| /* Copyright (c) 2007-2008 CSIRO |
| Copyright (c) 2007-2009 Xiph.Org Foundation |
| Copyright (c) 2008-2009 Gregory Maxwell |
| Written by Jean-Marc Valin and Gregory Maxwell */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <math.h> |
| #include "bands.h" |
| #include "modes.h" |
| #include "vq.h" |
| #include "cwrs.h" |
| #include "stack_alloc.h" |
| #include "os_support.h" |
| #include "mathops.h" |
| #include "rate.h" |
| #include "quant_bands.h" |
| #include "pitch.h" |
| |
| int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) |
| { |
| int i; |
| for (i=0;i<N;i++) |
| { |
| if (val < thresholds[i]) |
| break; |
| } |
| if (i>prev && val < thresholds[prev]+hysteresis[prev]) |
| i=prev; |
| if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) |
| i=prev; |
| return i; |
| } |
| |
| opus_uint32 celt_lcg_rand(opus_uint32 seed) |
| { |
| return 1664525 * seed + 1013904223; |
| } |
| |
| /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness |
| with this approximation is important because it has an impact on the bit allocation */ |
| static opus_int16 bitexact_cos(opus_int16 x) |
| { |
| opus_int32 tmp; |
| opus_int16 x2; |
| tmp = (4096+((opus_int32)(x)*(x)))>>13; |
| celt_assert(tmp<=32767); |
| x2 = tmp; |
| x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2))))); |
| celt_assert(x2<=32766); |
| return 1+x2; |
| } |
| |
| static int bitexact_log2tan(int isin,int icos) |
| { |
| int lc; |
| int ls; |
| lc=EC_ILOG(icos); |
| ls=EC_ILOG(isin); |
| icos<<=15-lc; |
| isin<<=15-ls; |
| return (ls-lc)*(1<<11) |
| +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932) |
| -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932); |
| } |
| |
| #ifdef FIXED_POINT |
| /* Compute the amplitude (sqrt energy) in each of the bands */ |
| void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) |
| { |
| int i, c, N; |
| const opus_int16 *eBands = m->eBands; |
| N = m->shortMdctSize<<LM; |
| c=0; do { |
| for (i=0;i<end;i++) |
| { |
| int j; |
| opus_val32 maxval=0; |
| opus_val32 sum = 0; |
| |
| maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
| if (maxval > 0) |
| { |
| int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1); |
| j=eBands[i]<<LM; |
| if (shift>0) |
| { |
| do { |
| sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)), |
| EXTRACT16(SHR32(X[j+c*N],shift))); |
| } while (++j<eBands[i+1]<<LM); |
| } else { |
| do { |
| sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)), |
| EXTRACT16(SHL32(X[j+c*N],-shift))); |
| } while (++j<eBands[i+1]<<LM); |
| } |
| /* We're adding one here to ensure the normalized band isn't larger than unity norm */ |
| bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); |
| } else { |
| bandE[i+c*m->nbEBands] = EPSILON; |
| } |
| /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
| } |
| } while (++c<C); |
| /*printf ("\n");*/ |
| } |
| |
| /* Normalise each band such that the energy is one. */ |
| void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
| { |
| int i, c, N; |
| const opus_int16 *eBands = m->eBands; |
| N = M*m->shortMdctSize; |
| c=0; do { |
| i=0; do { |
| opus_val16 g; |
| int j,shift; |
| opus_val16 E; |
| shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; |
| E = VSHR32(bandE[i+c*m->nbEBands], shift); |
| g = EXTRACT16(celt_rcp(SHL32(E,3))); |
| j=M*eBands[i]; do { |
| X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); |
| } while (++j<M*eBands[i+1]); |
| } while (++i<end); |
| } while (++c<C); |
| } |
| |
| #else /* FIXED_POINT */ |
| /* Compute the amplitude (sqrt energy) in each of the bands */ |
| void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM) |
| { |
| int i, c, N; |
| const opus_int16 *eBands = m->eBands; |
| N = m->shortMdctSize<<LM; |
| c=0; do { |
| for (i=0;i<end;i++) |
| { |
| opus_val32 sum; |
| sum = 1e-27f + celt_inner_prod_c(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM); |
| bandE[i+c*m->nbEBands] = celt_sqrt(sum); |
| /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ |
| } |
| } while (++c<C); |
| /*printf ("\n");*/ |
| } |
| |
| /* Normalise each band such that the energy is one. */ |
| void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M) |
| { |
| int i, c, N; |
| const opus_int16 *eBands = m->eBands; |
| N = M*m->shortMdctSize; |
| c=0; do { |
| for (i=0;i<end;i++) |
| { |
| int j; |
| opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); |
| for (j=M*eBands[i];j<M*eBands[i+1];j++) |
| X[j+c*N] = freq[j+c*N]*g; |
| } |
| } while (++c<C); |
| } |
| |
| #endif /* FIXED_POINT */ |
| |
| /* De-normalise the energy to produce the synthesis from the unit-energy bands */ |
| void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, |
| celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, |
| int end, int M, int downsample, int silence) |
| { |
| int i, N; |
| int bound; |
| celt_sig * OPUS_RESTRICT f; |
