| /* ----------------------------------------------------------------------- |
| ffi.c - Copyright (c) 2011 Timothy Wall |
| Copyright (c) 2011 Plausible Labs Cooperative, Inc. |
| Copyright (c) 2011 Anthony Green |
| Copyright (c) 2011 Free Software Foundation |
| Copyright (c) 1998, 2008, 2011 Red Hat, Inc. |
| |
| ARM Foreign Function Interface |
| |
| Permission is hereby granted, free of charge, to any person obtaining |
| a copy of this software and associated documentation files (the |
| ``Software''), to deal in the Software without restriction, including |
| without limitation the rights to use, copy, modify, merge, publish, |
| distribute, sublicense, and/or sell copies of the Software, and to |
| permit persons to whom the Software is furnished to do so, subject to |
| the following conditions: |
| |
| The above copyright notice and this permission notice shall be included |
| in all copies or substantial portions of the Software. |
| |
| THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, |
| EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
| HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
| WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| DEALINGS IN THE SOFTWARE. |
| ----------------------------------------------------------------------- */ |
| |
| #include <ffi.h> |
| #include <ffi_common.h> |
| |
| #include <stdlib.h> |
| |
| /* Forward declares. */ |
| static int vfp_type_p (ffi_type *); |
| static void layout_vfp_args (ffi_cif *); |
| |
| int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space); |
| int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space); |
| |
| static char* ffi_align(ffi_type **p_arg, char *argp) |
| { |
| /* Align if necessary */ |
| register size_t alignment = (*p_arg)->alignment; |
| if (alignment < 4) |
| { |
| alignment = 4; |
| } |
| #ifdef _WIN32_WCE |
| if (alignment > 4) |
| { |
| alignment = 4; |
| } |
| #endif |
| if ((alignment - 1) & (unsigned) argp) |
| { |
| argp = (char *) ALIGN(argp, alignment); |
| } |
| |
| if ((*p_arg)->type == FFI_TYPE_STRUCT) |
| { |
| argp = (char *) ALIGN(argp, 4); |
| } |
| return argp; |
| } |
| |
| static size_t ffi_put_arg(ffi_type **arg_type, void **arg, char *stack) |
| { |
| register char* argp = stack; |
| register ffi_type **p_arg = arg_type; |
| register void **p_argv = arg; |
| register size_t z = (*p_arg)->size; |
| if (z < sizeof(int)) |
| { |
| z = sizeof(int); |
| switch ((*p_arg)->type) |
| { |
| case FFI_TYPE_SINT8: |
| *(signed int *) argp = (signed int)*(SINT8 *)(* p_argv); |
| break; |
| |
| case FFI_TYPE_UINT8: |
| *(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv); |
| break; |
| |
| case FFI_TYPE_SINT16: |
| *(signed int *) argp = (signed int)*(SINT16 *)(* p_argv); |
| break; |
| |
| case FFI_TYPE_UINT16: |
| *(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv); |
| break; |
| |
| case FFI_TYPE_STRUCT: |
| memcpy(argp, *p_argv, (*p_arg)->size); |
| break; |
| |
| default: |
| FFI_ASSERT(0); |
| } |
| } |
| else if (z == sizeof(int)) |
| { |
| if ((*p_arg)->type == FFI_TYPE_FLOAT) |
| *(float *) argp = *(float *)(* p_argv); |
| else |
| *(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv); |
| } |
