|  | /* | 
|  | * Copyright (C) 2011 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include <utils/Log.h> | 
|  |  | 
|  | #include "Fusion.h" | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // ----------------------------------------------------------------------- | 
|  |  | 
|  | /* | 
|  | * gyroVAR gives the measured variance of the gyro's output per | 
|  | * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro, | 
|  | * which is independent of the sampling frequency. | 
|  | * | 
|  | * The variance of gyro's output at a given sampling period can be | 
|  | * calculated as: | 
|  | *      variance(T) = gyroVAR / T | 
|  | * | 
|  | * The variance of the INTEGRATED OUTPUT at a given sampling period can be | 
|  | * calculated as: | 
|  | *       variance_integrate_output(T) = gyroVAR * T | 
|  | * | 
|  | */ | 
|  | static const float gyroVAR = 1e-7;      // (rad/s)^2 / Hz | 
|  | static const float biasVAR = 1e-8;      // (rad/s)^2 / s (guessed) | 
|  |  | 
|  | /* | 
|  | * Standard deviations of accelerometer and magnetometer | 
|  | */ | 
|  | static const float accSTDEV  = 0.05f;   // m/s^2 (measured 0.08 / CDD 0.05) | 
|  | static const float magSTDEV  = 0.5f;    // uT    (measured 0.7  / CDD 0.5) | 
|  |  | 
|  | static const float SYMMETRY_TOLERANCE = 1e-10f; | 
|  |  | 
|  | /* | 
|  | * Accelerometer updates will not be performed near free fall to avoid | 
|  | * ill-conditioning and div by zeros. | 
|  | * Threshhold: 10% of g, in m/s^2 | 
|  | */ | 
|  | static const float FREE_FALL_THRESHOLD = 0.981f; | 
|  | static const float FREE_FALL_THRESHOLD_SQ = | 
|  | FREE_FALL_THRESHOLD*FREE_FALL_THRESHOLD; | 
|  |  | 
|  | /* | 
|  | * The geomagnetic-field should be between 30uT and 60uT. | 
|  | * Fields strengths greater than this likely indicate a local magnetic | 
|  | * disturbance which we do not want to update into the fused frame. | 
|  | */ | 
|  | static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT | 
|  | static const float MAX_VALID_MAGNETIC_FIELD_SQ = | 
|  | MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD; | 
|  |  | 
|  | /* | 
|  | * Values of the field smaller than this should be ignored in fusion to avoid | 
|  | * ill-conditioning. This state can happen with anomalous local magnetic | 
|  | * disturbances canceling the Earth field. | 
|  | */ | 
|  | static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT | 
|  | static const float MIN_VALID_MAGNETIC_FIELD_SQ = | 
|  | MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD; | 
|  |  | 
|  | /* | 
|  | * If the cross product of two vectors has magnitude squared less than this, | 
|  | * we reject it as invalid due to alignment of the vectors. | 
|  | * This threshold is used to check for the case where the magnetic field sample | 
|  | * is parallel to the gravity field, which can happen in certain places due | 
|  | * to magnetic field disturbances. | 
|  | */ | 
|  | static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3; | 
|  | static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ = | 
|  | MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG; | 
|  |  | 
|  | // ----------------------------------------------------------------------- | 
|  |  | 
|  | template <typename TYPE, size_t C, size_t R> | 
|  | static mat<TYPE, R, R> scaleCovariance( | 
|  | const mat<TYPE, C, R>& A, | 
|  | const mat<TYPE, C, C>& P) { | 
|  | // A*P*transpose(A); | 
|  | mat<TYPE, R, R> APAt; | 
|  | for (size_t r=0 ; r<R ; r++) { | 
|  | for (size_t j=r ; j<R ; j++) { | 
|  | double apat(0); | 
|  | for (size_t c=0 ; c<C ; c++) { | 
|  | double v(A[c][r]*P[c][c]*0.5); | 
|  | for (size_t k=c+1 ; k<C ; k++) | 
|  | v += A[k][r] * P[c][k]; | 
|  | apat += 2 * v * A[c][j]; | 
|  | } | 