| const celt_norm * OPUS_RESTRICT x; |
| const opus_int16 *eBands = m->eBands; |
| N = M*m->shortMdctSize; |
| bound = M*eBands[end]; |
| if (downsample!=1) |
| bound = IMIN(bound, N/downsample); |
| if (silence) |
| { |
| bound = 0; |
| start = end = 0; |
| } |
| f = freq; |
| x = X+M*eBands[start]; |
| for (i=0;i<M*eBands[start];i++) |
| *f++ = 0; |
| for (i=start;i<end;i++) |
| { |
| int j, band_end; |
| opus_val16 g; |
| opus_val16 lg; |
| #ifdef FIXED_POINT |
| int shift; |
| #endif |
| j=M*eBands[i]; |
| band_end = M*eBands[i+1]; |
| lg = ADD16(bandLogE[i], SHL16((opus_val16)eMeans[i],6)); |
| #ifndef FIXED_POINT |
| g = celt_exp2(lg); |
| #else |
| /* Handle the integer part of the log energy */ |
| shift = 16-(lg>>DB_SHIFT); |
| if (shift>31) |
| { |
| shift=0; |
| g=0; |
| } else { |
| /* Handle the fractional part. */ |
| g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); |
| } |
| /* Handle extreme gains with negative shift. */ |
| if (shift<0) |
| { |
| /* For shift < -2 we'd be likely to overflow, so we're capping |
| the gain here. This shouldn't happen unless the bitstream is |
| already corrupted. */ |
| if (shift < -2) |
| { |
| g = 32767; |
| shift = -2; |
| } |
| do { |
| *f++ = SHL32(MULT16_16(*x++, g), -shift); |
| } while (++j<band_end); |
| } else |
| #endif |
| /* Be careful of the fixed-point "else" just above when changing this code */ |
| do { |
| *f++ = SHR32(MULT16_16(*x++, g), shift); |
| } while (++j<band_end); |
| } |
| celt_assert(start <= end); |
| OPUS_CLEAR(&freq[bound], N-bound); |
| } |
| |
| /* This prevents energy collapse for transients with multiple short MDCTs */ |
| void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, |
| int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE, |
| const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch) |
| { |
| int c, i, j, k; |
| for (i=start;i<end;i++) |
| { |
| int N0; |
| opus_val16 thresh, sqrt_1; |
| int depth; |
| #ifdef FIXED_POINT |
| int shift; |
| opus_val32 thresh32; |
| #endif |
| |
| N0 = m->eBands[i+1]-m->eBands[i]; |
| /* depth in 1/8 bits */ |
| celt_assert(pulses[i]>=0); |
| depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM; |
| |
| #ifdef FIXED_POINT |
| thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1); |
| thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32)); |
| { |
| opus_val32 t; |
| t = N0<<LM; |
| shift = celt_ilog2(t)>>1; |
| t = SHL32(t, (7-shift)<<1); |
| sqrt_1 = celt_rsqrt_norm(t); |
| } |
| #else |
| thresh = .5f*celt_exp2(-.125f*depth); |
| sqrt_1 = celt_rsqrt(N0<<LM); |
| #endif |
| |
| c=0; do |
| { |
| celt_norm *X; |
| opus_val16 prev1; |
| opus_val16 prev2; |
| opus_val32 Ediff; |
| opus_val16 r; |
| int renormalize=0; |
| prev1 = prev1logE[c*m->nbEBands+i]; |
| prev2 = prev2logE[c*m->nbEBands+i]; |
| if (C==1) |
| { |
| prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]); |
| prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]); |
| } |
| Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2)); |
| Ediff = MAX32(0, Ediff); |
| |
| #ifdef FIXED_POINT |
| if (Ediff < 16384) |
| { |
| opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1); |
| r = 2*MIN16(16383,r32); |
| } else { |
| r = 0; |
| } |
| if (LM==3) |
| r = MULT16_16_Q14(23170, MIN32(23169, r)); |
| r = SHR16(MIN16(thresh, r),1); |
| r = SHR32(MULT16_16_Q15(sqrt_1, r),shift); |
| #else |
| /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because |
| short blocks don't have the same energy as long */ |
| r = 2.f*celt_exp2(-Ediff); |
| if (LM==3) |
| r *= 1.41421356f; |
| r = MIN16(thresh, r); |
| r = r*sqrt_1; |
| #endif |
| X = X_+c*size+(m->eBands[i]<<LM); |
| for (k=0;k<1<<LM;k++) |
| { |
| /* Detect collapse */ |
| if (!(collapse_masks[i*C+c]&1<<k)) |
| { |
| /* Fill with noise */ |
| for (j=0;j<N0;j++) |
| { |
| seed = celt_lcg_rand(seed); |
| X[(j<<LM)+k] = (seed&0x8000 ? r : -r); |
| } |
| renormalize = 1; |
| } |
| } |
| /* We just added some energy, so we need to renormalise */ |
| if (renormalize) |
| renormalise_vector(X, N0<<LM, Q15ONE, arch); |
| } while (++c<C); |
| } |
| } |
| |
| static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N) |
| { |
| int i = bandID; |
| int j; |
| opus_val16 a1, a2; |
| opus_val16 left, right; |
| opus_val16 norm; |
| #ifdef FIXED_POINT |
| int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13; |
| #endif |
| left = VSHR32(bandE[i],shift); |
| right = VSHR32(bandE[i+m->nbEBands],shift); |
| norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); |
| a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); |
| a2 = DIV32_16(SHL32(EXTEND32(right),14),norm); |
| for (j=0;j<N;j++) |
| { |
| celt_norm r, l; |
| l = X[j]; |
| r = Y[j]; |
| X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14)); |
| /* Side is not encoded, no need to calculate */ |
| } |
| } |
| |
| static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N) |
| { |