| else if (z == sizeof(double) && (*p_arg)->type == FFI_TYPE_DOUBLE) |
| { |
| *(double *) argp = *(double *)(* p_argv); |
| } |
| else |
| { |
| memcpy(argp, *p_argv, z); |
| } |
| return z; |
| } |
| /* ffi_prep_args is called by the assembly routine once stack space |
| has been allocated for the function's arguments |
| |
| The vfp_space parameter is the load area for VFP regs, the return |
| value is cif->vfp_used (word bitset of VFP regs used for passing |
| arguments). These are only used for the VFP hard-float ABI. |
| */ |
| int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space) |
| { |
| register unsigned int i; |
| register void **p_argv; |
| register char *argp; |
| register ffi_type **p_arg; |
| argp = stack; |
| |
| |
| if ( ecif->cif->flags == FFI_TYPE_STRUCT ) { |
| *(void **) argp = ecif->rvalue; |
| argp += 4; |
| } |
| |
| p_argv = ecif->avalue; |
| |
| for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types; |
| (i != 0); |
| i--, p_arg++, p_argv++) |
| { |
| argp = ffi_align(p_arg, argp); |
| argp += ffi_put_arg(p_arg, p_argv, argp); |
| } |
| |
| return 0; |
| } |
| |
| int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space) |
| { |
| register unsigned int i, vi = 0; |
| register void **p_argv; |
| register char *argp, *regp, *eo_regp; |
| register ffi_type **p_arg; |
| char stack_used = 0; |
| char done_with_regs = 0; |
| char is_vfp_type; |
| |
| // make sure we are using FFI_VFP |
| FFI_ASSERT(ecif->cif->abi == FFI_VFP); |
| |
| /* the first 4 words on the stack are used for values passed in core |
| * registers. */ |
| regp = stack; |
| eo_regp = argp = regp + 16; |
| |
| |
| /* if the function returns an FFI_TYPE_STRUCT in memory, that address is |
| * passed in r0 to the function */ |
| if ( ecif->cif->flags == FFI_TYPE_STRUCT ) { |
| *(void **) regp = ecif->rvalue; |
| regp += 4; |
| } |
| |
| p_argv = ecif->avalue; |
| |
| for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types; |
| (i != 0); |
| i--, p_arg++, p_argv++) |
| { |
| is_vfp_type = vfp_type_p (*p_arg); |
| |
| /* Allocated in VFP registers. */ |
| if(vi < ecif->cif->vfp_nargs && is_vfp_type) |
| { |
| char *vfp_slot = (char *)(vfp_space + ecif->cif->vfp_args[vi++]); |
| ffi_put_arg(p_arg, p_argv, vfp_slot); |
| continue; |
| } |
| /* Try allocating in core registers. */ |
| else if (!done_with_regs && !is_vfp_type) |
| { |
| char *tregp = ffi_align(p_arg, regp); |
| size_t size = (*p_arg)->size; |
| size = (size < 4)? 4 : size; // pad |
| /* Check if there is space left in the aligned register area to place |
| * the argument */ |
| if(tregp + size <= eo_regp) |
| { |
| regp = tregp + ffi_put_arg(p_arg, p_argv, tregp); |
| done_with_regs = (regp == argp); |
| // ensure we did not write into the stack area |
| FFI_ASSERT(regp <= argp); |
| continue; |
| } |
| /* In case there are no arguments in the stack area yet, |
| the argument is passed in the remaining core registers and on the |
| stack. */ |
| else if (!stack_used) |
| { |
| stack_used = 1; |
| done_with_regs = 1; |
| argp = tregp + ffi_put_arg(p_arg, p_argv, tregp); |
| FFI_ASSERT(eo_regp < argp); |
| continue; |
| } |
| } |
| /* Base case, arguments are passed on the stack */ |
| stack_used = 1; |
