Project import
diff --git a/micro_bench/Android.mk b/micro_bench/Android.mk
new file mode 100644
index 0000000..0655536
--- /dev/null
+++ b/micro_bench/Android.mk
@@ -0,0 +1,28 @@
+LOCAL_PATH:= $(call my-dir)
+include $(CLEAR_VARS)
+
+LOCAL_SRC_FILES := micro_bench.cpp
+
+LOCAL_MODULE_PATH := $(TARGET_OUT_OPTIONAL_EXECUTABLES)
+LOCAL_MODULE_TAGS := debug
+LOCAL_MODULE := micro_bench
+
+LOCAL_MULTILIB := both
+LOCAL_MODULE_STEM_32 := $(LOCAL_MODULE)
+LOCAL_MODULE_STEM_64 := $(LOCAL_MODULE)64
+include $(BUILD_EXECUTABLE)
+
+include $(CLEAR_VARS)
+
+LOCAL_SRC_FILES := micro_bench.cpp
+
+LOCAL_MODULE_PATH := $(TARGET_OUT_OPTIONAL_EXECUTABLES)
+LOCAL_MODULE_TAGS := debug
+LOCAL_MODULE := micro_bench_static
+LOCAL_STATIC_LIBRARIES = libc libm
+LOCAL_FORCE_STATIC_EXECUTABLE := true
+
+LOCAL_MULTILIB := both
+LOCAL_MODULE_STEM_32 := $(LOCAL_MODULE)
+LOCAL_MODULE_STEM_64 := $(LOCAL_MODULE)64
+include $(BUILD_EXECUTABLE)
diff --git a/micro_bench/NOTICE b/micro_bench/NOTICE
new file mode 100644
index 0000000..5d14293
--- /dev/null
+++ b/micro_bench/NOTICE
@@ -0,0 +1,190 @@
+
+   Copyright (c) 2010, The Android Open Source Project
+
+   Licensed under the Apache License, Version 2.0 (the "License");
+   you may not use this file except in compliance with the License.
+
+   Unless required by applicable law or agreed to in writing, software
+   distributed under the License is distributed on an "AS IS" BASIS,
+   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+   See the License for the specific language governing permissions and
+   limitations under the License.
+
+
+                                 Apache License
+                           Version 2.0, January 2004
+                        http://www.apache.org/licenses/
+
+   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+   1. Definitions.
+
+      "License" shall mean the terms and conditions for use, reproduction,
+      and distribution as defined by Sections 1 through 9 of this document.
+
+      "Licensor" shall mean the copyright owner or entity authorized by
+      the copyright owner that is granting the License.
+
+      "Legal Entity" shall mean the union of the acting entity and all
+      other entities that control, are controlled by, or are under common
+      control with that entity. For the purposes of this definition,
+      "control" means (i) the power, direct or indirect, to cause the
+      direction or management of such entity, whether by contract or
+      otherwise, or (ii) ownership of fifty percent (50%) or more of the
+      outstanding shares, or (iii) beneficial ownership of such entity.
+
+      "You" (or "Your") shall mean an individual or Legal Entity
+      exercising permissions granted by this License.
+
+      "Source" form shall mean the preferred form for making modifications,
+      including but not limited to software source code, documentation
+      source, and configuration files.
+
+      "Object" form shall mean any form resulting from mechanical
+      transformation or translation of a Source form, including but
+      not limited to compiled object code, generated documentation,
+      and conversions to other media types.
+
+      "Work" shall mean the work of authorship, whether in Source or
+      Object form, made available under the License, as indicated by a
+      copyright notice that is included in or attached to the work
+      (an example is provided in the Appendix below).
+
+      "Derivative Works" shall mean any work, whether in Source or Object
+      form, that is based on (or derived from) the Work and for which the
+      editorial revisions, annotations, elaborations, or other modifications
+      represent, as a whole, an original work of authorship. For the purposes
+      of this License, Derivative Works shall not include works that remain
+      separable from, or merely link (or bind by name) to the interfaces of,
+      the Work and Derivative Works thereof.
+
+      "Contribution" shall mean any work of authorship, including
+      the original version of the Work and any modifications or additions
+      to that Work or Derivative Works thereof, that is intentionally
+      submitted to Licensor for inclusion in the Work by the copyright owner
+      or by an individual or Legal Entity authorized to submit on behalf of
+      the copyright owner. For the purposes of this definition, "submitted"
+      means any form of electronic, verbal, or written communication sent
+      to the Licensor or its representatives, including but not limited to
+      communication on electronic mailing lists, source code control systems,
+      and issue tracking systems that are managed by, or on behalf of, the
+      Licensor for the purpose of discussing and improving the Work, but
+      excluding communication that is conspicuously marked or otherwise
+      designated in writing by the copyright owner as "Not a Contribution."
+
+      "Contributor" shall mean Licensor and any individual or Legal Entity
+      on behalf of whom a Contribution has been received by Licensor and
+      subsequently incorporated within the Work.
