blob: f9803f5d44f7b102a60f94384e083a7c8d1fdd1e [file] [log] [blame]
/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
return "ARM-Thumb2" SLJIT_CPUINFO;
}
/* Length of an instruction word. */
typedef sljit_ui sljit_ins;
/* Last register + 1. */
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_PC (SLJIT_NUMBER_OF_REGISTERS + 5)
#define TMP_FREG1 (0)
#define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
/* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */
static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
0, 0, 1, 2, 12, 11, 10, 9, 8, 7, 6, 5, 13, 3, 4, 14, 15
};
#define COPY_BITS(src, from, to, bits) \
((from >= to ? (src >> (from - to)) : (src << (to - from))) & (((1 << bits) - 1) << to))
/* Thumb16 encodings. */
#define RD3(rd) (reg_map[rd])
#define RN3(rn) (reg_map[rn] << 3)
#define RM3(rm) (reg_map[rm] << 6)
#define RDN3(rdn) (reg_map[rdn] << 8)
#define IMM3(imm) (imm << 6)
#define IMM8(imm) (imm)
/* Thumb16 helpers. */
#define SET_REGS44(rd, rn) \
((reg_map[rn] << 3) | (reg_map[rd] & 0x7) | ((reg_map[rd] & 0x8) << 4))
#define IS_2_LO_REGS(reg1, reg2) \
(reg_map[reg1] <= 7 && reg_map[reg2] <= 7)
#define IS_3_LO_REGS(reg1, reg2, reg3) \
(reg_map[reg1] <= 7 && reg_map[reg2] <= 7 && reg_map[reg3] <= 7)
/* Thumb32 encodings. */
#define RD4(rd) (reg_map[rd] << 8)
#define RN4(rn) (reg_map[rn] << 16)
#define RM4(rm) (reg_map[rm])
#define RT4(rt) (reg_map[rt] << 12)
#define DD4(dd) ((dd) << 12)
#define DN4(dn) ((dn) << 16)
#define DM4(dm) (dm)
#define IMM5(imm) \
(COPY_BITS(imm, 2, 12, 3) | ((imm & 0x3) << 6))
#define IMM12(imm) \
(COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff))
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
/* dot '.' changed to _
I immediate form (possibly followed by number of immediate bits). */
#define ADCI 0xf1400000
#define ADCS 0x4140
#define ADC_W 0xeb400000
#define ADD 0x4400
#define ADDS 0x1800
#define ADDSI3 0x1c00
#define ADDSI8 0x3000
#define ADD_W 0xeb000000
#define ADDWI 0xf2000000
#define ADD_SP 0xb000
#define ADD_W 0xeb000000
#define ADD_WI 0xf1000000
#define ANDI 0xf0000000
#define ANDS 0x4000
#define AND_W 0xea000000
#define ASRS 0x4100
#define ASRSI 0x1000
#define ASR_W 0xfa40f000
#define ASR_WI 0xea4f0020
#define BICI 0xf0200000
#define BKPT 0xbe00
#define BLX 0x4780
#define BX 0x4700
#define CLZ 0xfab0f080
#define CMPI 0x2800
#define CMP_W 0xebb00f00
#define EORI 0xf0800000
#define EORS 0x4040
#define EOR_W 0xea800000
#define IT 0xbf00
#define LSLS 0x4080
#define LSLSI 0x0000
#define LSL_W 0xfa00f000
#define LSL_WI 0xea4f0000
#define LSRS 0x40c0
#define LSRSI 0x0800
#define LSR_W 0xfa20f000
#define LSR_WI 0xea4f0010
#define MOV 0x4600
#define MOVS 0x0000
#define MOVSI 0x2000
#define MOVT 0xf2c00000
#define MOVW 0xf2400000
#define MOV_W 0xea4f0000
#define MOV_WI 0xf04f0000
#define MUL 0xfb00f000
#define MVNS 0x43c0
#define MVN_W 0xea6f0000
#define MVN_WI 0xf06f0000
#define NOP 0xbf00
#define ORNI 0xf0600000
#define ORRI 0xf0400000
#define ORRS 0x4300
#define ORR_W 0xea400000
#define POP 0xbc00
#define POP_W 0xe8bd0000
#define PUSH 0xb400
#define PUSH_W 0xe92d0000
#define RSB_WI 0xf1c00000
#define RSBSI 0x4240
#define SBCI 0xf1600000
#define SBCS 0x4180
#define SBC_W 0xeb600000
#define SMULL 0xfb800000
#define STR_SP 0x9000
#define SUBS 0x1a00
#define SUBSI3 0x1e00
#define SUBSI8 0x3800
#define SUB_W 0xeba00000
#define SUBWI 0xf2a00000
#define SUB_SP 0xb080
#define SUB_WI 0xf1a00000
#define SXTB 0xb240
#define SXTB_W 0xfa4ff080
#define SXTH 0xb200
#define SXTH_W 0xfa0ff080
#define TST 0x4200
#define UMULL 0xfba00000
#define UXTB 0xb2c0
#define UXTB_W 0xfa5ff080
#define UXTH 0xb280
#define UXTH_W 0xfa1ff080
#define VABS_F32 0xeeb00ac0
#define VADD_F32 0xee300a00
#define VCMP_F32 0xeeb40a40
#define VCVT_F32_S32 0xeeb80ac0
#define VCVT_F64_F32 0xeeb70ac0
#define VCVT_S32_F32 0xeebd0ac0
#define VDIV_F32 0xee800a00
#define VMOV_F32 0xeeb00a40
#define VMOV 0xee000a10
#define VMRS 0xeef1fa10
#define VMUL_F32 0xee200a00
#define VNEG_F32 0xeeb10a40
#define VSTR_F32 0xed000a00
#define VSUB_F32 0xee300a40
static sljit_si push_inst16(struct sljit_compiler *compiler, sljit_ins inst)
{
sljit_uh *ptr;
SLJIT_ASSERT(!(inst & 0xffff0000));
ptr = (sljit_uh*)ensure_buf(compiler, sizeof(sljit_uh));
FAIL_IF(!ptr);
*ptr = inst;
compiler->size++;
return SLJIT_SUCCESS;
}
static sljit_si push_inst32(struct sljit_compiler *compiler, sljit_ins inst)