|  | APAt[j][r] = apat; | 
|  | APAt[r][j] = apat; | 
|  | } | 
|  | } | 
|  | return APAt; | 
|  | } | 
|  |  | 
|  | template <typename TYPE, typename OTHER_TYPE> | 
|  | static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) { | 
|  | mat<TYPE, 3, 3> r; | 
|  | r[0][0] = diag; | 
|  | r[1][1] = diag; | 
|  | r[2][2] = diag; | 
|  | r[0][1] = p.z; | 
|  | r[1][0] =-p.z; | 
|  | r[0][2] =-p.y; | 
|  | r[2][0] = p.y; | 
|  | r[1][2] = p.x; | 
|  | r[2][1] =-p.x; | 
|  | return r; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename TYPE, size_t SIZE> | 
|  | class Covariance { | 
|  | mat<TYPE, SIZE, SIZE> mSumXX; | 
|  | vec<TYPE, SIZE> mSumX; | 
|  | size_t mN; | 
|  | public: | 
|  | Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { } | 
|  | void update(const vec<TYPE, SIZE>& x) { | 
|  | mSumXX += x*transpose(x); | 
|  | mSumX  += x; | 
|  | mN++; | 
|  | } | 
|  | mat<TYPE, SIZE, SIZE> operator()() const { | 
|  | const float N = 1.0f / mN; | 
|  | return mSumXX*N - (mSumX*transpose(mSumX))*(N*N); | 
|  | } | 
|  | void reset() { | 
|  | mN = 0; | 
|  | mSumXX = 0; | 
|  | mSumX = 0; | 
|  | } | 
|  | size_t getCount() const { | 
|  | return mN; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // ----------------------------------------------------------------------- | 
|  |  | 
|  | Fusion::Fusion() { | 
|  | Phi[0][1] = 0; | 
|  | Phi[1][1] = 1; | 
|  |  | 
|  | Ba.x = 0; | 
|  | Ba.y = 0; | 
|  | Ba.z = 1; | 
|  |  | 
|  | Bm.x = 0; | 
|  | Bm.y = 1; | 
|  | Bm.z = 0; | 
|  |  | 
|  | x0 = 0; | 
|  | x1 = 0; | 
|  |  | 
|  | init(); | 
|  | } | 
|  |  | 
|  | void Fusion::init() { | 
|  | mInitState = 0; | 
|  |  | 
|  | mGyroRate = 0; | 
|  |  | 
|  | mCount[0] = 0; | 
|  | mCount[1] = 0; | 
|  | mCount[2] = 0; | 
|  |  | 
|  | mData = 0; | 
|  | } | 
|  |  | 
|  | void Fusion::initFusion(const vec4_t& q, float dT) | 
|  | { | 
|  | // initial estimate: E{ x(t0) } | 
|  | x0 = q; | 
|  | x1 = 0; | 
|  |  | 
|  | // process noise covariance matrix: G.Q.Gt, with | 
|  | // | 
|  | //  G = | -1 0 |        Q = | q00 q10 | | 
|  | //      |  0 1 |            | q01 q11 | | 
|  | // | 
|  | // q00 = sv^2.dt + 1/3.su^2.dt^3 | 
|  | // q10 = q01 = 1/2.su^2.dt^2 | 
|  | // q11 = su^2.dt | 
|  | // | 
|  |  | 
|  | const float dT2 = dT*dT; | 
|  | const float dT3 = dT2*dT; | 
|  |  | 
|  | // variance of integrated output at 1/dT Hz (random drift) | 
|  | const float q00 = gyroVAR * dT + 0.33333f * biasVAR * dT3; | 
|  |  | 
|  | // variance of drift rate ramp | 
|  | const float q11 = biasVAR * dT; | 
|  | const float q10 = 0.5f * biasVAR * dT2; | 
|  | const float q01 = q10; | 
|  |  | 
|  | GQGt[0][0] =  q00;      // rad^2 | 
|  | GQGt[1][0] = -q10; | 
|  | GQGt[0][1] = -q01; | 
|  | GQGt[1][1] =  q11;      // (rad/s)^2 | 
|  |  | 
|  | // initial covariance: Var{ x(t0) } | 
|  | // TODO: initialize P correctly | 
|  | P = 0; | 
|  | } | 
|  |  | 
|  | bool Fusion::hasEstimate() const { | 
|  | return (mInitState == (MAG|ACC|GYRO)); | 
|  | } | 
|  |  | 
|  | bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) { | 
|  | if (hasEstimate()) | 
|  | return true; | 
|  |  | 
|  | if (what == ACC) { | 
|  | mData[0] += d * (1/length(d)); | 
|  | mCount[0]++; | 
|  | mInitState |= ACC; | 
|  | } else if (what == MAG) { | 
|  | mData[1] += d * (1/length(d)); | 
|  | mCount[1]++; | 
|  | mInitState |= MAG; | 
|  | } else if (what == GYRO) { | 
|  | mGyroRate = dT; | 
|  | mData[2] += d*dT; | 
|  | mCount[2]++; | 
|  | if (mCount[2] == 64) { | 
|  | // 64 samples is good enough to estimate the gyro drift and | 
|  | // doesn't take too much time. | 
|  | mInitState |= GYRO; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mInitState == (MAG|ACC|GYRO)) { | 