| int j; |
| for (j=0;j<N;j++) |
| { |
| opus_val32 r, l; |
| l = MULT16_16(QCONST16(.70710678f, 15), X[j]); |
| r = MULT16_16(QCONST16(.70710678f, 15), Y[j]); |
| X[j] = EXTRACT16(SHR32(ADD32(l, r), 15)); |
| Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15)); |
| } |
| } |
| |
| static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch) |
| { |
| int j; |
| opus_val32 xp=0, side=0; |
| opus_val32 El, Er; |
| opus_val16 mid2; |
| #ifdef FIXED_POINT |
| int kl, kr; |
| #endif |
| opus_val32 t, lgain, rgain; |
| |
| /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ |
| dual_inner_prod(Y, X, Y, N, &xp, &side, arch); |
| /* Compensating for the mid normalization */ |
| xp = MULT16_32_Q15(mid, xp); |
| /* mid and side are in Q15, not Q14 like X and Y */ |
| mid2 = SHR16(mid, 1); |
| El = MULT16_16(mid2, mid2) + side - 2*xp; |
| Er = MULT16_16(mid2, mid2) + side + 2*xp; |
| if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28)) |
| { |
| OPUS_COPY(Y, X, N); |
| return; |
| } |
| |
| #ifdef FIXED_POINT |
| kl = celt_ilog2(El)>>1; |
| kr = celt_ilog2(Er)>>1; |
| #endif |
| t = VSHR32(El, (kl-7)<<1); |
| lgain = celt_rsqrt_norm(t); |
| t = VSHR32(Er, (kr-7)<<1); |
| rgain = celt_rsqrt_norm(t); |
| |
| #ifdef FIXED_POINT |
| if (kl < 7) |
| kl = 7; |
| if (kr < 7) |
| kr = 7; |
| #endif |
| |
| for (j=0;j<N;j++) |
| { |
| celt_norm r, l; |
| /* Apply mid scaling (side is already scaled) */ |
| l = MULT16_16_P15(mid, X[j]); |
| r = Y[j]; |
| X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1)); |
| Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1)); |
| } |
| } |
| |
| /* Decide whether we should spread the pulses in the current frame */ |
| int spreading_decision(const CELTMode *m, const celt_norm *X, int *average, |
| int last_decision, int *hf_average, int *tapset_decision, int update_hf, |
| int end, int C, int M) |
| { |
| int i, c, N0; |
| int sum = 0, nbBands=0; |
| const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
| int decision; |
| int hf_sum=0; |
| |
| celt_assert(end>0); |
| |
| N0 = M*m->shortMdctSize; |
| |
| if (M*(eBands[end]-eBands[end-1]) <= 8) |
| return SPREAD_NONE; |
| c=0; do { |
| for (i=0;i<end;i++) |
| { |
| int j, N, tmp=0; |
| int tcount[3] = {0,0,0}; |
| const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0; |
| N = M*(eBands[i+1]-eBands[i]); |
| if (N<=8) |
| continue; |
| /* Compute rough CDF of |x[j]| */ |
| for (j=0;j<N;j++) |
| { |
| opus_val32 x2N; /* Q13 */ |
| |
| x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N); |
| if (x2N < QCONST16(0.25f,13)) |
| tcount[0]++; |
| if (x2N < QCONST16(0.0625f,13)) |
| tcount[1]++; |
| if (x2N < QCONST16(0.015625f,13)) |
| tcount[2]++; |
| } |
| |
| /* Only include four last bands (8 kHz and up) */ |
| if (i>m->nbEBands-4) |
| hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N); |
| tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); |
| sum += tmp*256; |
| nbBands++; |
| } |
| } while (++c<C); |
| |
| if (update_hf) |
| { |
| if (hf_sum) |
| hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end)); |
| *hf_average = (*hf_average+hf_sum)>>1; |
| hf_sum = *hf_average; |
| if (*tapset_decision==2) |
| hf_sum += 4; |
| else if (*tapset_decision==0) |
| hf_sum -= 4; |
| if (hf_sum > 22) |
| *tapset_decision=2; |
| else if (hf_sum > 18) |
| *tapset_decision=1; |
| else |
| *tapset_decision=0; |
| } |
| /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ |
| celt_assert(nbBands>0); /* end has to be non-zero */ |
| celt_assert(sum>=0); |
| sum = celt_udiv(sum, nbBands); |
| /* Recursive averaging */ |
| sum = (sum+*average)>>1; |
| *average = sum; |
| /* Hysteresis */ |
| sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; |
| if (sum < 80) |
| { |
| decision = SPREAD_AGGRESSIVE; |
| } else if (sum < 256) |
| { |
| decision = SPREAD_NORMAL; |
| } else if (sum < 384) |
| { |
| decision = SPREAD_LIGHT; |
| } else { |
| decision = SPREAD_NONE; |
| } |
| #ifdef FUZZING |
| decision = rand()&0x3; |
| *tapset_decision=rand()%3; |
| #endif |
| return decision; |
| } |
| |
| /* Indexing table for converting from natural Hadamard to ordery Hadamard |
| This is essentially a bit-reversed Gray, on top of which we've added |
| an inversion of the order because we want the DC at the end rather than |
| the beginning. The lines are for N=2, 4, 8, 16 */ |
| static const int ordery_table[] = { |
| 1, 0, |
| 3, 0, 2, 1, |
| 7, 0, 4, 3, 6, 1, 5, 2, |
| 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, |
| }; |
| |
| static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
| { |
| int i,j; |
| VARDECL(celt_norm, tmp); |
| int N; |
| SAVE_STACK; |
| N = N0*stride; |
| ALLOC(tmp, N, celt_norm); |
| celt_assert(stride>0); |
| if (hadamard) |
| { |
| const int *ordery = ordery_table+stride-2; |
| for (i=0;i<stride;i++) |
| { |
| for (j=0;j<N0;j++) |
| tmp[ordery[i]*N0+j] = X[j*stride+i]; |
| } |
