start_up_async) AT_CALL(0) {
// TODO(zachoverflow): check address value when it gets put into a module
EXPECT_EQ(hci, hci_interface);
return true;
}
UNEXPECTED_CALL;
return true;
}
STUB_FUNCTION(void, vendor_close, ())
DURING(shut_down) AT_CALL(0) return;
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, vendor_set_callback,
(vendor_async_opcode_t opcode, UNUSED_ATTR vendor_cb callback))
DURING(start_up_async) {
AT_CALL(0) {
EXPECT_EQ(VENDOR_CONFIGURE_FIRMWARE, opcode);
firmware_config_callback = callback;
return;
}
AT_CALL(1) {
EXPECT_EQ(VENDOR_CONFIGURE_SCO, opcode);
sco_config_callback = callback;
return;
}
AT_CALL(2) {
EXPECT_EQ(VENDOR_DO_EPILOG, opcode);
epilog_callback = callback;
return;
}
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(int, vendor_send_command, (vendor_opcode_t opcode, void* param))
DURING(start_up_async) {
#if (BT_CLEAN_TURN_ON_DISABLED == TRUE)
AT_CALL(0) {
EXPECT_EQ(VENDOR_CHIP_POWER_CONTROL, opcode);
EXPECT_EQ(BT_VND_PWR_ON, *(int*)param);
return 0;
}
#else
AT_CALL(0) {
EXPECT_EQ(VENDOR_CHIP_POWER_CONTROL, opcode);
EXPECT_EQ(BT_VND_PWR_OFF, *(int*)param);
return 0;
}
AT_CALL(1) {
EXPECT_EQ(VENDOR_CHIP_POWER_CONTROL, opcode);
EXPECT_EQ(BT_VND_PWR_ON, *(int*)param);
return 0;
}
#endif
}
DURING(shut_down) AT_CALL(0) {
EXPECT_EQ(VENDOR_CHIP_POWER_CONTROL, opcode);
EXPECT_EQ(BT_VND_PWR_OFF, *(int*)param);
return 0;
}
UNEXPECTED_CALL;
return 0;
}
STUB_FUNCTION(int, vendor_send_async_command,
(UNUSED_ATTR vendor_async_opcode_t opcode,
UNUSED_ATTR void* param))
DURING(start_up_async) AT_CALL(0) {
EXPECT_EQ(VENDOR_CONFIGURE_FIRMWARE, opcode);
firmware_config_callback(true);
return 0;
}
DURING(postload) AT_CALL(0) {
EXPECT_EQ(VENDOR_CONFIGURE_SCO, opcode);
sco_config_callback(true);
return 0;
}
DURING(shut_down) AT_CALL(0) {
EXPECT_EQ(VENDOR_DO_EPILOG, opcode);
epilog_callback(true);
return 0;
}
UNEXPECTED_CALL;
return 0;
}
STUB_FUNCTION(void, command_complete_callback,
(BT_HDR * response, UNUSED_ATTR void* context))
DURING(transmit_command_command_complete) AT_CALL(0) {
osi_free(response);
return;
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(void, command_status_callback,
(UNUSED_ATTR uint8_t status, BT_HDR* command,
UNUSED_ATTR void* context))
DURING(transmit_command_command_status) AT_CALL(0) {
osi_free(command);
return;
}
UNEXPECTED_CALL;
}
STUB_FUNCTION(uint16_t, controller_get_acl_data_size_classic, (void))
return 2048;
}
STUB_FUNCTION(uint16_t, controller_get_acl_data_size_ble, (void))
return 2048;
}
STUB_FUNCTION(void*, buffer_allocator_alloc, (size_t size))
DURING(ignoring_packets_ignored_packet) {
AT_CALL(0)
return NULL;
UNEXPECTED_CALL;
}
return allocator_malloc.alloc(size);
}
STUB_FUNCTION(void, buffer_allocator_free, (void* ptr))
allocator_malloc.free(ptr);
}
static void reset_for(TEST_MODES_T next) {
RESET_CALL_COUNT(vendor_open);
RESET_CALL_COUNT(vendor_close);
RESET_CALL_COUNT(vendor_set_callback);
RESET_CALL_COUNT(vendor_send_command);
RESET_CALL_COUNT(vendor_send_async_command);
RESET_CALL_COUNT(hal_init);
RESET_CALL_COUNT(hal_open);
RESET_CALL_COUNT(hal_close);
RESET_CALL_COUNT(hal_read_data);
RESET_CALL_COUNT(hal_packet_finished);
RESET_CALL_COUNT(hal_transmit_data);
RESET_CALL_COUNT(btsnoop_capture);
RESET_CALL_COUNT(hci_inject_open);
RESET_CALL_COUNT(hci_inject_close);
RESET_CALL_COUNT(low_power_init);
RESET_CALL_COUNT(low_power_cleanup);
RESET_CALL_COUNT(low_power_wake_assert);
RESET_CALL_COUNT(low_power_transmit_done);
RESET_CALL_COUNT(command_complete_callback);
RESET_CALL_COUNT(command_status_callback);
RESET_CALL_COUNT(controller_get_acl_data_size_classic);
RESET_CALL_COUNT(controller_get_acl_data_size_ble);
RESET_CALL_COUNT(buffer_allocator_alloc);