+
+   2. Grant of Copyright License. Subject to the terms and conditions of
+      this License, each Contributor hereby grants to You a perpetual,
+      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+      copyright license to reproduce, prepare Derivative Works of,
+      publicly display, publicly perform, sublicense, and distribute the
+      Work and such Derivative Works in Source or Object form.
+
+   3. Grant of Patent License. Subject to the terms and conditions of
+      this License, each Contributor hereby grants to You a perpetual,
+      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+      (except as stated in this section) patent license to make, have made,
+      use, offer to sell, sell, import, and otherwise transfer the Work,
+      where such license applies only to those patent claims licensable
+      by such Contributor that are necessarily infringed by their
+      Contribution(s) alone or by combination of their Contribution(s)
+      with the Work to which such Contribution(s) was submitted. If You
+      institute patent litigation against any entity (including a
+      cross-claim or counterclaim in a lawsuit) alleging that the Work
+      or a Contribution incorporated within the Work constitutes direct
+      or contributory patent infringement, then any patent licenses
+      granted to You under this License for that Work shall terminate
+      as of the date such litigation is filed.
+
+   4. Redistribution. You may reproduce and distribute copies of the
+      Work or Derivative Works thereof in any medium, with or without
+      modifications, and in Source or Object form, provided that You
+      meet the following conditions:
+
+      (a) You must give any other recipients of the Work or
+          Derivative Works a copy of this License; and
+
+      (b) You must cause any modified files to carry prominent notices
+          stating that You changed the files; and
+
+      (c) You must retain, in the Source form of any Derivative Works
+          that You distribute, all copyright, patent, trademark, and
+          attribution notices from the Source form of the Work,
+          excluding those notices that do not pertain to any part of
+          the Derivative Works; and
+
+      (d) If the Work includes a "NOTICE" text file as part of its
+          distribution, then any Derivative Works that You distribute must
+          include a readable copy of the attribution notices contained
+          within such NOTICE file, excluding those notices that do not
+          pertain to any part of the Derivative Works, in at least one
+          of the following places: within a NOTICE text file distributed
+          as part of the Derivative Works; within the Source form or
+          documentation, if provided along with the Derivative Works; or,
+          within a display generated by the Derivative Works, if and
+          wherever such third-party notices normally appear. The contents
+          of the NOTICE file are for informational purposes only and
+          do not modify the License. You may add Your own attribution
+          notices within Derivative Works that You distribute, alongside
+          or as an addendum to the NOTICE text from the Work, provided
+          that such additional attribution notices cannot be construed
+          as modifying the License.
+
+      You may add Your own copyright statement to Your modifications and
+      may provide additional or different license terms and conditions
+      for use, reproduction, or distribution of Your modifications, or
+      for any such Derivative Works as a whole, provided Your use,
+      reproduction, and distribution of the Work otherwise complies with
+      the conditions stated in this License.
+
+   5. Submission of Contributions. Unless You explicitly state otherwise,
+      any Contribution intentionally submitted for inclusion in the Work
+      by You to the Licensor shall be under the terms and conditions of
+      this License, without any additional terms or conditions.
+      Notwithstanding the above, nothing herein shall supersede or modify
+      the terms of any separate license agreement you may have executed
+      with Licensor regarding such Contributions.
+
+   6. Trademarks. This License does not grant permission to use the trade
+      names, trademarks, service marks, or product names of the Licensor,
+      except as required for reasonable and customary use in describing the
+      origin of the Work and reproducing the content of the NOTICE file.
+
+   7. Disclaimer of Warranty. Unless required by applicable law or
+      agreed to in writing, Licensor provides the Work (and each
+      Contributor provides its Contributions) on an "AS IS" BASIS,
+      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+      implied, including, without limitation, any warranties or conditions
+      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+      PARTICULAR PURPOSE. You are solely responsible for determining the
+      appropriateness of using or redistributing the Work and assume any
+      risks associated with Your exercise of permissions under this License.
+
+   8. Limitation of Liability. In no event and under no legal theory,
+      whether in tort (including negligence), contract, or otherwise,
+      unless required by applicable law (such as deliberate and grossly
+      negligent acts) or agreed to in writing, shall any Contributor be
+      liable to You for damages, including any direct, indirect, special,
+      incidental, or consequential damages of any character arising as a
+      result of this License or out of the use or inability to use the
+      Work (including but not limited to damages for loss of goodwill,
+      work stoppage, computer failure or malfunction, or any and all
+      other commercial damages or losses), even if such Contributor
+      has been advised of the possibility of such damages.
+
+   9. Accepting Warranty or Additional Liability. While redistributing
+      the Work or Derivative Works thereof, You may choose to offer,
+      and charge a fee for, acceptance of support, warranty, indemnity,
+      or other liability obligations and/or rights consistent with this
+      License. However, in accepting such obligations, You may act only
+      on Your own behalf and on Your sole responsibility, not on behalf
+      of any other Contributor, and only if You agree to indemnify,
+      defend, and hold each Contributor harmless for any liability
+      incurred by, or claims asserted against, such Contributor by reason
+      of your accepting any such warranty or additional liability.
