| /* |
| ******************************************************************************* |
| * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each |
| * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash |
| * functions are employed. The original cuckoo hashing algorithm was described |
| * in: |
| * |
| * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms |
| * 51(2):122-144. |
| * |
| * Generalization of cuckoo hashing was discussed in: |
| * |
| * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical |
| * alternative to traditional hash tables. In Proceedings of the 7th |
| * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA, |
| * January 2006. |
| * |
| * This implementation uses precisely two hash functions because that is the |
| * fewest that can work, and supporting multiple hashes is an implementation |
| * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006) |
| * that shows approximate expected maximum load factors for various |
| * configurations: |
| * |
| * | #cells/bucket | |
| * #hashes | 1 | 2 | 4 | 8 | |
| * --------+-------+-------+-------+-------+ |
| * 1 | 0.006 | 0.006 | 0.03 | 0.12 | |
| * 2 | 0.49 | 0.86 |>0.93< |>0.96< | |
| * 3 | 0.91 | 0.97 | 0.98 | 0.999 | |
| * 4 | 0.97 | 0.99 | 0.999 | | |
| * |
| * The number of cells per bucket is chosen such that a bucket fits in one cache |
| * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing, |
| * respectively. |
| * |
| ******************************************************************************/ |
| #define JEMALLOC_CKH_C_ |
| #include "jemalloc/internal/jemalloc_internal.h" |
| |
| /******************************************************************************/ |
| /* Function prototypes for non-inline static functions. */ |
| |
| static bool ckh_grow(tsdn_t *tsdn, ckh_t *ckh); |
| static void ckh_shrink(tsdn_t *tsdn, ckh_t *ckh); |
| |
| /******************************************************************************/ |
| |
| /* |
| * Search bucket for key and return the cell number if found; SIZE_T_MAX |
| * otherwise. |
| */ |
| JEMALLOC_INLINE_C size_t |
| ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) |
| { |
| ckhc_t *cell; |
| unsigned i; |
| |
| for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { |
| cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; |
| if (cell->key != NULL && ckh->keycomp(key, cell->key)) |
| return ((bucket << LG_CKH_BUCKET_CELLS) + i); |
| } |
| |
| return (SIZE_T_MAX); |
| } |
| |
| /* |
| * Search table for key and return cell number if found; SIZE_T_MAX otherwise. |
| */ |
| JEMALLOC_INLINE_C size_t |
| ckh_isearch(ckh_t *ckh, const void *key) |
| { |
| size_t hashes[2], bucket, cell; |
| |
| assert(ckh != NULL); |
| |
| ckh->hash(key, hashes); |
| |
| /* Search primary bucket. */ |
| bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| cell = ckh_bucket_search(ckh, bucket, key); |
| if (cell != SIZE_T_MAX) |
| return (cell); |
| |
| /* Search secondary bucket. */ |
| bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| cell = ckh_bucket_search(ckh, bucket, key); |
| return (cell); |
| } |
| |
| JEMALLOC_INLINE_C bool |
| ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key, |
| const void *data) |
| { |
| ckhc_t *cell; |
| unsigned offset, i; |
| |
| /* |
| * Cycle through the cells in the bucket, starting at a random position. |
| * The randomness avoids worst-case search overhead as buckets fill up. |
| */ |
| offset = (unsigned)prng_lg_range(&ckh->prng_state, LG_CKH_BUCKET_CELLS); |
| for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { |
| cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + |
| ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))]; |
| if (cell->key == NULL) { |
| cell->key = key; |
| cell->data = data; |
| ckh->count++; |
| return (false); |
| } |
| } |
| |
| return (true); |
| } |
| |
| /* |