| argp = ffi_align(p_arg, argp); |
| argp += ffi_put_arg(p_arg, p_argv, argp); |
| } |
| /* Indicate the VFP registers used. */ |
| return ecif->cif->vfp_used; |
| } |
| |
| /* Perform machine dependent cif processing */ |
| ffi_status ffi_prep_cif_machdep(ffi_cif *cif) |
| { |
| int type_code; |
| /* Round the stack up to a multiple of 8 bytes. This isn't needed |
| everywhere, but it is on some platforms, and it doesn't harm anything |
| when it isn't needed. */ |
| cif->bytes = (cif->bytes + 7) & ~7; |
| |
| /* Set the return type flag */ |
| switch (cif->rtype->type) |
| { |
| case FFI_TYPE_VOID: |
| case FFI_TYPE_FLOAT: |
| case FFI_TYPE_DOUBLE: |
| cif->flags = (unsigned) cif->rtype->type; |
| break; |
| |
| case FFI_TYPE_SINT64: |
| case FFI_TYPE_UINT64: |
| cif->flags = (unsigned) FFI_TYPE_SINT64; |
| break; |
| |
| case FFI_TYPE_STRUCT: |
| if (cif->abi == FFI_VFP |
| && (type_code = vfp_type_p (cif->rtype)) != 0) |
| { |
| /* A Composite Type passed in VFP registers, either |
| FFI_TYPE_STRUCT_VFP_FLOAT or FFI_TYPE_STRUCT_VFP_DOUBLE. */ |
| cif->flags = (unsigned) type_code; |
| } |
| else if (cif->rtype->size <= 4) |
| /* A Composite Type not larger than 4 bytes is returned in r0. */ |
| cif->flags = (unsigned)FFI_TYPE_INT; |
| else |
| /* A Composite Type larger than 4 bytes, or whose size cannot |
| be determined statically ... is stored in memory at an |
| address passed [in r0]. */ |
| cif->flags = (unsigned)FFI_TYPE_STRUCT; |
| break; |
| |
| default: |
| cif->flags = FFI_TYPE_INT; |
| break; |
| } |
| |
| /* Map out the register placements of VFP register args. |
| The VFP hard-float calling conventions are slightly more sophisticated than |
| the base calling conventions, so we do it here instead of in ffi_prep_args(). */ |
| if (cif->abi == FFI_VFP) |
| layout_vfp_args (cif); |
| |
| return FFI_OK; |
| } |
| |
| /* Perform machine dependent cif processing for variadic calls */ |
| ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif, |
| unsigned int nfixedargs, |
| unsigned int ntotalargs) |
| { |
| /* VFP variadic calls actually use the SYSV ABI */ |
| if (cif->abi == FFI_VFP) |
| cif->abi = FFI_SYSV; |
| |
| return ffi_prep_cif_machdep(cif); |
| } |
| |
| /* Prototypes for assembly functions, in sysv.S */ |
| extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *); |
| extern void ffi_call_VFP (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *); |
| |
| void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) |
| { |
| extended_cif ecif; |
| |
| int small_struct = (cif->flags == FFI_TYPE_INT |
| && cif->rtype->type == FFI_TYPE_STRUCT); |
| int vfp_struct = (cif->flags == FFI_TYPE_STRUCT_VFP_FLOAT |
| || cif->flags == FFI_TYPE_STRUCT_VFP_DOUBLE); |
| |
| unsigned int temp; |
| |
| ecif.cif = cif; |
| ecif.avalue = avalue; |
| |
| /* If the return value is a struct and we don't have a return */ |
| /* value address then we need to make one */ |
| |
| if ((rvalue == NULL) && |
| (cif->flags == FFI_TYPE_STRUCT)) |
| { |
| ecif.rvalue = alloca(cif->rtype->size); |
| } |
| else if (small_struct) |
| ecif.rvalue = &temp; |
| else if (vfp_struct) |
| { |
| /* Largest case is double x 4. */ |
| ecif.rvalue = alloca(32); |
| } |
| else |