| } else { |
| for (i=0;i<stride;i++) |
| for (j=0;j<N0;j++) |
| tmp[i*N0+j] = X[j*stride+i]; |
| } |
| OPUS_COPY(X, tmp, N); |
| RESTORE_STACK; |
| } |
| |
| static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) |
| { |
| int i,j; |
| VARDECL(celt_norm, tmp); |
| int N; |
| SAVE_STACK; |
| N = N0*stride; |
| ALLOC(tmp, N, celt_norm); |
| if (hadamard) |
| { |
| const int *ordery = ordery_table+stride-2; |
| for (i=0;i<stride;i++) |
| for (j=0;j<N0;j++) |
| tmp[j*stride+i] = X[ordery[i]*N0+j]; |
| } else { |
| for (i=0;i<stride;i++) |
| for (j=0;j<N0;j++) |
| tmp[j*stride+i] = X[i*N0+j]; |
| } |
| OPUS_COPY(X, tmp, N); |
| RESTORE_STACK; |
| } |
| |
| void haar1(celt_norm *X, int N0, int stride) |
| { |
| int i, j; |
| N0 >>= 1; |
| for (i=0;i<stride;i++) |
| for (j=0;j<N0;j++) |
| { |
| opus_val32 tmp1, tmp2; |
| tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]); |
| tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]); |
| X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15)); |
| X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15)); |
| } |
| } |
| |
| static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) |
| { |
| static const opus_int16 exp2_table8[8] = |
| {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; |
| int qn, qb; |
| int N2 = 2*N-1; |
| if (stereo && N==2) |
| N2--; |
| /* The upper limit ensures that in a stereo split with itheta==16384, we'll |
| always have enough bits left over to code at least one pulse in the |
| side; otherwise it would collapse, since it doesn't get folded. */ |
| qb = celt_sudiv(b+N2*offset, N2); |
| qb = IMIN(b-pulse_cap-(4<<BITRES), qb); |
| |
| qb = IMIN(8<<BITRES, qb); |
| |
| if (qb<(1<<BITRES>>1)) { |
| qn = 1; |
| } else { |
| qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES)); |
| qn = (qn+1)>>1<<1; |
| } |
| celt_assert(qn <= 256); |
| return qn; |
| } |
| |
| struct band_ctx { |
| int encode; |
| const CELTMode *m; |
| int i; |
| int intensity; |
| int spread; |
| int tf_change; |
| ec_ctx *ec; |
| opus_int32 remaining_bits; |
| const celt_ener *bandE; |
| opus_uint32 seed; |
| int arch; |
| }; |
| |
| struct split_ctx { |
| int inv; |
| int imid; |
| int iside; |
| int delta; |
| int itheta; |
| int qalloc; |
| }; |
| |
| static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, |
| celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, |
| int LM, |
| int stereo, int *fill) |
| { |
| int qn; |
| int itheta=0; |
| int delta; |
| int imid, iside; |
| int qalloc; |
| int pulse_cap; |
| int offset; |
| opus_int32 tell; |
| int inv=0; |
| int encode; |
| const CELTMode *m; |
| int i; |
| int intensity; |
| ec_ctx *ec; |
| const celt_ener *bandE; |
| |
| encode = ctx->encode; |
| m = ctx->m; |
| i = ctx->i; |
| intensity = ctx->intensity; |
| ec = ctx->ec; |
| bandE = ctx->bandE; |
| |
| /* Decide on the resolution to give to the split parameter theta */ |
| pulse_cap = m->logN[i]+LM*(1<<BITRES); |
| offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET); |
| qn = compute_qn(N, *b, offset, pulse_cap, stereo); |
| if (stereo && i>=intensity) |
| qn = 1; |
| if (encode) |
| { |
| /* theta is the atan() of the ratio between the (normalized) |
| side and mid. With just that parameter, we can re-scale both |
| mid and side because we know that 1) they have unit norm and |
| 2) they are orthogonal. */ |
| itheta = stereo_itheta(X, Y, stereo, N, ctx->arch); |
| } |
| tell = ec_tell_frac(ec); |
| if (qn!=1) |
| { |
| if (encode) |
| itheta = (itheta*(opus_int32)qn+8192)>>14; |
| |
| /* Entropy coding of the angle. We use a uniform pdf for the |
| time split, a step for stereo, and a triangular one for the rest. */ |
| if (stereo && N>2) |
| { |
| int p0 = 3; |
| int x = itheta; |
| int x0 = qn/2; |
| int ft = p0*(x0+1) + x0; |
| /* Use a probability of p0 up to itheta=8192 and then use 1 after */ |
| if (encode) |
| { |
| ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
| } else { |
| int fs; |
| fs=ec_decode(ec,ft); |
| if (fs<(x0+1)*p0) |
| x=fs/p0; |
| else |
| x=x0+1+(fs-(x0+1)*p0); |
| ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); |
| itheta = x; |
| } |
| } else if (B0>1 || stereo) { |
| /* Uniform pdf */ |
| if (encode) |
| ec_enc_uint(ec, itheta, qn+1); |
| else |
| itheta = ec_dec_uint(ec, qn+1); |
| } else { |
| int fs=1, ft; |
| ft = ((qn>>1)+1)*((qn>>1)+1); |
| if (encode) |
| { |
| int fl; |
| |
| fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; |
| fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : |
| ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
| |
| ec_encode(ec, fl, fl+fs, ft); |
| } else { |
| /* Triangular pdf */ |
| int fl=0; |
| int fm; |
| fm = ec_decode(ec, ft); |
| |
| if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) |
| { |
| itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; |
| fs = itheta + 1; |
| fl = itheta*(itheta + 1)>>1; |