{
sljit_uh *ptr = (sljit_uh*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr++ = inst >> 16;
*ptr = inst;
compiler->size += 2;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si emit_imm32_const(struct sljit_compiler *compiler, sljit_si dst, sljit_uw imm)
{
FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) |
COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff)));
return push_inst32(compiler, MOVT | RD4(dst) |
COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16));
}
static SLJIT_INLINE void modify_imm32_const(sljit_uh *inst, sljit_uw new_imm)
{
sljit_si dst = inst[1] & 0x0f00;
SLJIT_ASSERT(((inst[0] & 0xfbf0) == (MOVW >> 16)) && ((inst[2] & 0xfbf0) == (MOVT >> 16)) && dst == (inst[3] & 0x0f00));
inst[0] = (MOVW >> 16) | COPY_BITS(new_imm, 12, 0, 4) | COPY_BITS(new_imm, 11, 10, 1);
inst[1] = dst | COPY_BITS(new_imm, 8, 12, 3) | (new_imm & 0xff);
inst[2] = (MOVT >> 16) | COPY_BITS(new_imm, 12 + 16, 0, 4) | COPY_BITS(new_imm, 11 + 16, 10, 1);
inst[3] = dst | COPY_BITS(new_imm, 8 + 16, 12, 3) | ((new_imm & 0xff0000) >> 16);
}
static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_uh *code_ptr, sljit_uh *code)
{
sljit_sw diff;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return 0;
if (jump->flags & JUMP_ADDR) {
/* Branch to ARM code is not optimized yet. */
if (!(jump->u.target & 0x1))
return 0;
diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2)) >> 1;
}
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2)) >> 1;
}
if (jump->flags & IS_COND) {
SLJIT_ASSERT(!(jump->flags & IS_BL));
if (diff <= 127 && diff >= -128) {
jump->flags |= PATCH_TYPE1;
return 5;
}
if (diff <= 524287 && diff >= -524288) {
jump->flags |= PATCH_TYPE2;
return 4;
}
/* +1 comes from the prefix IT instruction. */
diff--;
if (diff <= 8388607 && diff >= -8388608) {
jump->flags |= PATCH_TYPE3;
return 3;
}
}
else if (jump->flags & IS_BL) {
if (diff <= 8388607 && diff >= -8388608) {
jump->flags |= PATCH_BL;
return 3;
}
}
else {
if (diff <= 1023 && diff >= -1024) {
jump->flags |= PATCH_TYPE4;
return 4;
}
if (diff <= 8388607 && diff >= -8388608) {
jump->flags |= PATCH_TYPE5;
return 3;
}
}
return 0;
}
static SLJIT_INLINE void set_jump_instruction(struct sljit_jump *jump)
{
sljit_si type = (jump->flags >> 4) & 0xf;
sljit_sw diff;
sljit_uh *jump_inst;
sljit_si s, j1, j2;
if (SLJIT_UNLIKELY(type == 0)) {
modify_imm32_const((sljit_uh*)jump->addr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target);
return;
}
if (jump->flags & JUMP_ADDR) {
SLJIT_ASSERT(jump->u.target & 0x1);
diff = ((sljit_sw)jump->u.target - (sljit_sw)(jump->addr + 4)) >> 1;
}
else
diff = ((sljit_sw)(jump->u.label->addr) - (sljit_sw)(jump->addr + 4)) >> 1;
jump_inst = (sljit_uh*)jump->addr;
switch (type) {
case 1:
/* Encoding T1 of 'B' instruction */
SLJIT_ASSERT(diff <= 127 && diff >= -128 && (jump->flags & IS_COND));
jump_inst[0] = 0xd000 | (jump->flags & 0xf00) | (diff & 0xff);
return;
case 2:
/* Encoding T3 of 'B' instruction */
SLJIT_ASSERT(diff <= 524287 && diff >= -524288 && (jump->flags & IS_COND));
jump_inst[0] = 0xf000 | COPY_BITS(jump->flags, 8, 6, 4) | COPY_BITS(diff, 11, 0, 6) | COPY_BITS(diff, 19, 10, 1);
jump_inst[1] = 0x8000 | COPY_BITS(diff, 17, 13, 1) | COPY_BITS(diff, 18, 11, 1) | (diff & 0x7ff);
return;
case 3:
SLJIT_ASSERT(jump->flags & IS_COND);
*jump_inst++ = IT | ((jump->flags >> 4) & 0xf0) | 0x8;
diff--;
type = 5;
break;
case 4:
/* Encoding T2 of 'B' instruction */
SLJIT_ASSERT(diff <= 1023 && diff >= -1024 && !(jump->flags & IS_COND));
jump_inst[0] = 0xe000 | (diff & 0x7ff);
return;
}
SLJIT_ASSERT(diff <= 8388607 && diff >= -8388608);
/* Really complex instruction form for branches. */
s = (diff >> 23) & 0x1;
j1 = (~(diff >> 21) ^ s) & 0x1;
j2 = (~(diff >> 22) ^ s) & 0x1;
jump_inst[0] = 0xf000 | (s << 10) | COPY_BITS(diff, 11, 0, 10);
jump_inst[1] = (j1 << 13) | (j2 << 11) | (diff & 0x7ff);
/* The others have a common form. */
if (type == 5) /* Encoding T4 of 'B' instruction */
jump_inst[1] |= 0x9000;
else if (type == 6) /* Encoding T1 of 'BL' instruction */
jump_inst[1] |= 0xd000;
else
SLJIT_ASSERT_STOP();
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_uh *code;
sljit_uh *code_ptr;
sljit_uh *buf_ptr;
sljit_uh *buf_end;
sljit_uw half_count;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
code = (sljit_uh*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_uh));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