| ecif.rvalue = rvalue; |
| |
| switch (cif->abi) |
| { |
| case FFI_SYSV: |
| ffi_call_SYSV (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue); |
| break; |
| |
| case FFI_VFP: |
| #ifdef __ARM_EABI__ |
| ffi_call_VFP (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue); |
| break; |
| #endif |
| |
| default: |
| FFI_ASSERT(0); |
| break; |
| } |
| if (small_struct) |
| { |
| FFI_ASSERT(rvalue != NULL); |
| memcpy (rvalue, &temp, cif->rtype->size); |
| } |
| |
| else if (vfp_struct) |
| { |
| FFI_ASSERT(rvalue != NULL); |
| memcpy (rvalue, ecif.rvalue, cif->rtype->size); |
| } |
| |
| } |
| |
| /** private members **/ |
| |
| static void ffi_prep_incoming_args_SYSV (char *stack, void **ret, |
| void** args, ffi_cif* cif, float *vfp_stack); |
| |
| static void ffi_prep_incoming_args_VFP (char *stack, void **ret, |
| void** args, ffi_cif* cif, float *vfp_stack); |
| |
| void ffi_closure_SYSV (ffi_closure *); |
| |
| void ffi_closure_VFP (ffi_closure *); |
| |
| /* This function is jumped to by the trampoline */ |
| |
| unsigned int FFI_HIDDEN |
| ffi_closure_inner (ffi_closure *closure, |
| void **respp, void *args, void *vfp_args) |
| { |
| // our various things... |
| ffi_cif *cif; |
| void **arg_area; |
| |
| cif = closure->cif; |
| arg_area = (void**) alloca (cif->nargs * sizeof (void*)); |
| |
| /* this call will initialize ARG_AREA, such that each |
| * element in that array points to the corresponding |
| * value on the stack; and if the function returns |
| * a structure, it will re-set RESP to point to the |
| * structure return address. */ |
| if (cif->abi == FFI_VFP) |
| ffi_prep_incoming_args_VFP(args, respp, arg_area, cif, vfp_args); |
| else |
| ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif, vfp_args); |
| |
| (closure->fun) (cif, *respp, arg_area, closure->user_data); |
| |
| return cif->flags; |
| } |
| |
| /*@-exportheader@*/ |
| static void |
| ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, |
| void **avalue, ffi_cif *cif, |
| /* Used only under VFP hard-float ABI. */ |
| float *vfp_stack) |
| /*@=exportheader@*/ |
| { |
| register unsigned int i; |
| register void **p_argv; |
| register char *argp; |
| register ffi_type **p_arg; |
| |
| argp = stack; |
| |
| if ( cif->flags == FFI_TYPE_STRUCT ) { |
| *rvalue = *(void **) argp; |
| argp += 4; |
| } |
| |
| p_argv = avalue; |
| |
| for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++) |
| { |
| size_t z; |
| |
| argp = ffi_align(p_arg, argp); |
| |
| z = (*p_arg)->size; |
| |
| /* because we're little endian, this is what it turns into. */ |
| |
| *p_argv = (void*) argp; |
| |
| p_argv++; |
| argp += z; |
| } |
| |
| return; |
| } |
| |
| /*@-exportheader@*/ |
| static void |
| ffi_prep_incoming_args_VFP(char *stack, void **rvalue, |
| void **avalue, ffi_cif *cif, |
| /* Used only under VFP hard-float ABI. */ |
| float *vfp_stack) |
| /*@=exportheader@*/ |
| { |
| register unsigned int i, vi = 0; |
| register void **p_argv; |
| register char *argp, *regp, *eo_regp; |
| register ffi_type **p_arg; |
| char done_with_regs = 0; |
| char stack_used = 0; |
| char is_vfp_type; |
| |
| FFI_ASSERT(cif->abi == FFI_VFP); |
| regp = stack; |
| eo_regp = argp = regp + 16; |
| |