| } |
| else |
| { |
| itheta = (2*(qn + 1) |
| - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; |
| fs = qn + 1 - itheta; |
| fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); |
| } |
| |
| ec_dec_update(ec, fl, fl+fs, ft); |
| } |
| } |
| celt_assert(itheta>=0); |
| itheta = celt_udiv((opus_int32)itheta*16384, qn); |
| if (encode && stereo) |
| { |
| if (itheta==0) |
| intensity_stereo(m, X, Y, bandE, i, N); |
| else |
| stereo_split(X, Y, N); |
| } |
| /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. |
| Let's do that at higher complexity */ |
| } else if (stereo) { |
| if (encode) |
| { |
| inv = itheta > 8192; |
| if (inv) |
| { |
| int j; |
| for (j=0;j<N;j++) |
| Y[j] = -Y[j]; |
| } |
| intensity_stereo(m, X, Y, bandE, i, N); |
| } |
| if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES) |
| { |
| if (encode) |
| ec_enc_bit_logp(ec, inv, 2); |
| else |
| inv = ec_dec_bit_logp(ec, 2); |
| } else |
| inv = 0; |
| itheta = 0; |
| } |
| qalloc = ec_tell_frac(ec) - tell; |
| *b -= qalloc; |
| |
| if (itheta == 0) |
| { |
| imid = 32767; |
| iside = 0; |
| *fill &= (1<<B)-1; |
| delta = -16384; |
| } else if (itheta == 16384) |
| { |
| imid = 0; |
| iside = 32767; |
| *fill &= ((1<<B)-1)<<B; |
| delta = 16384; |
| } else { |
| imid = bitexact_cos((opus_int16)itheta); |
| iside = bitexact_cos((opus_int16)(16384-itheta)); |
| /* This is the mid vs side allocation that minimizes squared error |
| in that band. */ |
| delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid)); |
| } |
| |
| sctx->inv = inv; |
| sctx->imid = imid; |
| sctx->iside = iside; |
| sctx->delta = delta; |
| sctx->itheta = itheta; |
| sctx->qalloc = qalloc; |
| } |
| static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, |
| celt_norm *lowband_out) |
| { |
| #ifdef RESYNTH |
| int resynth = 1; |
| #else |
| int resynth = !ctx->encode; |
| #endif |
| int c; |
| int stereo; |
| celt_norm *x = X; |
| int encode; |
| ec_ctx *ec; |
| |
| encode = ctx->encode; |
| ec = ctx->ec; |
| |
| stereo = Y != NULL; |
| c=0; do { |
| int sign=0; |
| if (ctx->remaining_bits>=1<<BITRES) |
| { |
| if (encode) |
| { |
| sign = x[0]<0; |
| ec_enc_bits(ec, sign, 1); |
| } else { |
| sign = ec_dec_bits(ec, 1); |
| } |
| ctx->remaining_bits -= 1<<BITRES; |
| b-=1<<BITRES; |
| } |
| if (resynth) |
| x[0] = sign ? -NORM_SCALING : NORM_SCALING; |
| x = Y; |
| } while (++c<1+stereo); |
| if (lowband_out) |
| lowband_out[0] = SHR16(X[0],4); |
| return 1; |
| } |
| |
| /* This function is responsible for encoding and decoding a mono partition. |
| It can split the band in two and transmit the energy difference with |
| the two half-bands. It can be called recursively so bands can end up being |
| split in 8 parts. */ |
| static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, |
| int N, int b, int B, celt_norm *lowband, |
| int LM, |
| opus_val16 gain, int fill) |
| { |
| const unsigned char *cache; |
| int q; |
| int curr_bits; |
| int imid=0, iside=0; |
| int B0=B; |
| opus_val16 mid=0, side=0; |
| unsigned cm=0; |
| #ifdef RESYNTH |
| int resynth = 1; |
| #else |
| int resynth = !ctx->encode; |
| #endif |
| celt_norm *Y=NULL; |
| int encode; |
| const CELTMode *m; |
| int i; |
| int spread; |
| ec_ctx *ec; |
| |
| encode = ctx->encode; |
| m = ctx->m; |
| i = ctx->i; |
| spread = ctx->spread; |
| ec = ctx->ec; |
| |
| /* If we need 1.5 more bit than we can produce, split the band in two. */ |
| cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; |
| if (LM != -1 && b > cache[cache[0]]+12 && N>2) |
| { |
| int mbits, sbits, delta; |
| int itheta; |
| int qalloc; |
| struct split_ctx sctx; |
| celt_norm *next_lowband2=NULL; |
| opus_int32 rebalance; |
| |
| N >>= 1; |
| Y = X+N; |
| LM -= 1; |
| if (B==1) |
| fill = (fill&1)|(fill<<1); |
| B = (B+1)>>1; |
| |
| compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, |
| LM, 0, &fill); |
| imid = sctx.imid; |
| iside = sctx.iside; |
| delta = sctx.delta; |
| itheta = sctx.itheta; |
| qalloc = sctx.qalloc; |
| #ifdef FIXED_POINT |
| mid = imid; |
| side = iside; |
| #else |
| mid = (1.f/32768)*imid; |
| side = (1.f/32768)*iside; |
| #endif |
| |
| /* Give more bits to low-energy MDCTs than they would otherwise deserve */ |
| if (B0>1 && (itheta&0x3fff)) |
| { |
| if (itheta > 8192) |
| /* Rough approximation for pre-echo masking */ |
| delta -= delta>>(4-LM); |
| else |
| /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ |
| delta = IMIN(0, delta + (N<<BITRES>>(5-LM))); |
| } |
| mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
| sbits = b-mbits; |
| ctx->remaining_bits -= qalloc; |
| |
| if (lowband) |
| next_lowband2 = lowband+N; /* >32-bit split case */ |
| |
| rebalance = ctx->remaining_bits; |
| if (mbits >= sbits) |
| { |
| cm = quant_partition(ctx, X, N, mbits, B, |
| lowband, LM, |
| MULT16_16_P15(gain,mid), fill); |
| rebalance = mbits - (rebalance-ctx->remaining_bits); |