half_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_uh*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 1);
do {
*code_ptr = *buf_ptr++;
/* These structures are ordered by their address. */
SLJIT_ASSERT(!label || label->size >= half_count);
SLJIT_ASSERT(!jump || jump->addr >= half_count);
SLJIT_ASSERT(!const_ || const_->addr >= half_count);
if (label && label->size == half_count) {
label->addr = ((sljit_uw)code_ptr) | 0x1;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == half_count) {
jump->addr = (sljit_uw)code_ptr - ((jump->flags & IS_COND) ? 10 : 8);
code_ptr -= detect_jump_type(jump, code_ptr, code);
jump = jump->next;
}
if (const_ && const_->addr == half_count) {
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
half_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == half_count) {
label->addr = ((sljit_uw)code_ptr) | 0x1;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
set_jump_instruction(jump);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_uh);
SLJIT_CACHE_FLUSH(code, code_ptr);
/* Set thumb mode flag. */
return (void*)((sljit_uw)code | 0x1);
}
/* --------------------------------------------------------------------- */
/* Core code generator functions. */
/* --------------------------------------------------------------------- */
#define INVALID_IMM 0x80000000
static sljit_uw get_imm(sljit_uw imm)
{
/* Thumb immediate form. */
sljit_si counter;
if (imm <= 0xff)
return imm;
if ((imm & 0xffff) == (imm >> 16)) {
/* Some special cases. */
if (!(imm & 0xff00))
return (1 << 12) | (imm & 0xff);
if (!(imm & 0xff))
return (2 << 12) | ((imm >> 8) & 0xff);
if ((imm & 0xff00) == ((imm & 0xff) << 8))
return (3 << 12) | (imm & 0xff);
}
/* Assembly optimization: count leading zeroes? */
counter = 8;
if (!(imm & 0xffff0000)) {
counter += 16;
imm <<= 16;
}
if (!(imm & 0xff000000)) {
counter += 8;
imm <<= 8;
}
if (!(imm & 0xf0000000)) {
counter += 4;
imm <<= 4;
}
if (!(imm & 0xc0000000)) {
counter += 2;
imm <<= 2;
}
if (!(imm & 0x80000000)) {
counter += 1;
imm <<= 1;
}
/* Since imm >= 128, this must be true. */
SLJIT_ASSERT(counter <= 31);
if (imm & 0x00ffffff)
return INVALID_IMM; /* Cannot be encoded. */
return ((imm >> 24) & 0x7f) | COPY_BITS(counter, 4, 26, 1) | COPY_BITS(counter, 1, 12, 3) | COPY_BITS(counter, 0, 7, 1);
}
static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst, sljit_uw imm)
{
sljit_uw tmp;
if (imm >= 0x10000) {
tmp = get_imm(imm);
if (tmp != INVALID_IMM)
return push_inst32(compiler, MOV_WI | RD4(dst) | tmp);
tmp = get_imm(~imm);
if (tmp != INVALID_IMM)
return push_inst32(compiler, MVN_WI | RD4(dst) | tmp);
}
/* set low 16 bits, set hi 16 bits to 0. */
FAIL_IF(push_inst32(compiler, MOVW | RD4(dst) |
COPY_BITS(imm, 12, 16, 4) | COPY_BITS(imm, 11, 26, 1) | COPY_BITS(imm, 8, 12, 3) | (imm & 0xff)));
/* set hi 16 bit if needed. */
if (imm >= 0x10000)
return push_inst32(compiler, MOVT | RD4(dst) |
COPY_BITS(imm, 12 + 16, 16, 4) | COPY_BITS(imm, 11 + 16, 26, 1) | COPY_BITS(imm, 8 + 16, 12, 3) | ((imm & 0xff0000) >> 16));
return SLJIT_SUCCESS;
}
#define ARG1_IMM 0x0010000
#define ARG2_IMM 0x0020000
#define KEEP_FLAGS 0x0040000
/* SET_FLAGS must be 0x100000 as it is also the value of S bit (can be used for optimization). */
#define SET_FLAGS 0x0100000
#define UNUSED_RETURN 0x0200000
#define SLOW_DEST 0x0400000
#define SLOW_SRC1 0x0800000
#define SLOW_SRC2 0x1000000
static sljit_si emit_op_imm(struct sljit_compiler *compiler, sljit_si flags, sljit_si dst, sljit_uw arg1, sljit_uw arg2)
{
/* dst must be register, TMP_REG1
arg1 must be register, TMP_REG1, imm
arg2 must be register, TMP_REG2, imm */
sljit_si reg;
sljit_uw imm, nimm;
if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) {
/* Both are immediates. */
flags &= ~ARG1_IMM;
FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
arg1 = TMP_REG1;
}
if (flags & (ARG1_IMM | ARG2_IMM)) {
reg = (flags & ARG2_IMM) ? arg1 : arg2;
imm = (flags & ARG2_IMM) ? arg2 : arg1;
switch (flags & 0xffff) {
case SLJIT_CLZ:
case SLJIT_MUL:
/* No form with immediate operand. */
break;
case SLJIT_MOV:
SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG1);
return load_immediate(compiler, dst, imm);
case SLJIT_NOT:
if (!(flags & SET_FLAGS))
return load_immediate(compiler, dst, ~imm);
/* Since the flags should be set, we just fallback to the register mode.