| if ( cif->flags == FFI_TYPE_STRUCT ) { |
| *rvalue = *(void **) regp; |
| regp += 4; |
| } |
| |
| p_argv = avalue; |
| |
| for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++) |
| { |
| size_t z; |
| is_vfp_type = vfp_type_p (*p_arg); |
| |
| if(vi < cif->vfp_nargs && is_vfp_type) |
| { |
| *p_argv++ = (void*)(vfp_stack + cif->vfp_args[vi++]); |
| continue; |
| } |
| else if (!done_with_regs && !is_vfp_type) |
| { |
| char* tregp = ffi_align(p_arg, regp); |
| |
| z = (*p_arg)->size; |
| z = (z < 4)? 4 : z; // pad |
| |
| /* if the arguments either fits into the registers or uses registers |
| * and stack, while we haven't read other things from the stack */ |
| if(tregp + z <= eo_regp || !stack_used) |
| { |
| /* because we're little endian, this is what it turns into. */ |
| *p_argv = (void*) tregp; |
| |
| p_argv++; |
| regp = tregp + z; |
| // if we read past the last core register, make sure we have not read |
| // from the stack before and continue reading after regp |
| if(regp > eo_regp) |
| { |
| if(stack_used) |
| { |
| abort(); // we should never read past the end of the register |
| // are if the stack is already in use |
| } |
| argp = regp; |
| } |
| if(regp >= eo_regp) |
| { |
| done_with_regs = 1; |
| stack_used = 1; |
| } |
| continue; |
| } |
| } |
| stack_used = 1; |
| |
| argp = ffi_align(p_arg, argp); |
| |
| z = (*p_arg)->size; |
| |
| /* because we're little endian, this is what it turns into. */ |
| |
| *p_argv = (void*) argp; |
| |
| p_argv++; |
| argp += z; |
| } |
| |
| return; |
| } |
| |
| /* How to make a trampoline. */ |
| |
| extern unsigned int ffi_arm_trampoline[3]; |
| |
| #if FFI_EXEC_TRAMPOLINE_TABLE |
| |
| #include <mach/mach.h> |
| #include <pthread.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| extern void *ffi_closure_trampoline_table_page; |
| |
| typedef struct ffi_trampoline_table ffi_trampoline_table; |
| typedef struct ffi_trampoline_table_entry ffi_trampoline_table_entry; |
| |
| struct ffi_trampoline_table { |
| /* contiguous writable and executable pages */ |
| vm_address_t config_page; |
| vm_address_t trampoline_page; |
| |
| /* free list tracking */ |
| uint16_t free_count; |
| ffi_trampoline_table_entry *free_list; |
| ffi_trampoline_table_entry *free_list_pool; |
| |
| ffi_trampoline_table *prev; |
| ffi_trampoline_table *next; |
| }; |
| |
| struct ffi_trampoline_table_entry { |
| void *(*trampoline)(); |
| ffi_trampoline_table_entry *next; |
| }; |
| |
| /* Override the standard architecture trampoline size */ |
| // XXX TODO - Fix |
| #undef FFI_TRAMPOLINE_SIZE |
| #define FFI_TRAMPOLINE_SIZE 12 |
| |
| /* The trampoline configuration is placed at 4080 bytes prior to the trampoline's entry point */ |
| #define FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc) ((void **) (((uint8_t *) codeloc) - 4080)); |
| |
| /* The first 16 bytes of the config page are unused, as they are unaddressable from the trampoline page. */ |
| #define FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET 16 |
| |
| /* Total number of trampolines that fit in one trampoline table */ |
| #define FFI_TRAMPOLINE_COUNT ((PAGE_SIZE - FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET) / FFI_TRAMPOLINE_SIZE) |
| |