RESET_CALL_COUNT(buffer_allocator_free);
CURRENT_TEST_MODE = next;
}
class HciLayerTest : public AlarmTestHarness {
protected:
virtual void SetUp() {
AlarmTestHarness::SetUp();
module_management_start();
hci = hci_layer_get_test_interface(
&buffer_allocator, &hal, &btsnoop, &hci_inject,
packet_fragmenter_get_test_interface(&controller, &allocator_malloc),
&vendor, &low_power_manager);
packet_index = 0;
data_size_sum = 0;
vendor.open = vendor_open;
vendor.close = vendor_close;
vendor.set_callback = vendor_set_callback;
vendor.send_command = vendor_send_command;
vendor.send_async_command = vendor_send_async_command;
hal.init = hal_init;
hal.open = hal_open;
hal.close = hal_close;
hal.read_data = hal_read_data;
hal.packet_finished = hal_packet_finished;
hal.transmit_data = hal_transmit_data;
btsnoop.capture = btsnoop_capture;
hci_inject.open = hci_inject_open;
hci_inject.close = hci_inject_close;
low_power_manager.init = low_power_init;
low_power_manager.cleanup = low_power_cleanup;
low_power_manager.wake_assert = low_power_wake_assert;
low_power_manager.transmit_done = low_power_transmit_done;
controller.get_acl_data_size_classic = controller_get_acl_data_size_classic;
controller.get_acl_data_size_ble = controller_get_acl_data_size_ble;
buffer_allocator.alloc = buffer_allocator_alloc;
buffer_allocator.free = buffer_allocator_free;
done = semaphore_new(0);
reset_for(start_up_async);
EXPECT_TRUE(module_start_up(&hci_module));
EXPECT_CALL_COUNT(vendor_open, 1);
EXPECT_CALL_COUNT(hal_init, 1);
EXPECT_CALL_COUNT(low_power_init, 1);
EXPECT_CALL_COUNT(vendor_set_callback, 3);
EXPECT_CALL_COUNT(hal_open, 1);
EXPECT_CALL_COUNT(vendor_send_async_command, 1);
}
virtual void TearDown() {
reset_for(shut_down);
module_shut_down(&hci_module);
EXPECT_CALL_COUNT(low_power_cleanup, 1);
EXPECT_CALL_COUNT(hal_close, 1);
EXPECT_CALL_COUNT(vendor_send_command, 1);
EXPECT_CALL_COUNT(vendor_close, 1);
semaphore_free(done);
hci_layer_cleanup_interface();
module_management_stop();
AlarmTestHarness::TearDown();
}
hci_hal_t hal;
btsnoop_t btsnoop;
controller_t controller;
hci_inject_t hci_inject;
vendor_t vendor;
low_power_manager_t low_power_manager;
allocator_t buffer_allocator;
};
TEST_F(HciLayerTest, test_postload) {
reset_for(postload);
hci->do_postload();
flush_thread(internal_thread);
EXPECT_CALL_COUNT(vendor_send_async_command, 1);
}
TEST_F(HciLayerTest, test_transmit_simple) {
reset_for(transmit_simple);
BT_HDR* packet =
manufacture_packet(MSG_STACK_TO_HC_HCI_ACL, small_sample_data);
hci->transmit_downward(MSG_STACK_TO_HC_HCI_ACL, packet);
flush_thread(internal_thread);
EXPECT_CALL_COUNT(hal_transmit_data, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 1);
EXPECT_CALL_COUNT(low_power_transmit_done, 1);
EXPECT_CALL_COUNT(low_power_wake_assert, 1);
}
TEST_F(HciLayerTest, test_receive_simple) {
reset_for(receive_simple);
data_to_receive =
manufacture_packet(MSG_STACK_TO_HC_HCI_ACL, small_sample_data);
// Not running on the internal thread, unlike the real hal
hal_callbacks->data_ready(DATA_TYPE_ACL);
EXPECT_CALL_COUNT(hal_packet_finished, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 1);
osi_free(data_to_receive);
}
static BT_HDR* manufacture_command_complete(command_opcode_t opcode) {
BT_HDR* ret = (BT_HDR*)osi_calloc(sizeof(BT_HDR) + 5);
uint8_t* stream = ret->data;
UINT8_TO_STREAM(stream, HCI_COMMAND_COMPLETE_EVT);
UINT8_TO_STREAM(stream, 3); // length of the event parameters
UINT8_TO_STREAM(stream, 1); // the number of commands that can be sent
UINT16_TO_STREAM(stream, opcode);
ret->len = 5;
return ret;
}
static BT_HDR* manufacture_command_status(command_opcode_t opcode) {
BT_HDR* ret = (BT_HDR*)osi_calloc(sizeof(BT_HDR) + 6);