Although some clever things could be done here, "NOT IMM" does not worth the efforts. */
break;
case SLJIT_ADD:
nimm = -imm;
if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(reg, dst)) {
if (imm <= 0x7)
return push_inst16(compiler, ADDSI3 | IMM3(imm) | RD3(dst) | RN3(reg));
if (nimm <= 0x7)
return push_inst16(compiler, SUBSI3 | IMM3(nimm) | RD3(dst) | RN3(reg));
if (reg == dst) {
if (imm <= 0xff)
return push_inst16(compiler, ADDSI8 | IMM8(imm) | RDN3(dst));
if (nimm <= 0xff)
return push_inst16(compiler, SUBSI8 | IMM8(nimm) | RDN3(dst));
}
}
if (!(flags & SET_FLAGS)) {
if (imm <= 0xfff)
return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(imm));
if (nimm <= 0xfff)
return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(nimm));
}
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, ADD_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_ADDC:
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, ADCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_SUB:
if (flags & ARG1_IMM) {
if (!(flags & KEEP_FLAGS) && imm == 0 && IS_2_LO_REGS(reg, dst))
return push_inst16(compiler, RSBSI | RD3(dst) | RN3(reg));
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, RSB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
}
nimm = -imm;
if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(reg, dst)) {
if (imm <= 0x7)
return push_inst16(compiler, SUBSI3 | IMM3(imm) | RD3(dst) | RN3(reg));
if (nimm <= 0x7)
return push_inst16(compiler, ADDSI3 | IMM3(nimm) | RD3(dst) | RN3(reg));
if (reg == dst) {
if (imm <= 0xff)
return push_inst16(compiler, SUBSI8 | IMM8(imm) | RDN3(dst));
if (nimm <= 0xff)
return push_inst16(compiler, ADDSI8 | IMM8(nimm) | RDN3(dst));
}
if (imm <= 0xff && (flags & UNUSED_RETURN))
return push_inst16(compiler, CMPI | IMM8(imm) | RDN3(reg));
}
if (!(flags & SET_FLAGS)) {
if (imm <= 0xfff)
return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(imm));
if (nimm <= 0xfff)
return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(nimm));
}
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, SUB_WI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_SUBC:
if (flags & ARG1_IMM)
break;
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, SBCI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_AND:
nimm = get_imm(imm);
if (nimm != INVALID_IMM)
return push_inst32(compiler, ANDI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm);
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, BICI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_OR:
nimm = get_imm(imm);
if (nimm != INVALID_IMM)
return push_inst32(compiler, ORRI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | nimm);
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, ORNI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_XOR:
imm = get_imm(imm);
if (imm != INVALID_IMM)
return push_inst32(compiler, EORI | (flags & SET_FLAGS) | RD4(dst) | RN4(reg) | imm);
break;
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
if (flags & ARG1_IMM)
break;
imm &= 0x1f;
if (imm == 0) {
if (!(flags & SET_FLAGS))
return push_inst16(compiler, MOV | SET_REGS44(dst, reg));
if (IS_2_LO_REGS(dst, reg))
return push_inst16(compiler, MOVS | RD3(dst) | RN3(reg));
return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(dst) | RM4(reg));
}
switch (flags & 0xffff) {
case SLJIT_SHL:
if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg))
return push_inst16(compiler, LSLSI | RD3(dst) | RN3(reg) | (imm << 6));
return push_inst32(compiler, LSL_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm));
case SLJIT_LSHR:
if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg))
return push_inst16(compiler, LSRSI | RD3(dst) | RN3(reg) | (imm << 6));
return push_inst32(compiler, LSR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm));
default: /* SLJIT_ASHR */
if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, reg))
return push_inst16(compiler, ASRSI | RD3(dst) | RN3(reg) | (imm << 6));
return push_inst32(compiler, ASR_WI | (flags & SET_FLAGS) | RD4(dst) | RM4(reg) | IMM5(imm));
}
default:
SLJIT_ASSERT_STOP();
break;
}
if (flags & ARG2_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG2, arg2));
arg2 = TMP_REG2;
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
arg1 = TMP_REG1;
}
}
/* Both arguments are registers. */
switch (flags & 0xffff) {
case SLJIT_MOV:
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
case SLJIT_MOV_P:
case SLJIT_MOVU:
case SLJIT_MOVU_UI:
case SLJIT_MOVU_SI:
case SLJIT_MOVU_P:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (dst == arg2)
return SLJIT_SUCCESS;
return push_inst16(compiler, MOV | SET_REGS44(dst, arg2));
case SLJIT_MOV_UB:
case SLJIT_MOVU_UB:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, UXTB | RD3(dst) | RN3(arg2));
return push_inst32(compiler, UXTB_W | RD4(dst) | RM4(arg2));
case SLJIT_MOV_SB:
case SLJIT_MOVU_SB:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, SXTB | RD3(dst) | RN3(arg2));
return push_inst32(compiler, SXTB_W | RD4(dst) | RM4(arg2));
case SLJIT_MOV_UH:
case SLJIT_MOVU_UH:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, UXTH | RD3(dst) | RN3(arg2));
return push_inst32(compiler, UXTH_W | RD4(dst) | RM4(arg2));
case SLJIT_MOV_SH:
case SLJIT_MOVU_SH:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, SXTH | RD3(dst) | RN3(arg2));
return push_inst32(compiler, SXTH_W | RD4(dst) | RM4(arg2));
case SLJIT_NOT:
SLJIT_ASSERT(arg1 == TMP_REG1);
if (!(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, MVNS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, MVN_W | (flags & SET_FLAGS) | RD4(dst) | RM4(arg2));
case SLJIT_CLZ:
SLJIT_ASSERT(arg1 == TMP_REG1);
FAIL_IF(push_inst32(compiler, CLZ | RN4(arg2) | RD4(dst) | RM4(arg2)));
if (flags & SET_FLAGS) {
if (reg_map[dst] <= 7)
return push_inst16(compiler, CMPI | RDN3(dst));
return push_inst32(compiler, ADD_WI | SET_FLAGS | RN4(dst) | RD4(dst));
}
return SLJIT_SUCCESS;
case SLJIT_ADD:
if (!(flags & KEEP_FLAGS) && IS_3_LO_REGS(dst, arg1, arg2))
return push_inst16(compiler, ADDS | RD3(dst) | RN3(arg1) | RM3(arg2));
if (dst == arg1 && !(flags & SET_FLAGS))
return push_inst16(compiler, ADD | SET_REGS44(dst, arg2));
return push_inst32(compiler, ADD_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_ADDC:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, ADCS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, ADC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_SUB:
if (!(flags & KEEP_FLAGS) && IS_3_LO_REGS(dst, arg1, arg2))
return push_inst16(compiler, SUBS | RD3(dst) | RN3(arg1) | RM3(arg2));
return push_inst32(compiler, SUB_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_SUBC:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, SBCS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, SBC_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_MUL:
if (!(flags & SET_FLAGS))
return push_inst32(compiler, MUL | RD4(dst) | RN4(arg1) | RM4(arg2));
SLJIT_ASSERT(reg_map[TMP_REG2] <= 7 && dst != TMP_REG2);
FAIL_IF(push_inst32(compiler, SMULL | RT4(dst) | RD4(TMP_REG2) | RN4(arg1) | RM4(arg2)));
/* cmp TMP_REG2, dst asr #31. */
return push_inst32(compiler, CMP_W | RN4(TMP_REG2) | 0x70e0 | RM4(dst));
case SLJIT_AND:
if (!(flags & KEEP_FLAGS)) {
if (dst == arg1 && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, ANDS | RD3(dst) | RN3(arg2));
if ((flags & UNUSED_RETURN) && IS_2_LO_REGS(arg1, arg2))
return push_inst16(compiler, TST | RD3(arg1) | RN3(arg2));
}
return push_inst32(compiler, AND_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_OR:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, ORRS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, ORR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_XOR:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, EORS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, EOR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_SHL:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, LSLS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, LSL_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_LSHR:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, LSRS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, LSR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
case SLJIT_ASHR:
if (dst == arg1 && !(flags & KEEP_FLAGS) && IS_2_LO_REGS(dst, arg2))
return push_inst16(compiler, ASRS | RD3(dst) | RN3(arg2));
return push_inst32(compiler, ASR_W | (flags & SET_FLAGS) | RD4(dst) | RN4(arg1) | RM4(arg2));
}
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
}
#define STORE 0x01
#define SIGNED 0x02
#define WORD_SIZE 0x00
#define BYTE_SIZE 0x04
#define HALF_SIZE 0x08
#define UPDATE 0x10
#define ARG_TEST 0x20
#define IS_WORD_SIZE(flags) (!(flags & (BYTE_SIZE | HALF_SIZE)))
#define OFFSET_CHECK(imm, shift) (!(argw & ~(imm << shift)))
/*
1st letter:
w = word
b = byte
h = half
2nd letter:
s = signed
u = unsigned
3rd letter:
l = load
s = store
*/
static SLJIT_CONST sljit_ins sljit_mem16[12] = {
/* w u l */ 0x5800 /* ldr */,
/* w u s */ 0x5000 /* str */,
/* w s l */ 0x5800 /* ldr */,
/* w s s */ 0x5000 /* str */,
/* b u l */ 0x5c00 /* ldrb */,
/* b u s */ 0x5400 /* strb */,
/* b s l */ 0x5600 /* ldrsb */,
/* b s s */ 0x5400 /* strb */,
/* h u l */ 0x5a00 /* ldrh */,
/* h u s */ 0x5200 /* strh */,
/* h s l */ 0x5e00 /* ldrsh */,
/* h s s */ 0x5200 /* strh */,
};
static SLJIT_CONST sljit_ins sljit_mem16_imm5[12] = {
/* w u l */ 0x6800 /* ldr imm5 */,
/* w u s */ 0x6000 /* str imm5 */,
/* w s l */ 0x6800 /* ldr imm5 */,
/* w s s */ 0x6000 /* str imm5 */,
/* b u l */ 0x7800 /* ldrb imm5 */,
/* b u s */ 0x7000 /* strb imm5 */,
/* b s l */ 0x0000 /* not allowed */,
/* b s s */ 0x7000 /* strb imm5 */,
/* h u l */ 0x8800 /* ldrh imm5 */,
/* h u s */ 0x8000 /* strh imm5 */,
/* h s l */ 0x0000 /* not allowed */,
/* h s s */ 0x8000 /* strh imm5 */,
};
#define MEM_IMM8 0xc00
#define MEM_IMM12 0x800000
static SLJIT_CONST sljit_ins sljit_mem32[12] = {
/* w u l */ 0xf8500000 /* ldr.w */,
/* w u s */ 0xf8400000 /* str.w */,
/* w s l */ 0xf8500000 /* ldr.w */,