| static pthread_mutex_t ffi_trampoline_lock = PTHREAD_MUTEX_INITIALIZER; |
| static ffi_trampoline_table *ffi_trampoline_tables = NULL; |
| |
| static ffi_trampoline_table * |
| ffi_trampoline_table_alloc () |
| { |
| ffi_trampoline_table *table = NULL; |
| |
| /* Loop until we can allocate two contiguous pages */ |
| while (table == NULL) { |
| vm_address_t config_page = 0x0; |
| kern_return_t kt; |
| |
| /* Try to allocate two pages */ |
| kt = vm_allocate (mach_task_self (), &config_page, PAGE_SIZE*2, VM_FLAGS_ANYWHERE); |
| if (kt != KERN_SUCCESS) { |
| fprintf(stderr, "vm_allocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__); |
| break; |
| } |
| |
| /* Now drop the second half of the allocation to make room for the trampoline table */ |
| vm_address_t trampoline_page = config_page+PAGE_SIZE; |
| kt = vm_deallocate (mach_task_self (), trampoline_page, PAGE_SIZE); |
| if (kt != KERN_SUCCESS) { |
| fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__); |
| break; |
| } |
| |
| /* Remap the trampoline table to directly follow the config page */ |
| vm_prot_t cur_prot; |
| vm_prot_t max_prot; |
| |
| kt = vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE, mach_task_self (), (vm_address_t) &ffi_closure_trampoline_table_page, FALSE, &cur_prot, &max_prot, VM_INHERIT_SHARE); |
| |
| /* If we lost access to the destination trampoline page, drop our config allocation mapping and retry */ |
| if (kt != KERN_SUCCESS) { |
| /* Log unexpected failures */ |
| if (kt != KERN_NO_SPACE) { |
| fprintf(stderr, "vm_remap() failure: %d at %s:%d\n", kt, __FILE__, __LINE__); |
| } |
| |
| vm_deallocate (mach_task_self (), config_page, PAGE_SIZE); |
| continue; |
| } |
| |
| /* We have valid trampoline and config pages */ |
| table = calloc (1, sizeof(ffi_trampoline_table)); |
| table->free_count = FFI_TRAMPOLINE_COUNT; |
| table->config_page = config_page; |
| table->trampoline_page = trampoline_page; |
| |
| /* Create and initialize the free list */ |
| table->free_list_pool = calloc(FFI_TRAMPOLINE_COUNT, sizeof(ffi_trampoline_table_entry)); |
| |
| uint16_t i; |
| for (i = 0; i < table->free_count; i++) { |
| ffi_trampoline_table_entry *entry = &table->free_list_pool[i]; |
| entry->trampoline = (void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE)); |
| |
| if (i < table->free_count - 1) |
| entry->next = &table->free_list_pool[i+1]; |
| } |
| |
| table->free_list = table->free_list_pool; |
| } |
| |
| return table; |
| } |
| |
| void * |
| ffi_closure_alloc (size_t size, void **code) |
| { |
| /* Create the closure */ |
| ffi_closure *closure = malloc(size); |
| if (closure == NULL) |
| return NULL; |
| |
| pthread_mutex_lock(&ffi_trampoline_lock); |
| |
| /* Check for an active trampoline table with available entries. */ |
| ffi_trampoline_table *table = ffi_trampoline_tables; |
| if (table == NULL || table->free_list == NULL) { |
| table = ffi_trampoline_table_alloc (); |
| if (table == NULL) { |
| free(closure); |
| return NULL; |
| } |
| |
| /* Insert the new table at the top of the list */ |
| table->next = ffi_trampoline_tables; |
| if (table->next != NULL) |
| table->next->prev = table; |
| |
| ffi_trampoline_tables = table; |
| } |
| |