| * No space is available in bucket. Randomly evict an item, then try to find an |
| * alternate location for that item. Iteratively repeat this |
| * eviction/relocation procedure until either success or detection of an |
| * eviction/relocation bucket cycle. |
| */ |
| JEMALLOC_INLINE_C bool |
| ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey, |
| void const **argdata) |
| { |
| const void *key, *data, *tkey, *tdata; |
| ckhc_t *cell; |
| size_t hashes[2], bucket, tbucket; |
| unsigned i; |
| |
| bucket = argbucket; |
| key = *argkey; |
| data = *argdata; |
| while (true) { |
| /* |
| * Choose a random item within the bucket to evict. This is |
| * critical to correct function, because without (eventually) |
| * evicting all items within a bucket during iteration, it |
| * would be possible to get stuck in an infinite loop if there |
| * were an item for which both hashes indicated the same |
| * bucket. |
| */ |
| i = (unsigned)prng_lg_range(&ckh->prng_state, |
| LG_CKH_BUCKET_CELLS); |
| cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; |
| assert(cell->key != NULL); |
| |
| /* Swap cell->{key,data} and {key,data} (evict). */ |
| tkey = cell->key; tdata = cell->data; |
| cell->key = key; cell->data = data; |
| key = tkey; data = tdata; |
| |
| #ifdef CKH_COUNT |
| ckh->nrelocs++; |
| #endif |
| |
| /* Find the alternate bucket for the evicted item. */ |
| ckh->hash(key, hashes); |
| tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| if (tbucket == bucket) { |
| tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) |
| - 1); |
| /* |
| * It may be that (tbucket == bucket) still, if the |
| * item's hashes both indicate this bucket. However, |
| * we are guaranteed to eventually escape this bucket |
| * during iteration, assuming pseudo-random item |
| * selection (true randomness would make infinite |
| * looping a remote possibility). The reason we can |
| * never get trapped forever is that there are two |
| * cases: |
| * |
| * 1) This bucket == argbucket, so we will quickly |
| * detect an eviction cycle and terminate. |
| * 2) An item was evicted to this bucket from another, |
| * which means that at least one item in this bucket |
| * has hashes that indicate distinct buckets. |
| */ |
| } |
| /* Check for a cycle. */ |
| if (tbucket == argbucket) { |
| *argkey = key; |
| *argdata = data; |
| return (true); |
| } |
| |
| bucket = tbucket; |
| if (!ckh_try_bucket_insert(ckh, bucket, key, data)) |
| return (false); |
| } |
| } |
| |
| JEMALLOC_INLINE_C bool |
| ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) |
| { |
| size_t hashes[2], bucket; |
| const void *key = *argkey; |
| const void *data = *argdata; |
| |
| ckh->hash(key, hashes); |
| |
| /* Try to insert in primary bucket. */ |
| bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| if (!ckh_try_bucket_insert(ckh, bucket, key, data)) |
| return (false); |
| |
| /* Try to insert in secondary bucket. */ |
| bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1); |
| if (!ckh_try_bucket_insert(ckh, bucket, key, data)) |
| return (false); |
| |
| /* |
| * Try to find a place for this item via iterative eviction/relocation. |
| */ |
| return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata)); |
| } |
| |
| /* |
| * Try to rebuild the hash table from scratch by inserting all items from the |
| * old table into the new. |
| */ |
| JEMALLOC_INLINE_C bool |
| ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) |
| { |
| size_t count, i, nins; |
| const void *key, *data; |
| |
| count = ckh->count; |
| ckh->count = 0; |
| for (i = nins = 0; nins < count; i++) { |
| if (aTab[i].key != NULL) { |
| key = aTab[i].key; |
| data = aTab[i].data; |
| if (ckh_try_insert(ckh, &key, &data)) { |
| ckh->count = count; |
| return (true); |
| } |
| nins++; |
| } |
| } |
| |
| return (false); |
| } |
| |
| static bool |
| ckh_grow(tsdn_t *tsdn, ckh_t *ckh) |
| { |
| bool ret; |