+
+   END OF TERMS AND CONDITIONS
+
diff --git a/micro_bench/micro_bench.cpp b/micro_bench/micro_bench.cpp
new file mode 100644
index 0000000..4d3177d
--- /dev/null
+++ b/micro_bench/micro_bench.cpp
@@ -0,0 +1,841 @@
+/*
+** Copyright 2010 The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+**     http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+/*
+ * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <ctype.h>
+#include <math.h>
+#include <sched.h>
+#include <sys/resource.h>
+#include <time.h>
+#include <unistd.h>
+
+// The default size of data that will be manipulated in each iteration of
+// a memory benchmark. Can be modified with the --data_size option.
+#define DEFAULT_DATA_SIZE       1000000000
+
+// The amount of memory allocated for the cold benchmarks to use.
+#define DEFAULT_COLD_DATA_SIZE  (128*1024*1024)
+
+// The default size of the stride between each buffer for cold benchmarks.
+#define DEFAULT_COLD_STRIDE_SIZE  4096
+
+// Number of nanoseconds in a second.
+#define NS_PER_SEC              1000000000
+
+// The maximum number of arguments that a benchmark will accept.
+#define MAX_ARGS    2
+
+// Default memory alignment of malloc.
+#define DEFAULT_MALLOC_MEMORY_ALIGNMENT   8
+
+// Contains information about benchmark options.
+typedef struct {
+    bool print_average;
+    bool print_each_iter;
+
+    int dst_align;
+    int dst_or_mask;
+    int src_align;
+    int src_or_mask;
+
+    int cpu_to_lock;
+
+    int data_size;
+    int dst_str_size;
+    int cold_data_size;
+    int cold_stride_size;
+
+    int args[MAX_ARGS];
+    int num_args;
+} command_data_t;
+
+typedef void *(*void_func_t)();
+typedef void *(*memcpy_func_t)(void *, const void *, size_t);
+typedef void *(*memset_func_t)(void *, int, size_t);
+typedef int (*strcmp_func_t)(const char *, const char *);
+typedef char *(*str_func_t)(char *, const char *);
+typedef size_t (*strlen_func_t)(const char *);
+
+// Struct that contains a mapping of benchmark name to benchmark function.
+typedef struct {
+    const char *name;
+    int (*ptr)(const char *, const command_data_t &, void_func_t func);
+    void_func_t func;
+} function_t;
+
+// Get the current time in nanoseconds.
+uint64_t nanoTime() {
+  struct timespec t;
+
+  t.tv_sec = t.tv_nsec = 0;
+  clock_gettime(CLOCK_MONOTONIC, &t);
+  return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
+}
+
+// Static analyzer warns about potential memory leak of orig_ptr
+// in getAlignedMemory. That is true and the callers in this program
+// do not free orig_ptr. But, we don't care about that in this
+// going-obsolete test program. So, here is a hack to trick the
+// static analyzer.
+static void *saved_orig_ptr;
+
+// Allocate memory with a specific alignment and return that pointer.
+// This function assumes an alignment value that is a power of 2.
+// If the alignment is 0, then use the pointer returned by malloc.
+uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
+  uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
+  saved_orig_ptr = orig_ptr;
+  if (alignment > 0) {
+      // When setting the alignment, set it to exactly the alignment chosen.
+      // The pointer returned will be guaranteed not to be aligned to anything
+      // more than that.
+      ptr += alignment - (ptr & (alignment - 1));
+      ptr |= alignment | or_mask;
+  }
+
+  return reinterpret_cast<uint8_t*>(ptr);
+}
+
+// Allocate memory with a specific alignment and return that pointer.
+// This function assumes an alignment value that is a power of 2.
+// If the alignment is 0, then use the pointer returned by malloc.
+uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
+  uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
+  if (!ptr)
+      return NULL;
+  return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
+}
+
+void initString(uint8_t *buf, size_t size) {
+    for (size_t i = 0; i < size - 1; i++) {
+        buf[i] = static_cast<char>(32 + (i % 96));
+    }
+    buf[size-1] = '\0';
+}
+
+static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
+    return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
+}
+
+static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
+    return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
+}
+
+static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
+    return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
+}
+
+static inline double computeStdDev(double square_avg, double running_avg) {
+    return sqrt(square_avg - running_avg * running_avg);
+}
+
+static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
+    printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n",
+           name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
+}
+
+static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
+    printf("  %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
+           name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
+           max/1024.0);
+}
+
+// For the cold benchmarks, a large buffer will be created which
+// contains many "size" buffers. This function will figure out the increment
+// needed between each buffer so that each one is aligned to "alignment".