| /* Claim the free entry */ |
| ffi_trampoline_table_entry *entry = ffi_trampoline_tables->free_list; |
| ffi_trampoline_tables->free_list = entry->next; |
| ffi_trampoline_tables->free_count--; |
| entry->next = NULL; |
| |
| pthread_mutex_unlock(&ffi_trampoline_lock); |
| |
| /* Initialize the return values */ |
| *code = entry->trampoline; |
| closure->trampoline_table = table; |
| closure->trampoline_table_entry = entry; |
| |
| return closure; |
| } |
| |
| void |
| ffi_closure_free (void *ptr) |
| { |
| ffi_closure *closure = ptr; |
| |
| pthread_mutex_lock(&ffi_trampoline_lock); |
| |
| /* Fetch the table and entry references */ |
| ffi_trampoline_table *table = closure->trampoline_table; |
| ffi_trampoline_table_entry *entry = closure->trampoline_table_entry; |
| |
| /* Return the entry to the free list */ |
| entry->next = table->free_list; |
| table->free_list = entry; |
| table->free_count++; |
| |
| /* If all trampolines within this table are free, and at least one other table exists, deallocate |
| * the table */ |
| if (table->free_count == FFI_TRAMPOLINE_COUNT && ffi_trampoline_tables != table) { |
| /* Remove from the list */ |
| if (table->prev != NULL) |
| table->prev->next = table->next; |
| |
| if (table->next != NULL) |
| table->next->prev = table->prev; |
| |
| /* Deallocate pages */ |
| kern_return_t kt; |
| kt = vm_deallocate (mach_task_self (), table->config_page, PAGE_SIZE); |
| if (kt != KERN_SUCCESS) |
| fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__); |
| |
| kt = vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE); |
| if (kt != KERN_SUCCESS) |
| fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__); |
| |
| /* Deallocate free list */ |
| free (table->free_list_pool); |
| free (table); |
| } else if (ffi_trampoline_tables != table) { |
| /* Otherwise, bump this table to the top of the list */ |
| table->prev = NULL; |
| table->next = ffi_trampoline_tables; |
| if (ffi_trampoline_tables != NULL) |
| ffi_trampoline_tables->prev = table; |
| |
| ffi_trampoline_tables = table; |
| } |
| |
| pthread_mutex_unlock (&ffi_trampoline_lock); |
| |
| /* Free the closure */ |
| free (closure); |
| } |
| |
| #else |
| |
| #define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \ |
| ({ unsigned char *__tramp = (unsigned char*)(TRAMP); \ |
| unsigned int __fun = (unsigned int)(FUN); \ |
| unsigned int __ctx = (unsigned int)(CTX); \ |
| unsigned char *insns = (unsigned char *)(CTX); \ |
| memcpy (__tramp, ffi_arm_trampoline, sizeof ffi_arm_trampoline); \ |
| *(unsigned int*) &__tramp[12] = __ctx; \ |
| *(unsigned int*) &__tramp[16] = __fun; \ |
| __clear_cache((&__tramp[0]), (&__tramp[19])); /* Clear data mapping. */ \ |
| __clear_cache(insns, insns + 3 * sizeof (unsigned int)); \ |
| /* Clear instruction \ |
| mapping. */ \ |
| }) |
| |
| #endif |
| |
| /* the cif must already be prep'ed */ |
| |
| ffi_status |
| ffi_prep_closure_loc (ffi_closure* closure, |
| ffi_cif* cif, |
| void (*fun)(ffi_cif*,void*,void**,void*), |
| void *user_data, |
| void *codeloc) |
| { |
| void (*closure_func)(ffi_closure*) = NULL; |
| |
| if (cif->abi == FFI_SYSV) |
| closure_func = &ffi_closure_SYSV; |
| #ifdef __ARM_EABI__ |
| else if (cif->abi == FFI_VFP) |