/* w s s */ 0xf8400000 /* str.w */,
/* b u l */ 0xf8100000 /* ldrb.w */,
/* b u s */ 0xf8000000 /* strb.w */,
/* b s l */ 0xf9100000 /* ldrsb.w */,
/* b s s */ 0xf8000000 /* strb.w */,
/* h u l */ 0xf8300000 /* ldrh.w */,
/* h u s */ 0xf8200000 /* strsh.w */,
/* h s l */ 0xf9300000 /* ldrsh.w */,
/* h s s */ 0xf8200000 /* strsh.w */,
};
/* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */
static sljit_si emit_set_delta(struct sljit_compiler *compiler, sljit_si dst, sljit_si reg, sljit_sw value)
{
if (value >= 0) {
if (value <= 0xfff)
return push_inst32(compiler, ADDWI | RD4(dst) | RN4(reg) | IMM12(value));
value = get_imm(value);
if (value != INVALID_IMM)
return push_inst32(compiler, ADD_WI | RD4(dst) | RN4(reg) | value);
}
else {
value = -value;
if (value <= 0xfff)
return push_inst32(compiler, SUBWI | RD4(dst) | RN4(reg) | IMM12(value));
value = get_imm(value);
if (value != INVALID_IMM)
return push_inst32(compiler, SUB_WI | RD4(dst) | RN4(reg) | value);
}
return SLJIT_ERR_UNSUPPORTED;
}
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_si other_r, shift;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (SLJIT_UNLIKELY(flags & UPDATE)) {
if ((arg & REG_MASK) && !(arg & OFFS_REG_MASK) && argw <= 0xff && argw >= -0xff) {
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
flags &= ~UPDATE;
arg &= 0xf;
if (argw >= 0)
argw |= 0x200;
else {
argw = -argw;
}
SLJIT_ASSERT(argw >= 0 && (argw & 0xff) <= 0xff);
FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | 0x100 | argw));
return -1;
}
return 0;
}
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
argw &= 0x3;
other_r = OFFS_REG(arg);
arg &= 0xf;
if (!argw && IS_3_LO_REGS(reg, arg, other_r))
FAIL_IF(push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r)));
else
FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4)));
return -1;
}
if (!(arg & REG_MASK) || argw > 0xfff || argw < -0xff)
return 0;
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
arg &= 0xf;
if (IS_2_LO_REGS(reg, arg) && sljit_mem16_imm5[flags]) {
shift = 3;
if (IS_WORD_SIZE(flags)) {
if (OFFSET_CHECK(0x1f, 2))
shift = 2;
}
else if (flags & BYTE_SIZE)
{
if (OFFSET_CHECK(0x1f, 0))
shift = 0;
}
else {
SLJIT_ASSERT(flags & HALF_SIZE);
if (OFFSET_CHECK(0x1f, 1))
shift = 1;
}
if (shift != 3) {
FAIL_IF(push_inst16(compiler, sljit_mem16_imm5[flags] | RD3(reg) | RN3(arg) | (argw << (6 - shift))));
return -1;
}
}
/* SP based immediate. */
if (SLJIT_UNLIKELY(arg == SLJIT_SP) && OFFSET_CHECK(0xff, 2) && IS_WORD_SIZE(flags) && reg_map[reg] <= 7) {
FAIL_IF(push_inst16(compiler, STR_SP | ((flags & STORE) ? 0 : 0x800) | RDN3(reg) | (argw >> 2)));
return -1;
}
if (argw >= 0)
FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw));
else
FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(arg) | -argw));
return -1;
}
/* see getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_sw diff;
if ((arg & OFFS_REG_MASK) || !(next_arg & SLJIT_MEM))
return 0;
if (!(arg & REG_MASK)) {
diff = argw - next_argw;
if (diff <= 0xfff && diff >= -0xfff)
return 1;
return 0;
}
if (argw == next_argw)
return 1;
diff = argw - next_argw;
if (arg == next_arg && diff <= 0xfff && diff >= -0xfff)
return 1;
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg,
sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si tmp_r, other_r;
sljit_sw diff;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
tmp_r = (flags & STORE) ? TMP_REG3 : reg;
if (SLJIT_UNLIKELY((flags & UPDATE) && (arg & REG_MASK))) {
/* Update only applies if a base register exists. */
/* There is no caching here. */
other_r = OFFS_REG(arg);
arg &= 0xf;
flags &= ~UPDATE;
if (!other_r) {
if (!(argw & ~0xfff)) {
FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(arg) | argw));
return push_inst32(compiler, ADDWI | RD4(arg) | RN4(arg) | IMM12(argw));
}
if (compiler->cache_arg == SLJIT_MEM) {
if (argw == compiler->cache_argw) {
other_r = TMP_REG3;
argw = 0;
}
else if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
other_r = TMP_REG3;
argw = 0;
}
}
if (argw) {
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
other_r = TMP_REG3;
argw = 0;
}
}
argw &= 0x3;
if (!argw && IS_3_LO_REGS(reg, arg, other_r)) {
FAIL_IF(push_inst16(compiler, sljit_mem16[flags] | RD3(reg) | RN3(arg) | RM3(other_r)));
return push_inst16(compiler, ADD | SET_REGS44(arg, other_r));
}
FAIL_IF(push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(other_r) | (argw << 4)));
return push_inst32(compiler, ADD_W | RD4(arg) | RN4(arg) | RM4(other_r) | (argw << 6));
}
flags &= ~UPDATE;
SLJIT_ASSERT(!(arg & OFFS_REG_MASK));
if (compiler->cache_arg == arg) {
diff = argw - compiler->cache_argw;
if (!(diff & ~0xfff))
return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | diff);
if (!((compiler->cache_argw - argw) & ~0xff))
return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM8 | RT4(reg) | RN4(TMP_REG3) | (compiler->cache_argw - argw));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, diff) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | 0);
}
}