+int getAlignmentIncrement(size_t size, int alignment) {
+    if (alignment == 0) {
+        alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
+    }
+    alignment *= 2;
+    return size + alignment - (size % alignment);
+}
+
+uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
+    uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
+    if (!buffers) {
+        return NULL;
+    }
+    return getAlignedMemory(buffers, alignment, or_mask);
+}
+
+static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
+    return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
+}
+
+static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
+    printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n",
+           name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
+}
+
+static void inline printColdSummary(
+        uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers,
+        double running_avg, double square_avg, double min, double max) {
+    printf("  %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
+           name, copies, num_buffers, size, running_avg/1024.0,
+           computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
+}
+
+#define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
+    uint64_t time_ns;                                                 \
+    int iters = (cmd_data).args[1];                                   \
+    bool print_average = (cmd_data).print_average;                    \
+    bool print_each_iter = (cmd_data).print_each_iter;                \
+    double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
+    double avg;                                                       \
+    for (int i = 0; iters == -1 || i < iters; i++) {                  \
+        time_ns = nanoTime();                                         \
+        BENCH;                                                        \
+        time_ns = nanoTime() - time_ns;                               \
+        avg = COMPUTE_AVG;                                            \
+        if (print_average) {                                          \
+            running_avg = computeRunningAvg(avg, running_avg, i);     \
+            square_avg = computeRunningSquareAvg(avg, square_avg, i); \
+            if (min == 0.0 || avg < min) {                            \
+                min = avg;                                            \
+            }                                                         \
+            if (avg > max) {                                          \
+                max = avg;                                            \
+            }                                                         \
+        }                                                             \
+        if (print_each_iter) {                                        \
+            PRINT_ITER;                                               \
+        }                                                             \
+    }                                                                 \
+    if (print_average) {                                              \
+        PRINT_AVG;                                                    \
+    }
+
+#define MAINLOOP_DATA(name, cmd_data, size, BENCH)                    \
+    size_t copies = (cmd_data).data_size/(size);                      \
+    size_t j;                                                         \
+    MAINLOOP(cmd_data,                                                \
+             for (j = 0; j < copies; j++) {                           \
+                 BENCH;                                               \
+             },                                                       \
+             computeAverage(time_ns, size, copies),                   \
+             printIter(time_ns, name, size, copies, avg),             \
+             double std_dev = computeStdDev(square_avg, running_avg); \
+             printSummary(time_ns, name, size, copies, running_avg,   \
+                          std_dev, min, max));
+
+#define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH)                 \
+    size_t num_strides = num_buffers / (num_incrs);                           \
+    if ((num_buffers % (num_incrs)) != 0) {                                   \
+        num_strides--;                                                        \
+    }                                                                         \
+    size_t copies = 1;                                                        \
+    num_buffers = (num_incrs) * num_strides;                                  \
+    if (num_buffers * (size) < static_cast<size_t>((cmd_data).data_size)) {   \
+        copies = (cmd_data).data_size / (num_buffers * (size));               \
+    }                                                                         \
+    if (num_strides == 0) {                                                   \
+        printf("%s: Chosen options lead to no copies, aborting.\n", name);    \
+        return -1;                                                            \
+    }                                                                         \
+    size_t j, k;                                                              \
+    MAINLOOP(cmd_data,                                                        \
+             for (j = 0; j < copies; j++) {                                   \
+                 for (k = 0; k < (num_incrs); k++) {                          \
+                     BENCH;                                                   \
+                }                                                             \
+            },                                                                \
+            computeColdAverage(time_ns, size, copies, num_buffers),           \
+            printColdIter(time_ns, name, size, copies, num_buffers, avg),     \
+            printColdSummary(time_ns, name, size, copies, num_buffers,        \
+                             running_avg, square_avg, min, max));
+
+// This version of the macro creates a single buffer of the given size and
+// alignment. The variable "buf" will be a pointer to the buffer and should
+// be used by the BENCH code.
+// INIT - Any specialized code needed to initialize the data. This will only
+//        be executed once.
+// BENCH - The actual code to benchmark and is timed.
+#define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH)                            \
+    size_t size = (cmd_data).args[0];                                         \
+    uint8_t *buf = allocateAlignedMemory(size, (cmd_data).dst_align, (cmd_data).dst_or_mask); \
+    if (!buf)                                                                 \
+        return -1;                                                            \
+    INIT;                                                                     \
+    MAINLOOP_DATA(name, cmd_data, size, BENCH);
+
+// This version of the macro creates two buffers of the given sizes and
+// alignments. The variables "buf1" and "buf2" will be pointers to the
+// buffers and should be used by the BENCH code.
+// INIT - Any specialized code needed to initialize the data. This will only
+//        be executed once.
+// BENCH - The actual code to benchmark and is timed.