|  | // Average all the values we collected so far | 
|  | mData[0] *= 1.0f/mCount[0]; | 
|  | mData[1] *= 1.0f/mCount[1]; | 
|  | mData[2] *= 1.0f/mCount[2]; | 
|  |  | 
|  | // calculate the MRPs from the data collection, this gives us | 
|  | // a rough estimate of our initial state | 
|  | mat33_t R; | 
|  | vec3_t up(mData[0]); | 
|  | vec3_t east(cross_product(mData[1], up)); | 
|  | east *= 1/length(east); | 
|  | vec3_t north(cross_product(up, east)); | 
|  | R << east << north << up; | 
|  | const vec4_t q = matrixToQuat(R); | 
|  |  | 
|  | initFusion(q, mGyroRate); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Fusion::handleGyro(const vec3_t& w, float dT) { | 
|  | if (!checkInitComplete(GYRO, w, dT)) | 
|  | return; | 
|  |  | 
|  | predict(w, dT); | 
|  | } | 
|  |  | 
|  | status_t Fusion::handleAcc(const vec3_t& a) { | 
|  | // ignore acceleration data if we're close to free-fall | 
|  | if (length_squared(a) < FREE_FALL_THRESHOLD_SQ) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | if (!checkInitComplete(ACC, a)) | 
|  | return BAD_VALUE; | 
|  |  | 
|  | const float l = 1/length(a); | 
|  | update(a*l, Ba, accSTDEV*l); | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | status_t Fusion::handleMag(const vec3_t& m) { | 
|  | // the geomagnetic-field should be between 30uT and 60uT | 
|  | // reject if too large to avoid spurious magnetic sources | 
|  | const float magFieldSq = length_squared(m); | 
|  | if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) { | 
|  | return BAD_VALUE; | 
|  | } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) { | 
|  | // Also reject if too small since we will get ill-defined (zero mag) | 
|  | // cross-products below | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | if (!checkInitComplete(MAG, m)) | 
|  | return BAD_VALUE; | 
|  |  | 
|  | // Orthogonalize the magnetic field to the gravity field, mapping it into | 
|  | // tangent to Earth. | 
|  | const vec3_t up( getRotationMatrix() * Ba ); | 
|  | const vec3_t east( cross_product(m, up) ); | 
|  |  | 
|  | // If the m and up vectors align, the cross product magnitude will | 
|  | // approach 0. | 
|  | // Reject this case as well to avoid div by zero problems and | 
|  | // ill-conditioning below. | 
|  | if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | // If we have created an orthogonal magnetic field successfully, | 
|  | // then pass it in as the update. | 
|  | vec3_t north( cross_product(up, east) ); | 
|  |  | 
|  | const float l = 1 / length(north); | 
|  | north *= l; | 
|  |  | 
|  | update(north, Bm, magSTDEV*l); | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | void Fusion::checkState() { | 
|  | // P needs to stay positive semidefinite or the fusion diverges. When we | 
|  | // detect divergence, we reset the fusion. | 
|  | // TODO(braun): Instead, find the reason for the divergence and fix it. | 
|  |  | 
|  | if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) || | 
|  | !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) { | 
|  | ALOGW("Sensor fusion diverged; resetting state."); | 
|  | P = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | vec4_t Fusion::getAttitude() const { | 
|  | return x0; | 
|  | } | 
|  |  | 
|  | vec3_t Fusion::getBias() const { | 
|  | return x1; | 
|  | } | 
|  |  | 
|  | mat33_t Fusion::getRotationMatrix() const { | 
|  | return quatToMatrix(x0); | 
|  | } | 
|  |  | 
|  | mat34_t Fusion::getF(const vec4_t& q) { | 
|  | mat34_t F; | 
|  |  | 
|  | // This is used to compute the derivative of q | 
|  | // F = | [q.xyz]x | | 
|  | //     |  -q.xyz  | | 
|  |  | 
|  | F[0].x = q.w;   F[1].x =-q.z;   F[2].x = q.y; | 
|  | F[0].y = q.z;   F[1].y = q.w;   F[2].y =-q.x; | 
|  | F[0].z =-q.y;   F[1].z = q.x;   F[2].z = q.w; | 