| if (rebalance > 3<<BITRES && itheta!=0) |
| sbits += rebalance - (3<<BITRES); |
| cm |= quant_partition(ctx, Y, N, sbits, B, |
| next_lowband2, LM, |
| MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
| } else { |
| cm = quant_partition(ctx, Y, N, sbits, B, |
| next_lowband2, LM, |
| MULT16_16_P15(gain,side), fill>>B)<<(B0>>1); |
| rebalance = sbits - (rebalance-ctx->remaining_bits); |
| if (rebalance > 3<<BITRES && itheta!=16384) |
| mbits += rebalance - (3<<BITRES); |
| cm |= quant_partition(ctx, X, N, mbits, B, |
| lowband, LM, |
| MULT16_16_P15(gain,mid), fill); |
| } |
| } else { |
| /* This is the basic no-split case */ |
| q = bits2pulses(m, i, LM, b); |
| curr_bits = pulses2bits(m, i, LM, q); |
| ctx->remaining_bits -= curr_bits; |
| |
| /* Ensures we can never bust the budget */ |
| while (ctx->remaining_bits < 0 && q > 0) |
| { |
| ctx->remaining_bits += curr_bits; |
| q--; |
| curr_bits = pulses2bits(m, i, LM, q); |
| ctx->remaining_bits -= curr_bits; |
| } |
| |
| if (q!=0) |
| { |
| int K = get_pulses(q); |
| |
| /* Finally do the actual quantization */ |
| if (encode) |
| { |
| cm = alg_quant(X, N, K, spread, B, ec |
| #ifdef RESYNTH |
| , gain |
| #endif |
| ); |
| } else { |
| cm = alg_unquant(X, N, K, spread, B, ec, gain); |
| } |
| } else { |
| /* If there's no pulse, fill the band anyway */ |
| int j; |
| if (resynth) |
| { |
| unsigned cm_mask; |
| /* B can be as large as 16, so this shift might overflow an int on a |
| 16-bit platform; use a long to get defined behavior.*/ |
| cm_mask = (unsigned)(1UL<<B)-1; |
| fill &= cm_mask; |
| if (!fill) |
| { |
| OPUS_CLEAR(X, N); |
| } else { |
| if (lowband == NULL) |
| { |
| /* Noise */ |
| for (j=0;j<N;j++) |
| { |
| ctx->seed = celt_lcg_rand(ctx->seed); |
| X[j] = (celt_norm)((opus_int32)ctx->seed>>20); |
| } |
| cm = cm_mask; |
| } else { |
| /* Folded spectrum */ |
| for (j=0;j<N;j++) |
| { |
| opus_val16 tmp; |
| ctx->seed = celt_lcg_rand(ctx->seed); |
| /* About 48 dB below the "normal" folding level */ |
| tmp = QCONST16(1.0f/256, 10); |
| tmp = (ctx->seed)&0x8000 ? tmp : -tmp; |
| X[j] = lowband[j]+tmp; |
| } |
| cm = fill; |
| } |
| renormalise_vector(X, N, gain, ctx->arch); |
| } |
| } |
| } |
| } |
| |
| return cm; |
| } |
| |
| |
| /* This function is responsible for encoding and decoding a band for the mono case. */ |
| static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, |
| int N, int b, int B, celt_norm *lowband, |
| int LM, celt_norm *lowband_out, |
| opus_val16 gain, celt_norm *lowband_scratch, int fill) |
| { |
| int N0=N; |
| int N_B=N; |
| int N_B0; |
| int B0=B; |
| int time_divide=0; |
| int recombine=0; |
| int longBlocks; |
| unsigned cm=0; |
| #ifdef RESYNTH |
| int resynth = 1; |
| #else |
| int resynth = !ctx->encode; |
| #endif |
| int k; |
| int encode; |
| int tf_change; |
| |
| encode = ctx->encode; |
| tf_change = ctx->tf_change; |
| |
| longBlocks = B0==1; |
| |
| N_B = celt_udiv(N_B, B); |
| |
| /* Special case for one sample */ |
| if (N==1) |
| { |
| return quant_band_n1(ctx, X, NULL, b, lowband_out); |
| } |
| |
| if (tf_change>0) |
| recombine = tf_change; |
| /* Band recombining to increase frequency resolution */ |
| |
| if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) |
| { |
| OPUS_COPY(lowband_scratch, lowband, N); |
| lowband = lowband_scratch; |
| } |
| |
| for (k=0;k<recombine;k++) |
| { |
| static const unsigned char bit_interleave_table[16]={ |
| 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 |
| }; |
| if (encode) |
| haar1(X, N>>k, 1<<k); |
| if (lowband) |
| haar1(lowband, N>>k, 1<<k); |
| fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; |
| } |
| B>>=recombine; |
| N_B<<=recombine; |
| |
| /* Increasing the time resolution */ |
| while ((N_B&1) == 0 && tf_change<0) |
| { |
| if (encode) |
| haar1(X, N_B, B); |
| if (lowband) |
| haar1(lowband, N_B, B); |
| fill |= fill<<B; |
| B <<= 1; |
| N_B >>= 1; |
| time_divide++; |
| tf_change++; |
| } |
| B0=B; |
| N_B0 = N_B; |
| |
| /* Reorganize the samples in time order instead of frequency order */ |
| if (B0>1) |
| { |
| if (encode) |
| deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
| if (lowband) |
| deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); |
| } |
| |
| cm = quant_partition(ctx, X, N, b, B, lowband, |
| LM, gain, fill); |
| |
| /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
| if (resynth) |
| { |
| /* Undo the sample reorganization going from time order to frequency order */ |
| if (B0>1) |
| interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); |
| |
| /* Undo time-freq changes that we did earlier */ |
| N_B = N_B0; |
| B = B0; |
| for (k=0;k<time_divide;k++) |
| { |
| B >>= 1; |
| N_B <<= 1; |
| cm |= cm>>B; |
| haar1(X, N_B, B); |
| } |
| |
| for (k=0;k<recombine;k++) |
| { |
| static const unsigned char bit_deinterleave_table[16]={ |