next_arg = (arg & REG_MASK) && (arg == next_arg) && (argw != next_argw);
arg &= 0xf;
if (arg && compiler->cache_arg == SLJIT_MEM) {
if (compiler->cache_argw == argw)
return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3));
}
}
compiler->cache_argw = argw;
if (next_arg && emit_set_delta(compiler, TMP_REG3, arg, argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_arg = SLJIT_MEM | arg;
arg = 0;
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_MEM;
diff = argw - next_argw;
if (next_arg && diff <= 0xfff && diff >= -0xfff) {
FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG3, arg)));
compiler->cache_arg = SLJIT_MEM | arg;
arg = 0;
}
}
if (arg)
return push_inst32(compiler, sljit_mem32[flags] | RT4(reg) | RN4(arg) | RM4(TMP_REG3));
return push_inst32(compiler, sljit_mem32[flags] | MEM_IMM12 | RT4(reg) | RN4(TMP_REG3) | 0);
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
sljit_si size, i, tmp;
sljit_ins push;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
push = (1 << 4);
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--)
push |= 1 << reg_map[i];
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--)
push |= 1 << reg_map[i];
FAIL_IF((push & 0xff00)
? push_inst32(compiler, PUSH_W | (1 << 14) | push)
: push_inst16(compiler, PUSH | (1 << 8) | push));
/* Stack must be aligned to 8 bytes: (LR, R4) */
size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 2);
local_size = ((size + local_size + 7) & ~7) - size;
compiler->local_size = local_size;
if (local_size > 0) {
if (local_size <= (127 << 2))
FAIL_IF(push_inst16(compiler, SUB_SP | (local_size >> 2)));
else
FAIL_IF(emit_op_imm(compiler, SLJIT_SUB | ARG2_IMM, SLJIT_SP, SLJIT_SP, local_size));
}
if (args >= 1)
FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S0, SLJIT_R0)));
if (args >= 2)
FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S1, SLJIT_R1)));
if (args >= 3)
FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(SLJIT_S2, SLJIT_R2)));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
sljit_si size;
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 2);
compiler->local_size = ((size + local_size + 7) & ~7) - size;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_si i, tmp;
sljit_ins pop;
CHECK_ERROR();
CHECK(check_sljit_emit_return(compiler, op, src, srcw));
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
if (compiler->local_size > 0) {
if (compiler->local_size <= (127 << 2))
FAIL_IF(push_inst16(compiler, ADD_SP | (compiler->local_size >> 2)));
else
FAIL_IF(emit_op_imm(compiler, SLJIT_ADD | ARG2_IMM, SLJIT_SP, SLJIT_SP, compiler->local_size));
}
pop = (1 << 4);
tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--)
pop |= 1 << reg_map[i];
for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--)
pop |= 1 << reg_map[i];
return (pop & 0xff00)
? push_inst32(compiler, POP_W | (1 << 15) | pop)
: push_inst16(compiler, POP | (1 << 8) | pop);
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__GNUC__)
extern unsigned int __aeabi_uidivmod(unsigned int numerator, int unsigned denominator);
extern int __aeabi_idivmod(int numerator, int denominator);
#else
#error "Software divmod functions are needed"
#endif
#ifdef __cplusplus
}
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
sljit_sw saved_reg_list[3];
sljit_sw saved_reg_count;
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
return push_inst16(compiler, BKPT);
case SLJIT_NOP:
return push_inst16(compiler, NOP);
case SLJIT_LUMUL:
case SLJIT_LSMUL:
return push_inst32(compiler, (op == SLJIT_LUMUL ? UMULL : SMULL)
| (reg_map[SLJIT_R1] << 8)
| (reg_map[SLJIT_R0] << 12)
| (reg_map[SLJIT_R0] << 16)
| reg_map[SLJIT_R1]);
case SLJIT_UDIVMOD:
case SLJIT_SDIVMOD:
case SLJIT_UDIVI:
case SLJIT_SDIVI:
SLJIT_COMPILE_ASSERT((SLJIT_UDIVMOD & 0x2) == 0 && SLJIT_UDIVI - 0x2 == SLJIT_UDIVMOD, bad_div_opcode_assignments);
SLJIT_COMPILE_ASSERT(reg_map[2] == 1 && reg_map[3] == 2 && reg_map[4] == 12, bad_register_mapping);
saved_reg_count = 0;
if (compiler->scratches >= 4)
saved_reg_list[saved_reg_count++] = 12;
if (compiler->scratches >= 3)
saved_reg_list[saved_reg_count++] = 2;
if (op >= SLJIT_UDIVI)
saved_reg_list[saved_reg_count++] = 1;
if (saved_reg_count > 0) {
FAIL_IF(push_inst32(compiler, 0xf84d0d00 | (saved_reg_count >= 3 ? 16 : 8)
| (saved_reg_list[0] << 12) /* str rX, [sp, #-8/-16]! */));
if (saved_reg_count >= 2) {
SLJIT_ASSERT(saved_reg_list[1] < 8);
FAIL_IF(push_inst16(compiler, 0x9001 | (saved_reg_list[1] << 8) /* str rX, [sp, #4] */));
}
if (saved_reg_count >= 3) {
SLJIT_ASSERT(saved_reg_list[2] < 8);
FAIL_IF(push_inst16(compiler, 0x9002 | (saved_reg_list[2] << 8) /* str rX, [sp, #8] */));
}
}
#if defined(__GNUC__)
FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM,
((op | 0x2) == SLJIT_UDIVI ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod))));
#else
#error "Software divmod functions are needed"
#endif
if (saved_reg_count > 0) {
if (saved_reg_count >= 3) {
SLJIT_ASSERT(saved_reg_list[2] < 8);
FAIL_IF(push_inst16(compiler, 0x9802 | (saved_reg_list[2] << 8) /* ldr rX, [sp, #8] */));