+#define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH)                           \
+    size_t size = (cmd_data).args[0];                                         \
+    uint8_t *buf1 = allocateAlignedMemory(size, (cmd_data).src_align, (cmd_data).src_or_mask); \
+    if (!buf1)                                                                \
+        return -1;                                                            \
+    size_t total_size = size;                                                 \
+    if ((cmd_data).dst_str_size > 0)                                          \
+        total_size += (cmd_data).dst_str_size;                                \
+    uint8_t *buf2 = allocateAlignedMemory(total_size, (cmd_data).dst_align, (cmd_data).dst_or_mask); \
+    if (!buf2)                                                                \
+        return -1;                                                            \
+    INIT;                                                                     \
+    MAINLOOP_DATA(name, cmd_data, size, BENCH);
+
+// This version of the macro attempts to benchmark code when the data
+// being manipulated is not in the cache, thus the cache is cold. It does
+// this by creating a single large buffer that is designed to be larger than
+// the largest cache in the system. The variable "buf" will be one slice
+// of the buffer that the BENCH code should use that is of the correct size
+// and alignment. In order to avoid any algorithms that prefetch past the end
+// of their "buf" and into the next sequential buffer, the code strides
+// through the buffer. Specifically, as "buf" values are iterated in BENCH
+// code, the end of "buf" is guaranteed to be at least "stride_size" away
+// from the next "buf".
+// INIT - Any specialized code needed to initialize the data. This will only
+//        be executed once.
+// BENCH - The actual code to benchmark and is timed.
+#define COLD_ONE_BUF(name, cmd_data, INIT, BENCH)                             \
+    size_t size = (cmd_data).args[0];                                         \
+    size_t incr = getAlignmentIncrement(size, (cmd_data).dst_align);          \
+    size_t num_buffers = (cmd_data).cold_data_size / incr;                    \
+    size_t buffer_size = num_buffers * incr;                                  \
+    uint8_t *buffer = getColdBuffer(num_buffers, incr, (cmd_data).dst_align, (cmd_data).dst_or_mask); \
+    if (!buffer)                                                              \
+        return -1;                                                            \
+    size_t num_incrs = (cmd_data).cold_stride_size / incr + 1;                \
+    size_t stride_incr = incr * num_incrs;                                    \
+    uint8_t *buf;                                                             \
+    size_t l;                                                                 \
+    INIT;                                                                     \
+    MAINLOOP_COLD(name, (cmd_data), size, num_incrs,                          \
+                  buf = buffer + k * incr;                                    \
+                  for (l = 0; l < num_strides; l++) {                         \
+                      BENCH;                                                  \
+                      buf += stride_incr;                                     \
+                  });
+
+// This version of the macro attempts to benchmark code when the data
+// being manipulated is not in the cache, thus the cache is cold. It does
+// this by creating two large buffers each of which is designed to be
+// larger than the largest cache in the system. Two variables "buf1" and
+// "buf2" will be the two buffers that BENCH code should use. In order
+// to avoid any algorithms that prefetch past the end of either "buf1"
+// or "buf2" and into the next sequential buffer, the code strides through
+// both buffers. Specifically, as "buf1" and "buf2" values are iterated in
+// BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
+// "stride_size" away from the next "buf1" and "buf2".
+// INIT - Any specialized code needed to initialize the data. This will only
+//        be executed once.
+// BENCH - The actual code to benchmark and is timed.
+#define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH)                            \
+    size_t size = (cmd_data).args[0];                                         \
+    size_t buf1_incr = getAlignmentIncrement(size, (cmd_data).src_align);     \
+    size_t total_size = size;                                                 \
+    if ((cmd_data).dst_str_size > 0)                                          \
+        total_size += (cmd_data).dst_str_size;                                \
+    size_t buf2_incr = getAlignmentIncrement(total_size, (cmd_data).dst_align); \
+    size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr;        \
+    size_t num_buffers = (cmd_data).cold_data_size / max_incr;                \
+    size_t buffer1_size = num_buffers * buf1_incr;                            \
+    size_t buffer2_size = num_buffers * buf2_incr;                            \
+    uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, (cmd_data).src_align, (cmd_data).src_or_mask); \
+    if (!buffer1)                                                             \
+        return -1;                                                            \
+    uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, (cmd_data).dst_align, (cmd_data).dst_or_mask); \
+    if (!buffer2)                                                             \
+        return -1;                                                            \
+    size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr;        \
+    size_t num_incrs = (cmd_data).cold_stride_size / min_incr + 1;            \
+    size_t buf1_stride_incr = buf1_incr * num_incrs;                          \
+    size_t buf2_stride_incr = buf2_incr * num_incrs;                          \
+    size_t l;                                                                 \
+    uint8_t *buf1;                                                            \
+    uint8_t *buf2;                                                            \
+    INIT;                                                                     \
+    MAINLOOP_COLD(name, (cmd_data), size, num_incrs,                          \
+                  buf1 = buffer1 + k * buf1_incr;                             \
+                  buf2 = buffer2 + k * buf2_incr;                             \
+                  for (l = 0; l < num_strides; l++) {                         \
+                      BENCH;                                                  \
+                      buf1 += buf1_stride_incr;                               \
+                      buf2 += buf2_stride_incr;                               \
+                  });
+
+int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) {
+    int delay = cmd_data.args[0];
+    MAINLOOP(cmd_data, sleep(delay),
+             (double)time_ns/NS_PER_SEC,
+             printf("sleep(%d) took %.06f seconds\n", delay, avg);,
+             printf("  sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
+                    delay, running_avg, computeStdDev(square_avg, running_avg), \
+                    min, max));
+
+    return 0;
+}
+
+int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
+    BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
+
+    return 0;
+}
+
+int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
+    COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
+
+    return 0;
+}
+
+int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
+
+    BENCH_TWO_BUFS(name, cmd_data,
+                   memset(buf1, 0xff, size); \
+                   memset(buf2, 0, size),
+                   memcpy_func(buf2, buf1, size));
+
+    return 0;
+}
+
+int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
+
+    COLD_TWO_BUFS(name, cmd_data,
+                  memset(buffer1, 0xff, buffer1_size); \
+                  memset(buffer2, 0x0, buffer2_size),
+                  memcpy_func(buf2, buf1, size));
+
+    return 0;
+}
+
+int benchmarkMemmoveBackwards(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    memcpy_func_t memmove_func = reinterpret_cast<memcpy_func_t>(func);
+
+    size_t size = cmd_data.args[0];
+    size_t alloc_size = size * 2 + 3 * cmd_data.dst_align;
+    uint8_t* src = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask);
+    if (!src)
+        return -1;
+    // Force memmove to do a backwards copy by getting a pointer into the source buffer.