| ckhc_t *tab, *ttab; |
| unsigned lg_prevbuckets, lg_curcells; |
| |
| #ifdef CKH_COUNT |
| ckh->ngrows++; |
| #endif |
| |
| /* |
| * It is possible (though unlikely, given well behaved hashes) that the |
| * table will have to be doubled more than once in order to create a |
| * usable table. |
| */ |
| lg_prevbuckets = ckh->lg_curbuckets; |
| lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS; |
| while (true) { |
| size_t usize; |
| |
| lg_curcells++; |
| usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); |
| if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) { |
| ret = true; |
| goto label_return; |
| } |
| tab = (ckhc_t *)ipallocztm(tsdn, usize, CACHELINE, true, NULL, |
| true, arena_ichoose(tsdn, NULL)); |
| if (tab == NULL) { |
| ret = true; |
| goto label_return; |
| } |
| /* Swap in new table. */ |
| ttab = ckh->tab; |
| ckh->tab = tab; |
| tab = ttab; |
| ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; |
| |
| if (!ckh_rebuild(ckh, tab)) { |
| idalloctm(tsdn, tab, NULL, true, true); |
| break; |
| } |
| |
| /* Rebuilding failed, so back out partially rebuilt table. */ |
| idalloctm(tsdn, ckh->tab, NULL, true, true); |
| ckh->tab = tab; |
| ckh->lg_curbuckets = lg_prevbuckets; |
| } |
| |
| ret = false; |
| label_return: |
| return (ret); |
| } |
| |
| static void |
| ckh_shrink(tsdn_t *tsdn, ckh_t *ckh) |
| { |
| ckhc_t *tab, *ttab; |
| size_t usize; |
| unsigned lg_prevbuckets, lg_curcells; |
| |
| /* |
| * It is possible (though unlikely, given well behaved hashes) that the |
| * table rebuild will fail. |
| */ |
| lg_prevbuckets = ckh->lg_curbuckets; |
| lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1; |
| usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE); |
| if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) |
| return; |
| tab = (ckhc_t *)ipallocztm(tsdn, usize, CACHELINE, true, NULL, true, |
| arena_ichoose(tsdn, NULL)); |
| if (tab == NULL) { |
| /* |
| * An OOM error isn't worth propagating, since it doesn't |
| * prevent this or future operations from proceeding. |
| */ |
| return; |
| } |
| /* Swap in new table. */ |
| ttab = ckh->tab; |
| ckh->tab = tab; |
| tab = ttab; |
| ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; |
| |
| if (!ckh_rebuild(ckh, tab)) { |
| idalloctm(tsdn, tab, NULL, true, true); |
| #ifdef CKH_COUNT |
| ckh->nshrinks++; |
| #endif |
| return; |
| } |
| |
| /* Rebuilding failed, so back out partially rebuilt table. */ |
| idalloctm(tsdn, ckh->tab, NULL, true, true); |
| ckh->tab = tab; |
| ckh->lg_curbuckets = lg_prevbuckets; |
| #ifdef CKH_COUNT |
| ckh->nshrinkfails++; |
| #endif |
| } |
| |
| bool |
| ckh_new(tsdn_t *tsdn, ckh_t *ckh, size_t minitems, ckh_hash_t *hash, |
| ckh_keycomp_t *keycomp) |
| { |
| bool ret; |
| size_t mincells, usize; |
| unsigned lg_mincells; |
| |
| assert(minitems > 0); |
| assert(hash != NULL); |
| assert(keycomp != NULL); |
| |
| #ifdef CKH_COUNT |
| ckh->ngrows = 0; |
| ckh->nshrinks = 0; |
| ckh->nshrinkfails = 0; |
| ckh->ninserts = 0; |
| ckh->nrelocs = 0; |
| #endif |
| ckh->prng_state = 42; /* Value doesn't really matter. */ |
| ckh->count = 0; |
| |
| /* |
| * Find the minimum power of 2 that is large enough to fit minitems |
| * entries. We are using (2+,2) cuckoo hashing, which has an expected |
| * maximum load factor of at least ~0.86, so 0.75 is a conservative load |
| * factor that will typically allow mincells items to fit without ever |
| * growing the table. |
| */ |
| assert(LG_CKH_BUCKET_CELLS > 0); |
| mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2; |
| for (lg_mincells = LG_CKH_BUCKET_CELLS; |
| (ZU(1) << lg_mincells) < mincells; |
| lg_mincells++) |
| ; /* Do nothing. */ |
| ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; |
| ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; |
| ckh->hash = hash; |
| ckh->keycomp = keycomp; |
| |
| usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE); |
| if (unlikely(usize == 0 || usize > HUGE_MAXCLASS)) { |
| ret = true; |
| goto label_return; |
| } |
| ckh->tab = (ckhc_t *)ipallocztm(tsdn, usize, CACHELINE, true, NULL, |
| true, arena_ichoose(tsdn, NULL)); |
| if (ckh->tab == NULL) { |
| ret = true; |
| goto label_return; |
| } |
| |
| ret = false; |
| label_return: |
| return (ret); |
| } |
| |
| void |
| ckh_delete(tsdn_t *tsdn, ckh_t *ckh) |
| { |
| |
| assert(ckh != NULL); |
| |
| #ifdef CKH_VERBOSE |
| malloc_printf( |
| "%s(%p): ngrows: %"FMTu64", nshrinks: %"FMTu64"," |
| " nshrinkfails: %"FMTu64", ninserts: %"FMTu64"," |
| " nrelocs: %"FMTu64"\n", __func__, ckh, |
| (unsigned long long)ckh->ngrows, |
| (unsigned long long)ckh->nshrinks, |
| (unsigned long long)ckh->nshrinkfails, |
| (unsigned long long)ckh->ninserts, |
| (unsigned long long)ckh->nrelocs); |
| #endif |
| |
| idalloctm(tsdn, ckh->tab, NULL, true, true); |
| if (config_debug) |
| memset(ckh, JEMALLOC_FREE_JUNK, sizeof(ckh_t)); |
| } |
| |
| size_t |
| ckh_count(ckh_t *ckh) |
| { |
| |
| assert(ckh != NULL); |
| |
| return (ckh->count); |
| } |
| |
| bool |
| ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) |
| { |
| size_t i, ncells; |
| |
| for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets + |
| LG_CKH_BUCKET_CELLS)); i < ncells; i++) { |
| if (ckh->tab[i].key != NULL) { |
| if (key != NULL) |
| *key = (void *)ckh->tab[i].key; |
| if (data != NULL) |
| *data = (void *)ckh->tab[i].data; |
| *tabind = i + 1; |
| return (false); |
| } |
| } |
| |
| return (true); |
| } |
| |
| bool |
| ckh_insert(tsdn_t *tsdn, ckh_t *ckh, const void *key, const void *data) |
| { |
| bool ret; |
| |
| assert(ckh != NULL); |
| assert(ckh_search(ckh, key, NULL, NULL)); |
| |
| #ifdef CKH_COUNT |
| ckh->ninserts++; |
| #endif |
| |
| while (ckh_try_insert(ckh, &key, &data)) { |
| if (ckh_grow(tsdn, ckh)) { |
| ret = true; |
| goto label_return; |
| } |
| } |
| |
| ret = false; |
| label_return: |
| return (ret); |
| } |
| |
| bool |
| ckh_remove(tsdn_t *tsdn, ckh_t *ckh, const void *searchkey, void **key, |
| void **data) |
| { |
| size_t cell; |
| |
| assert(ckh != NULL); |
| |
| cell = ckh_isearch(ckh, searchkey); |
| if (cell != SIZE_T_MAX) { |
| if (key != NULL) |
| *key = (void *)ckh->tab[cell].key; |
| if (data != NULL) |
| *data = (void *)ckh->tab[cell].data; |
| ckh->tab[cell].key = NULL; |
| ckh->tab[cell].data = NULL; /* Not necessary. */ |
| |
| ckh->count--; |
| /* Try to halve the table if it is less than 1/4 full. */ |
| if (ckh->count < (ZU(1) << (ckh->lg_curbuckets |
| + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets |
| > ckh->lg_minbuckets) { |
| /* Ignore error due to OOM. */ |
| ckh_shrink(tsdn, ckh); |
| } |
| |
| return (false); |
| } |
| |
| return (true); |
| } |
| |
| bool |
| ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) |
| { |
| size_t cell; |
| |
| assert(ckh != NULL); |
| |
| cell = ckh_isearch(ckh, searchkey); |
| if (cell != SIZE_T_MAX) { |
| if (key != NULL) |
| *key = (void *)ckh->tab[cell].key; |
| if (data != NULL) |
| *data = (void *)ckh->tab[cell].data; |
| return (false); |
| } |
| |
| return (true); |
| } |
| |
| void |
| ckh_string_hash(const void *key, size_t r_hash[2]) |
| { |
| |
| hash(key, strlen((const char *)key), 0x94122f33U, r_hash); |
| } |
| |
| bool |
| ckh_string_keycomp(const void *k1, const void *k2) |
| { |
| |
| assert(k1 != NULL); |
| assert(k2 != NULL); |
| |
| return (strcmp((char *)k1, (char *)k2) ? false : true); |
| } |
| |
| void |
| ckh_pointer_hash(const void *key, size_t r_hash[2]) |
| { |
| union { |
| const void *v; |
| size_t i; |
| } u; |
| |
| assert(sizeof(u.v) == sizeof(u.i)); |
| u.v = key; |
| hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash); |
| } |
| |
| bool |
| ckh_pointer_keycomp(const void *k1, const void *k2) |
| { |
| |
| return ((k1 == k2) ? true : false); |
| } |