|  | F[0].w =-q.x;   F[1].w =-q.y;   F[2].w =-q.z; | 
|  | return F; | 
|  | } | 
|  |  | 
|  | void Fusion::predict(const vec3_t& w, float dT) { | 
|  | const vec4_t q  = x0; | 
|  | const vec3_t b  = x1; | 
|  | const vec3_t we = w - b; | 
|  |  | 
|  | // q(k+1) = O(we)*q(k) | 
|  | // -------------------- | 
|  | // | 
|  | // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x                   psi | | 
|  | //        | -psi'                              cos(0.5*||w||*dT) | | 
|  | // | 
|  | // psi = sin(0.5*||w||*dT)*w / ||w|| | 
|  | // | 
|  | // | 
|  | // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G' | 
|  | // ---------------------------------------- | 
|  | // | 
|  | // G = | -I33    0 | | 
|  | //     |    0  I33 | | 
|  | // | 
|  | //  Phi = | Phi00 Phi10 | | 
|  | //        |   0     1   | | 
|  | // | 
|  | //  Phi00 =   I33 | 
|  | //          - [w]x   * sin(||w||*dt)/||w|| | 
|  | //          + [w]x^2 * (1-cos(||w||*dT))/||w||^2 | 
|  | // | 
|  | //  Phi10 =   [w]x   * (1        - cos(||w||*dt))/||w||^2 | 
|  | //          - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3 | 
|  | //          - I33*dT | 
|  |  | 
|  | const mat33_t I33(1); | 
|  | const mat33_t I33dT(dT); | 
|  | const mat33_t wx(crossMatrix(we, 0)); | 
|  | const mat33_t wx2(wx*wx); | 
|  | const float lwedT = length(we)*dT; | 
|  | const float hlwedT = 0.5f*lwedT; | 
|  | const float ilwe = 1/length(we); | 
|  | const float k0 = (1-cosf(lwedT))*(ilwe*ilwe); | 
|  | const float k1 = sinf(lwedT); | 
|  | const float k2 = cosf(hlwedT); | 
|  | const vec3_t psi(sinf(hlwedT)*ilwe*we); | 
|  | const mat33_t O33(crossMatrix(-psi, k2)); | 
|  | mat44_t O; | 
|  | O[0].xyz = O33[0];  O[0].w = -psi.x; | 
|  | O[1].xyz = O33[1];  O[1].w = -psi.y; | 
|  | O[2].xyz = O33[2];  O[2].w = -psi.z; | 
|  | O[3].xyz = psi;     O[3].w = k2; | 
|  |  | 
|  | Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0; | 
|  | Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1); | 
|  |  | 
|  | x0 = O*q; | 
|  | if (x0.w < 0) | 
|  | x0 = -x0; | 
|  |  | 
|  | P = Phi*P*transpose(Phi) + GQGt; | 
|  |  | 
|  | checkState(); | 
|  | } | 
|  |  | 
|  | void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) { | 
|  | vec4_t q(x0); | 
|  | // measured vector in body space: h(p) = A(p)*Bi | 
|  | const mat33_t A(quatToMatrix(q)); | 
|  | const vec3_t Bb(A*Bi); | 
|  |  | 
|  | // Sensitivity matrix H = dh(p)/dp | 
|  | // H = [ L 0 ] | 
|  | const mat33_t L(crossMatrix(Bb, 0)); | 
|  |  | 
|  | // gain... | 
|  | // K = P*Ht / [H*P*Ht + R] | 
|  | vec<mat33_t, 2> K; | 
|  | const mat33_t R(sigma*sigma); | 
|  | const mat33_t S(scaleCovariance(L, P[0][0]) + R); | 
|  | const mat33_t Si(invert(S)); | 
|  | const mat33_t LtSi(transpose(L)*Si); | 
|  | K[0] = P[0][0] * LtSi; | 
|  | K[1] = transpose(P[1][0])*LtSi; | 
|  |  | 
|  | // update... | 
|  | // P = (I-K*H) * P | 
|  | // P -= K*H*P | 
|  | // | K0 | * | L 0 | * P = | K0*L  0 | * | P00  P10 | = | K0*L*P00  K0*L*P10 | | 
|  | // | K1 |                 | K1*L  0 |   | P01  P11 |   | K1*L*P00  K1*L*P10 | | 
|  | // Note: the Joseph form is numerically more stable and given by: | 
|  | //     P = (I-KH) * P * (I-KH)' + K*R*R' | 
|  | const mat33_t K0L(K[0] * L); | 
|  | const mat33_t K1L(K[1] * L); | 
|  | P[0][0] -= K0L*P[0][0]; | 
|  | P[1][1] -= K1L*P[1][0]; | 
|  | P[1][0] -= K0L*P[1][0]; | 
|  | P[0][1] = transpose(P[1][0]); | 
|  |  | 
|  | const vec3_t e(z - Bb); | 
|  | const vec3_t dq(K[0]*e); | 
|  | const vec3_t db(K[1]*e); | 
|  |  | 
|  | q += getF(q)*(0.5f*dq); | 
|  | x0 = normalize_quat(q); | 
|  | x1 += db; | 
|  |  | 
|  | checkState(); | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------- | 
|  |  | 
|  | }; // namespace android | 
|  |  |