+    uint8_t* dst = getAlignedMemory(src+1, cmd_data.dst_align, cmd_data.dst_or_mask);
+    if (!dst)
+        return -1;
+    MAINLOOP_DATA(name, cmd_data, size, memmove_func(dst, src, size));
+    return 0;
+}
+
+int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) {
+    int size = cmd_data.args[0];
+
+    uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
+    if (!src)
+        return -1;
+    memset(src, 0xff, size);
+
+    // Use volatile so the compiler does not optimize away the reads.
+    volatile int foo;
+    size_t k;
+    MAINLOOP_DATA(name, cmd_data, size,
+                  for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
+    free(src);
+
+    return 0;
+}
+
+int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
+
+    int retval;
+    BENCH_TWO_BUFS(name, cmd_data,
+                   initString(buf1, size); \
+                   initString(buf2, size),
+                   retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
+                   if (retval != 0) printf("%s failed, return value %d\n", name, retval));
+
+    return 0;
+}
+
+int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
+
+    int retval;
+    COLD_TWO_BUFS(name, cmd_data,
+                  memset(buffer1, 'a', buffer1_size); \
+                  memset(buffer2, 'a', buffer2_size); \
+                  for (size_t i =0; i < num_buffers; i++) { \
+                      buffer1[size-1+buf1_incr*i] = '\0'; \
+                      buffer2[size-1+buf2_incr*i] = '\0'; \
+                  },
+                  retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
+                  if (retval != 0) printf("%s failed, return value %d\n", name, retval));
+
+    return 0;
+}
+
+int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    size_t real_size;
+    strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
+    BENCH_ONE_BUF(name, cmd_data,
+                  initString(buf, size),
+                  real_size = strlen_func(reinterpret_cast<char*>(buf)); \
+                  if (real_size + 1 != size) { \
+                      printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
+                      return -1; \
+                  });
+
+    return 0;
+}
+
+int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
+    size_t real_size;
+    COLD_ONE_BUF(name, cmd_data,
+                 memset(buffer, 'a', buffer_size); \
+                 for (size_t i = 0; i < num_buffers; i++) { \
+                     buffer[size-1+incr*i] = '\0'; \
+                 },
+                 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
+                 if (real_size + 1 != size) { \
+                     printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \
+                     return -1; \
+                 });
+    return 0;
+}
+
+int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    str_func_t str_func = reinterpret_cast<str_func_t>(func);
+
+    int dst_str_size = cmd_data.dst_str_size;
+    if (dst_str_size <= 0) {
+        printf("%s requires --dst_str_size to be set to a non-zero value.\n",
+               name);
+        return -1;
+    }
+    BENCH_TWO_BUFS(name, cmd_data,
+                   initString(buf1, size); \
+                   initString(buf2, dst_str_size),
+                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
+
+    return 0;
+}
+
+int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    str_func_t str_func = reinterpret_cast<str_func_t>(func);
+
+    int dst_str_size = cmd_data.dst_str_size;
+    if (dst_str_size <= 0) {
+        printf("%s requires --dst_str_size to be set to a non-zero value.\n",
+               name);
+        return -1;
+    }
+    COLD_TWO_BUFS(name, cmd_data,
+                  memset(buffer1, 'a', buffer1_size); \
+                  memset(buffer2, 'b', buffer2_size); \
+                  for (size_t i = 0; i < num_buffers; i++) { \
+                      buffer1[size-1+buf1_incr*i] = '\0'; \
+                      buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
+                  },
+                  str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
+
+    return 0;
+}
+
+
+int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    str_func_t str_func = reinterpret_cast<str_func_t>(func);
+
+    BENCH_TWO_BUFS(name, cmd_data,
+                   initString(buf1, size); \
+                   memset(buf2, 0, size),
+                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
+
+    return 0;
+}
+
+int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
+    str_func_t str_func = reinterpret_cast<str_func_t>(func);
+
+    COLD_TWO_BUFS(name, cmd_data,
+                  memset(buffer1, 'a', buffer1_size); \
+                  for (size_t i = 0; i < num_buffers; i++) { \
+                     buffer1[size-1+buf1_incr*i] = '\0'; \
+                  } \
+                  memset(buffer2, 0, buffer2_size),
+                  str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
+
+    return 0;
+}
+
+// Create the mapping structure.