| closure_func = &ffi_closure_VFP; |
| #endif |
| else |
| return FFI_BAD_ABI; |
| |
| #if FFI_EXEC_TRAMPOLINE_TABLE |
| void **config = FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc); |
| config[0] = closure; |
| config[1] = closure_func; |
| #else |
| FFI_INIT_TRAMPOLINE (&closure->tramp[0], \ |
| closure_func, \ |
| codeloc); |
| #endif |
| |
| closure->cif = cif; |
| closure->user_data = user_data; |
| closure->fun = fun; |
| |
| return FFI_OK; |
| } |
| |
| /* Below are routines for VFP hard-float support. */ |
| |
| static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum) |
| { |
| switch (t->type) |
| { |
| case FFI_TYPE_FLOAT: |
| case FFI_TYPE_DOUBLE: |
| *elt = (int) t->type; |
| *elnum = 1; |
| return 1; |
| |
| case FFI_TYPE_STRUCT_VFP_FLOAT: |
| *elt = FFI_TYPE_FLOAT; |
| *elnum = t->size / sizeof (float); |
| return 1; |
| |
| case FFI_TYPE_STRUCT_VFP_DOUBLE: |
| *elt = FFI_TYPE_DOUBLE; |
| *elnum = t->size / sizeof (double); |
| return 1; |
| |
| case FFI_TYPE_STRUCT:; |
| { |
| int base_elt = 0, total_elnum = 0; |
| ffi_type **el = t->elements; |
| while (*el) |
| { |
| int el_elt = 0, el_elnum = 0; |
| if (! rec_vfp_type_p (*el, &el_elt, &el_elnum) |
| || (base_elt && base_elt != el_elt) |
| || total_elnum + el_elnum > 4) |
| return 0; |
| base_elt = el_elt; |
| total_elnum += el_elnum; |
| el++; |
| } |
| *elnum = total_elnum; |
| *elt = base_elt; |
| return 1; |
| } |
| default: ; |
| } |
| return 0; |
| } |
| |
| static int vfp_type_p (ffi_type *t) |
| { |
| int elt, elnum; |
| if (rec_vfp_type_p (t, &elt, &elnum)) |
| { |
| if (t->type == FFI_TYPE_STRUCT) |
| { |
| if (elnum == 1) |
| t->type = elt; |
| else |
| t->type = (elt == FFI_TYPE_FLOAT |
| ? FFI_TYPE_STRUCT_VFP_FLOAT |
| : FFI_TYPE_STRUCT_VFP_DOUBLE); |
| } |
| return (int) t->type; |
| } |
| return 0; |
| } |
| |
| static int place_vfp_arg (ffi_cif *cif, ffi_type *t) |
| { |
| short reg = cif->vfp_reg_free; |
| int nregs = t->size / sizeof (float); |
| int align = ((t->type == FFI_TYPE_STRUCT_VFP_FLOAT |
| || t->type == FFI_TYPE_FLOAT) ? 1 : 2); |
| /* Align register number. */ |
| if ((reg & 1) && align == 2) |
| reg++; |
| while (reg + nregs <= 16) |
| { |
| int s, new_used = 0; |
| for (s = reg; s < reg + nregs; s++) |
| { |
| new_used |= (1 << s); |
| if (cif->vfp_used & (1 << s)) |
| { |
| reg += align; |
| goto next_reg; |
| } |
| } |
| /* Found regs to allocate. */ |
| cif->vfp_used |= new_used; |
| cif->vfp_args[cif->vfp_nargs++] = reg; |
| |
| /* Update vfp_reg_free. */ |
| if (cif->vfp_used & (1 << cif->vfp_reg_free)) |
| { |
| reg += nregs; |
| while (cif->vfp_used & (1 << reg)) |
| reg += 1; |
| cif->vfp_reg_free = reg; |
| } |
| return 0; |
| next_reg: ; |
| } |
| // done, mark all regs as used |
| cif->vfp_reg_free = 16; |
| cif->vfp_used = 0xFFFF; |
| return 1; |
| } |
| |
| static void layout_vfp_args (ffi_cif *cif) |
| { |
| int i; |
| /* Init VFP fields */ |
| cif->vfp_used = 0; |
| cif->vfp_nargs = 0; |
| cif->vfp_reg_free = 0; |
| memset (cif->vfp_args, -1, 16); /* Init to -1. */ |
| |
| for (i = 0; i < cif->nargs; i++) |
| { |
| ffi_type *t = cif->arg_types[i]; |
| if (vfp_type_p (t) && place_vfp_arg (cif, t) == 1) |
| { |
| break; |
| } |
| } |
| } |