| 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, |
| 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF |
| }; |
| cm = bit_deinterleave_table[cm]; |
| haar1(X, N0>>k, 1<<k); |
| } |
| B<<=recombine; |
| |
| /* Scale output for later folding */ |
| if (lowband_out) |
| { |
| int j; |
| opus_val16 n; |
| n = celt_sqrt(SHL32(EXTEND32(N0),22)); |
| for (j=0;j<N0;j++) |
| lowband_out[j] = MULT16_16_Q15(n,X[j]); |
| } |
| cm &= (1<<B)-1; |
| } |
| return cm; |
| } |
| |
| |
| /* This function is responsible for encoding and decoding a band for the stereo case. */ |
| static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, |
| int N, int b, int B, celt_norm *lowband, |
| int LM, celt_norm *lowband_out, |
| celt_norm *lowband_scratch, int fill) |
| { |
| int imid=0, iside=0; |
| int inv = 0; |
| opus_val16 mid=0, side=0; |
| unsigned cm=0; |
| #ifdef RESYNTH |
| int resynth = 1; |
| #else |
| int resynth = !ctx->encode; |
| #endif |
| int mbits, sbits, delta; |
| int itheta; |
| int qalloc; |
| struct split_ctx sctx; |
| int orig_fill; |
| int encode; |
| ec_ctx *ec; |
| |
| encode = ctx->encode; |
| ec = ctx->ec; |
| |
| /* Special case for one sample */ |
| if (N==1) |
| { |
| return quant_band_n1(ctx, X, Y, b, lowband_out); |
| } |
| |
| orig_fill = fill; |
| |
| compute_theta(ctx, &sctx, X, Y, N, &b, B, B, |
| LM, 1, &fill); |
| inv = sctx.inv; |
| imid = sctx.imid; |
| iside = sctx.iside; |
| delta = sctx.delta; |
| itheta = sctx.itheta; |
| qalloc = sctx.qalloc; |
| #ifdef FIXED_POINT |
| mid = imid; |
| side = iside; |
| #else |
| mid = (1.f/32768)*imid; |
| side = (1.f/32768)*iside; |
| #endif |
| |
| /* This is a special case for N=2 that only works for stereo and takes |
| advantage of the fact that mid and side are orthogonal to encode |
| the side with just one bit. */ |
| if (N==2) |
| { |
| int c; |
| int sign=0; |
| celt_norm *x2, *y2; |
| mbits = b; |
| sbits = 0; |
| /* Only need one bit for the side. */ |
| if (itheta != 0 && itheta != 16384) |
| sbits = 1<<BITRES; |
| mbits -= sbits; |
| c = itheta > 8192; |
| ctx->remaining_bits -= qalloc+sbits; |
| |
| x2 = c ? Y : X; |
| y2 = c ? X : Y; |
| if (sbits) |
| { |
| if (encode) |
| { |
| /* Here we only need to encode a sign for the side. */ |
| sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; |
| ec_enc_bits(ec, sign, 1); |
| } else { |
| sign = ec_dec_bits(ec, 1); |
| } |
| } |
| sign = 1-2*sign; |
| /* We use orig_fill here because we want to fold the side, but if |
| itheta==16384, we'll have cleared the low bits of fill. */ |
| cm = quant_band(ctx, x2, N, mbits, B, lowband, |
| LM, lowband_out, Q15ONE, lowband_scratch, orig_fill); |
| /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), |
| and there's no need to worry about mixing with the other channel. */ |
| y2[0] = -sign*x2[1]; |
| y2[1] = sign*x2[0]; |
| if (resynth) |
| { |
| celt_norm tmp; |
| X[0] = MULT16_16_Q15(mid, X[0]); |
| X[1] = MULT16_16_Q15(mid, X[1]); |
| Y[0] = MULT16_16_Q15(side, Y[0]); |
| Y[1] = MULT16_16_Q15(side, Y[1]); |
| tmp = X[0]; |
| X[0] = SUB16(tmp,Y[0]); |
| Y[0] = ADD16(tmp,Y[0]); |
| tmp = X[1]; |
| X[1] = SUB16(tmp,Y[1]); |
| Y[1] = ADD16(tmp,Y[1]); |
| } |
| } else { |
| /* "Normal" split code */ |
| opus_int32 rebalance; |
| |
| mbits = IMAX(0, IMIN(b, (b-delta)/2)); |
| sbits = b-mbits; |
| ctx->remaining_bits -= qalloc; |
| |
| rebalance = ctx->remaining_bits; |
| if (mbits >= sbits) |
| { |
| /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
| mid for folding later. */ |
| cm = quant_band(ctx, X, N, mbits, B, |
| lowband, LM, lowband_out, |
| Q15ONE, lowband_scratch, fill); |
| rebalance = mbits - (rebalance-ctx->remaining_bits); |
| if (rebalance > 3<<BITRES && itheta!=0) |
| sbits += rebalance - (3<<BITRES); |
| |
| /* For a stereo split, the high bits of fill are always zero, so no |
| folding will be done to the side. */ |
| cm |= quant_band(ctx, Y, N, sbits, B, |
| NULL, LM, NULL, |
| side, NULL, fill>>B); |
| } else { |
| /* For a stereo split, the high bits of fill are always zero, so no |
| folding will be done to the side. */ |
| cm = quant_band(ctx, Y, N, sbits, B, |
| NULL, LM, NULL, |
| side, NULL, fill>>B); |
| rebalance = sbits - (rebalance-ctx->remaining_bits); |
| if (rebalance > 3<<BITRES && itheta!=16384) |
| mbits += rebalance - (3<<BITRES); |
| /* In stereo mode, we do not apply a scaling to the mid because we need the normalized |
| mid for folding later. */ |
| cm |= quant_band(ctx, X, N, mbits, B, |
| lowband, LM, lowband_out, |
| Q15ONE, lowband_scratch, fill); |
| } |
| } |
| |
| |
| /* This code is used by the decoder and by the resynthesis-enabled encoder */ |
| if (resynth) |
| { |
| if (N!=2) |
| stereo_merge(X, Y, mid, N, ctx->arch); |
| if (inv) |
| { |
| int j; |
| for (j=0;j<N;j++) |
| Y[j] = -Y[j]; |
| } |
| } |
| return cm; |
| } |
| |
| |
| void quant_all_bands(int encode, const CELTMode *m, int start, int end, |
| celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, |
| const celt_ener *bandE, int *pulses, int shortBlocks, int spread, |
| int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits, |
| opus_int32 balance, ec_ctx *ec, int LM, int codedBands, |
| opus_uint32 *seed, int arch) |
| { |
| int i; |
| opus_int32 remaining_bits; |
| const opus_int16 * OPUS_RESTRICT eBands = m->eBands; |
| celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2; |
| VARDECL(celt_norm, _norm); |
| celt_norm *lowband_scratch; |
| int B; |
| int M; |
| int lowband_offset; |
| int update_lowband = 1; |
| int C = Y_ != NULL ? 2 : 1; |
| int norm_offset; |
| #ifdef RESYNTH |
| int resynth = 1; |
| #else |
| int resynth = !encode; |
| #endif |
| struct band_ctx ctx; |
| SAVE_STACK; |
| |
| M = 1<<LM; |
| B = shortBlocks ? M : 1; |
| norm_offset = M*eBands[start]; |
| /* No need to allocate norm for the last band because we don't need an |
| output in that band. */ |
| ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm); |
| norm = _norm; |
| norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; |
| /* We can use the last band as scratch space because we don't need that |
| scratch space for the last band. */ |
| lowband_scratch = X_+M*eBands[m->nbEBands-1]; |
| |
| lowband_offset = 0; |
| ctx.bandE = bandE; |
| ctx.ec = ec; |
| ctx.encode = encode; |
| ctx.intensity = intensity; |
| ctx.m = m; |
| ctx.seed = *seed; |
| ctx.spread = spread; |
| ctx.arch = arch; |
| for (i=start;i<end;i++) |
| { |
| opus_int32 tell; |
| int b; |
| int N; |
| opus_int32 curr_balance; |
| int effective_lowband=-1; |
| celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y; |
| int tf_change=0; |
| unsigned x_cm; |
| unsigned y_cm; |
| int last; |
| |
| ctx.i = i; |
| last = (i==end-1); |
| |
| X = X_+M*eBands[i]; |
| if (Y_!=NULL) |
| Y = Y_+M*eBands[i]; |
| else |
| Y = NULL; |
| N = M*eBands[i+1]-M*eBands[i]; |
| tell = ec_tell_frac(ec); |
| |
| /* Compute how many bits we want to allocate to this band */ |
| if (i != start) |
| balance -= tell; |
| remaining_bits = total_bits-tell-1; |
| ctx.remaining_bits = remaining_bits; |
| if (i <= codedBands-1) |
| { |
| curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i)); |
| b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance))); |
| } else { |
| b = 0; |
| } |
| |
| if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) |
| lowband_offset = i; |
| |
| tf_change = tf_res[i]; |
| ctx.tf_change = tf_change; |
| if (i>=m->effEBands) |
| { |
| X=norm; |
| if (Y_!=NULL) |
| Y = norm; |
| lowband_scratch = NULL; |
| } |
| if (i==end-1) |
| lowband_scratch = NULL; |
| |
| /* Get a conservative estimate of the collapse_mask's for the bands we're |
| going to be folding from. */ |
| if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0)) |
| { |
| int fold_start; |
| int fold_end; |
| int fold_i; |
| /* This ensures we never repeat spectral content within one band */ |
| effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N); |
| fold_start = lowband_offset; |
| while(M*eBands[--fold_start] > effective_lowband+norm_offset); |
| fold_end = lowband_offset-1; |
| while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); |
| x_cm = y_cm = 0; |
| fold_i = fold_start; do { |
| x_cm |= collapse_masks[fold_i*C+0]; |
| y_cm |= collapse_masks[fold_i*C+C-1]; |
| } while (++fold_i<fold_end); |
| } |
| /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost |
| always) be non-zero. */ |
| else |
| x_cm = y_cm = (1<<B)-1; |
| |
| if (dual_stereo && i==intensity) |
| { |
| int j; |
| |
| /* Switch off dual stereo to do intensity. */ |
| dual_stereo = 0; |
| if (resynth) |
| for (j=0;j<M*eBands[i]-norm_offset;j++) |
| norm[j] = HALF32(norm[j]+norm2[j]); |
| } |
| if (dual_stereo) |
| { |
| x_cm = quant_band(&ctx, X, N, b/2, B, |
| effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
| last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm); |
| y_cm = quant_band(&ctx, Y, N, b/2, B, |
| effective_lowband != -1 ? norm2+effective_lowband : NULL, LM, |
| last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm); |
| } else { |
| if (Y!=NULL) |
| { |
| x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, |
| effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
| last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); |
| } else { |
| x_cm = quant_band(&ctx, X, N, b, B, |
| effective_lowband != -1 ? norm+effective_lowband : NULL, LM, |
| last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm); |
| } |
| y_cm = x_cm; |
| } |
| collapse_masks[i*C+0] = (unsigned char)x_cm; |
| collapse_masks[i*C+C-1] = (unsigned char)y_cm; |
| balance += pulses[i] + tell; |
| |
| /* Update the folding position only as long as we have 1 bit/sample depth. */ |
| update_lowband = b>(N<<BITRES); |
| } |
| *seed = ctx.seed; |
| |
| RESTORE_STACK; |
| } |
| |