+function_t function_table[] = {
+    { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
+    { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
+    { "memmove_forward", benchmarkMemcpy, reinterpret_cast<void_func_t>(memmove) },
+    { "memmove_backward", benchmarkMemmoveBackwards, reinterpret_cast<void_func_t>(memmove) },
+    { "memread", benchmarkMemread, NULL },
+    { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
+    { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
+    { "sleep", benchmarkSleep, NULL },
+    { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
+    { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
+    { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
+    { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
+    { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
+    { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
+    { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
+    { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
+};
+
+void usage() {
+    printf("Usage:\n");
+    printf("  micro_bench [--data_size DATA_BYTES] [--print_average]\n");
+    printf("              [--no_print_each_iter] [--lock_to_cpu CORE]\n");
+    printf("              [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
+    printf("              [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
+    printf("              [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
+    printf("              [--cold_stride_size SIZE]\n");
+    printf("    --data_size DATA_BYTES\n");
+    printf("      For the data benchmarks (memcpy/memset/memread) the approximate\n");
+    printf("      size of data, in bytes, that will be manipulated in each iteration.\n");
+    printf("    --print_average\n");
+    printf("      Print the average and standard deviation of all iterations.\n");
+    printf("    --no_print_each_iter\n");
+    printf("      Do not print any values in each iteration.\n");
+    printf("    --lock_to_cpu CORE\n");
+    printf("      Lock to the specified CORE. The default is to use the last core found.\n");
+    printf("    --dst_align ALIGN\n");
+    printf("      If the command supports it, align the destination pointer to ALIGN.\n");
+    printf("      The default is to use the value returned by malloc.\n");
+    printf("    --dst_or_mask OR_MASK\n");
+    printf("      If the command supports it, or in the OR_MASK on to the destination pointer.\n");
+    printf("      The OR_MASK must be smaller than the dst_align value.\n");
+    printf("      The default value is 0.\n");
+
+    printf("    --src_align ALIGN\n");
+    printf("      If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
+    printf("      value returned by malloc.\n");
+    printf("    --src_or_mask OR_MASK\n");
+    printf("      If the command supports it, or in the OR_MASK on to the source pointer.\n");
+    printf("      The OR_MASK must be smaller than the src_align value.\n");
+    printf("      The default value is 0.\n");
+    printf("    --dst_str_size SIZE\n");
+    printf("      If the command supports it, create a destination string of this length.\n");
+    printf("      The default is to not update the destination string.\n");
+    printf("    --cold_data_size DATA_SIZE\n");
+    printf("      For _cold benchmarks, use this as the total amount of memory to use.\n");
+    printf("      The default is 128MB, and the number should be larger than the cache on the chip.\n");
+    printf("      This value is specified in bytes.\n");
+    printf("    --cold_stride_size SIZE\n");
+    printf("      For _cold benchmarks, use this as the minimum stride between iterations.\n");
+    printf("      The default is 4096 bytes and the number should be larger than the amount of data\n");
+    printf("      pulled in to the cache by each run of the benchmark.\n");
+    printf("    ITERS\n");
+    printf("      The number of iterations to execute each benchmark. If not\n");
+    printf("      passed in then run forever.\n");
+    printf("  micro_bench cpu UNUSED [ITERS]\n");
+    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
+    printf("  micro_bench memread NUM_BYTES [ITERS]\n");
+    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
+    printf("  micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
+    printf("    TIME_TO_SLEEP\n");
+    printf("      The time in seconds to sleep.\n");
+    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
+    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
+    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
+    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
+    printf("\n");
+    printf("  In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
+    printf("  that will execute the function on a buffer not in the cache.\n");
+}
+
+function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
+    function_t *command = NULL;
+
+    // Initialize the command_flags.