uint8_t* stream = ret->data;
UINT8_TO_STREAM(stream, HCI_COMMAND_STATUS_EVT);
UINT8_TO_STREAM(stream, 4); // length of the event parameters
UINT8_TO_STREAM(stream, HCI_PENDING); // status
UINT8_TO_STREAM(stream, 1); // the number of commands that can be sent
UINT16_TO_STREAM(stream, opcode);
ret->len = 6;
return ret;
}
TEST_F(HciLayerTest, test_transmit_command_no_callbacks) {
// Send a test command
reset_for(transmit_command_no_callbacks);
data_to_receive =
manufacture_packet(MSG_STACK_TO_HC_HCI_CMD, command_sample_data);
hci->transmit_command(data_to_receive, NULL, NULL, NULL);
flush_thread(internal_thread);
EXPECT_CALL_COUNT(hal_transmit_data, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 1);
EXPECT_CALL_COUNT(low_power_transmit_done, 1);
EXPECT_CALL_COUNT(low_power_wake_assert, 1);
// Send a response
command_opcode_t opcode = *((uint16_t*)command_sample_data);
data_to_receive = manufacture_command_complete(opcode);
hal_callbacks->data_ready(DATA_TYPE_EVENT);
EXPECT_CALL_COUNT(hal_packet_finished, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 2);
osi_free(data_to_receive);
}
TEST_F(HciLayerTest, test_transmit_command_command_status) {
// Send a test command
reset_for(transmit_command_command_status);
data_to_receive =
manufacture_packet(MSG_STACK_TO_HC_HCI_CMD, command_sample_data);
hci->transmit_command(data_to_receive, command_complete_callback,
command_status_callback, NULL);
flush_thread(internal_thread);
EXPECT_CALL_COUNT(hal_transmit_data, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 1);
EXPECT_CALL_COUNT(low_power_transmit_done, 1);
EXPECT_CALL_COUNT(low_power_wake_assert, 1);
command_opcode_t opcode = *((uint16_t*)command_sample_data);
// Send status event response
data_to_receive = manufacture_command_status(opcode);
hal_callbacks->data_ready(DATA_TYPE_EVENT);
EXPECT_CALL_COUNT(hal_packet_finished, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 2);
EXPECT_CALL_COUNT(command_status_callback, 1);
osi_free(data_to_receive);
}
TEST_F(HciLayerTest, test_transmit_command_command_complete) {
// Send a test command
reset_for(transmit_command_command_complete);
data_to_receive =
manufacture_packet(MSG_STACK_TO_HC_HCI_CMD, command_sample_data);
hci->transmit_command(data_to_receive, command_complete_callback,
command_status_callback, NULL);
flush_thread(internal_thread);
EXPECT_CALL_COUNT(hal_transmit_data, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 1);
EXPECT_CALL_COUNT(low_power_transmit_done, 1);
EXPECT_CALL_COUNT(low_power_wake_assert, 1);
command_opcode_t opcode = *((uint16_t*)command_sample_data);
// Send complete event response
data_to_receive = manufacture_command_complete(opcode);
hal_callbacks->data_ready(DATA_TYPE_EVENT);
EXPECT_CALL_COUNT(hal_packet_finished, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 2);
EXPECT_CALL_COUNT(command_complete_callback, 1);
osi_free(data_to_receive);
}
TEST_F(HciLayerTest, test_ignoring_packets) {
reset_for(ignoring_packets_ignored_packet);
data_to_receive = manufacture_packet(MSG_HC_TO_STACK_HCI_EVT, unignored_data);
hal_callbacks->data_ready(DATA_TYPE_EVENT);
EXPECT_CALL_COUNT(buffer_allocator_alloc, 1);
EXPECT_CALL_COUNT(hal_packet_finished, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 0);
osi_free(data_to_receive);
reset_for(ignoring_packets_following_packet);
data_to_receive = manufacture_packet(MSG_STACK_TO_HC_HCI_ACL, ignored_data);
hal_callbacks->data_ready(DATA_TYPE_ACL);
EXPECT_CALL_COUNT(buffer_allocator_alloc, 1);
EXPECT_CALL_COUNT(hal_packet_finished, 1);
EXPECT_CALL_COUNT(btsnoop_capture, 1);
osi_free(data_to_receive);
}
// TODO(zachoverflow): test post-reassembly better, stub out fragmenter instead
// of using it