+    cmd_data->print_average = false;
+    cmd_data->print_each_iter = true;
+    cmd_data->dst_align = 0;
+    cmd_data->src_align = 0;
+    cmd_data->src_or_mask = 0;
+    cmd_data->dst_or_mask = 0;
+    cmd_data->num_args = 0;
+    cmd_data->cpu_to_lock = -1;
+    cmd_data->data_size = DEFAULT_DATA_SIZE;
+    cmd_data->dst_str_size = -1;
+    cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
+    cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
+    for (int i = 0; i < MAX_ARGS; i++) {
+        cmd_data->args[i] = -1;
+    }
+
+    for (int i = 1; i < argc; i++) {
+        if (argv[i][0] == '-') {
+            int *save_value = NULL;
+            if (strcmp(argv[i], "--print_average") == 0) {
+                cmd_data->print_average = true;
+            } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
+                cmd_data->print_each_iter = false;
+            } else if (strcmp(argv[i], "--dst_align") == 0) {
+                save_value = &cmd_data->dst_align;
+            } else if (strcmp(argv[i], "--src_align") == 0) {
+                save_value = &cmd_data->src_align;
+            } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
+                save_value = &cmd_data->dst_or_mask;
+            } else if (strcmp(argv[i], "--src_or_mask") == 0) {
+                save_value = &cmd_data->src_or_mask;
+            } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
+                save_value = &cmd_data->cpu_to_lock;
+            } else if (strcmp(argv[i], "--data_size") == 0) {
+                save_value = &cmd_data->data_size;
+            } else if (strcmp(argv[i], "--dst_str_size") == 0) {
+                save_value = &cmd_data->dst_str_size;
+            } else if (strcmp(argv[i], "--cold_data_size") == 0) {
+                save_value = &cmd_data->cold_data_size;
+            } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
+                save_value = &cmd_data->cold_stride_size;
+            } else {
+                printf("Unknown option %s\n", argv[i]);
+                return NULL;
+            }
+            if (save_value) {
+                // Checking both characters without a strlen() call should be
+                // safe since as long as the argument exists, one character will
+                // be present (\0). And if the first character is '-', then
+                // there will always be a second character (\0 again).
+                if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
+                    printf("The option %s requires one argument.\n",
+                           argv[i]);
+                    return NULL;
+                }
+                *save_value = (int)strtol(argv[++i], NULL, 0);
+            }
+        } else if (!command) {
+            for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
+                if (strcmp(argv[i], function_table[j].name) == 0) {
+                    command = &function_table[j];
+                    break;
+                }
+            }
+            if (!command) {
+                printf("Uknown command %s\n", argv[i]);
+                return NULL;
+            }
+        } else if (cmd_data->num_args > MAX_ARGS) {
+            printf("More than %d number arguments passed in.\n", MAX_ARGS);
+            return NULL;
+        } else {
+            cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
+        }
+    }
+
+    // Check the arguments passed in make sense.
+    if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
+        printf("Not enough arguments passed in.\n");
+        return NULL;
+    } else if (cmd_data->dst_align < 0) {
+        printf("The --dst_align option must be greater than or equal to 0.\n");
+        return NULL;
+    } else if (cmd_data->src_align < 0) {
+        printf("The --src_align option must be greater than or equal to 0.\n");
+        return NULL;
+    } else if (cmd_data->data_size <= 0) {
+        printf("The --data_size option must be a positive number.\n");
+        return NULL;
+    } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
+        printf("The --dst_align option must be a power of 2.\n");
+        return NULL;
+    } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
+        printf("The --src_align option must be a power of 2.\n");
+        return NULL;
+    } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
+        printf("The --src_or_mask option requires that --src_align be set.\n");
+        return NULL;
+    } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
+        printf("The --dst_or_mask option requires that --dst_align be set.\n");
+        return NULL;
+    } else if (cmd_data->src_or_mask > cmd_data->src_align) {
+        printf("The value of --src_or_mask cannot be larger that --src_align.\n");
+        return NULL;
+    } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
+        printf("The value of --src_or_mask cannot be larger that --src_align.\n");
+        return NULL;
+    }
+
+    return command;
+}
+
+bool raisePriorityAndLock(int cpu_to_lock) {
+    cpu_set_t cpuset;
+
+    if (setpriority(PRIO_PROCESS, 0, -20)) {
+        perror("Unable to raise priority of process.\n");
+        return false;
+    }
+
+    CPU_ZERO(&cpuset);
+    if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
+        perror("sched_getaffinity failed");
+        return false;
+    }
+
+    if (cpu_to_lock < 0) {
+        // Lock to the last active core we find.
+        for (int i = 0; i < CPU_SETSIZE; i++) {
+            if (CPU_ISSET(i, &cpuset)) {
+                cpu_to_lock = i;
+            }
+        }
+    } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
+        printf("Cpu %d does not exist.\n", cpu_to_lock);
+        return false;
+    }
+
+    if (cpu_to_lock < 0) {
+        printf("Cannot find any valid cpu to lock.\n");
+        return false;
+    }
+
+    CPU_ZERO(&cpuset);
+    CPU_SET(cpu_to_lock, &cpuset);
+    if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
+        perror("sched_setaffinity failed");
+        return false;
+    }
+
+    return true;
+}
+
+int main(int argc, char **argv) {
+    command_data_t cmd_data;
+
+    function_t *command = processOptions(argc, argv, &cmd_data);
+    if (!command) {
+      usage();
+      return -1;
+    }
+
+    if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
+      return -1;
+    }
+
+    printf("%s\n", command->name);
+    return (*command->ptr)(command->name, cmd_data, command->func);
+}