}
if (saved_reg_count >= 2) {
SLJIT_ASSERT(saved_reg_list[1] < 8);
FAIL_IF(push_inst16(compiler, 0x9801 | (saved_reg_list[1] << 8) /* ldr rX, [sp, #4] */));
}
return push_inst32(compiler, 0xf85d0b00 | (saved_reg_count >= 3 ? 16 : 8)
| (saved_reg_list[0] << 12) /* ldr rX, [sp], #8/16 */);
}
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r, flags;
sljit_si op_flags = GET_ALL_FLAGS(op);
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
op = GET_OPCODE(op);
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_P) {
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
case SLJIT_MOV_P:
flags = WORD_SIZE;
break;
case SLJIT_MOV_UB:
flags = BYTE_SIZE;
if (src & SLJIT_IMM)
srcw = (sljit_ub)srcw;
break;
case SLJIT_MOV_SB:
flags = BYTE_SIZE | SIGNED;
if (src & SLJIT_IMM)
srcw = (sljit_sb)srcw;
break;
case SLJIT_MOV_UH:
flags = HALF_SIZE;
if (src & SLJIT_IMM)
srcw = (sljit_uh)srcw;
break;
case SLJIT_MOV_SH:
flags = HALF_SIZE | SIGNED;
if (src & SLJIT_IMM)
srcw = (sljit_sh)srcw;
break;
case SLJIT_MOVU:
case SLJIT_MOVU_UI:
case SLJIT_MOVU_SI:
case SLJIT_MOVU_P:
flags = WORD_SIZE | UPDATE;
break;
case SLJIT_MOVU_UB:
flags = BYTE_SIZE | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_ub)srcw;
break;
case SLJIT_MOVU_SB:
flags = BYTE_SIZE | SIGNED | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_sb)srcw;
break;
case SLJIT_MOVU_UH:
flags = HALF_SIZE | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_uh)srcw;
break;
case SLJIT_MOVU_SH:
flags = HALF_SIZE | SIGNED | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_sh)srcw;
break;
default:
SLJIT_ASSERT_STOP();
flags = 0;
break;
}
if (src & SLJIT_IMM)
FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG1, srcw));
else if (src & SLJIT_MEM) {
if (getput_arg_fast(compiler, flags, dst_r, src, srcw))
FAIL_IF(compiler->error);
else
FAIL_IF(getput_arg(compiler, flags, dst_r, src, srcw, dst, dstw));
} else {
if (dst_r != TMP_REG1)
return emit_op_imm(compiler, op, dst_r, TMP_REG1, src);
dst_r = src;
}
if (dst & SLJIT_MEM) {
if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw))
return compiler->error;
else
return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
if (op == SLJIT_NEG) {
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, SLJIT_SUB | op_flags, dst, dstw, SLJIT_IMM, 0, src, srcw);
}
flags = (GET_FLAGS(op_flags) ? SET_FLAGS : 0) | ((op_flags & SLJIT_KEEP_FLAGS) ? KEEP_FLAGS : 0);
if (src & SLJIT_MEM) {
if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG2, src, srcw))
FAIL_IF(compiler->error);
else
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src, srcw, dst, dstw));
src = TMP_REG2;
}
if (src & SLJIT_IMM)
flags |= ARG2_IMM;
else
srcw = src;
emit_op_imm(compiler, flags | op, dst_r, TMP_REG1, srcw);
if (dst & SLJIT_MEM) {
if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw))
return compiler->error;
else
return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r, flags;
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
flags = (GET_FLAGS(op) ? SET_FLAGS : 0) | ((op & SLJIT_KEEP_FLAGS) ? KEEP_FLAGS : 0);
if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, WORD_SIZE | STORE | ARG_TEST, TMP_REG1, dst, dstw))
flags |= SLOW_DEST;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG1, src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
}
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG2, src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src2, src2w, dst, dstw));
if (src1 & SLJIT_MEM)
src1 = TMP_REG1;
if (src2 & SLJIT_MEM)
src2 = TMP_REG2;
if (src1 & SLJIT_IMM)
flags |= ARG1_IMM;
else
src1w = src1;
if (src2 & SLJIT_IMM)
flags |= ARG2_IMM;
else
src2w = src2;
if (dst == SLJIT_UNUSED)
flags |= UNUSED_RETURN;
emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src1w, src2w);
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, WORD_SIZE | STORE, dst_r, dst, dstw);
return compiler->error;
}
return getput_arg(compiler, WORD_SIZE | STORE, TMP_REG1, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
return reg << 1;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
if (size == 2)
return push_inst16(compiler, *(sljit_uh*)instruction);
return push_inst32(compiler, *(sljit_ins*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#else
/* Available by default. */
return 1;
#endif
}
#define FPU_LOAD (1 << 20)
static sljit_si emit_fop_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_sw tmp;
sljit_uw imm;
sljit_sw inst = VSTR_F32 | (flags & (SLJIT_SINGLE_OP | FPU_LOAD));
SLJIT_ASSERT(arg & SLJIT_MEM);
/* Fast loads and stores. */
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
FAIL_IF(push_inst32(compiler, ADD_W | RD4(TMP_REG2) | RN4(arg & REG_MASK) | RM4(OFFS_REG(arg)) | ((argw & 0x3) << 6)));
arg = SLJIT_MEM | TMP_REG2;
argw = 0;
}
if ((arg & REG_MASK) && (argw & 0x3) == 0) {
if (!(argw & ~0x3fc))
return push_inst32(compiler, inst | 0x800000 | RN4(arg & REG_MASK) | DD4(reg) | (argw >> 2));
if (!(-argw & ~0x3fc))
return push_inst32(compiler, inst | RN4(arg & REG_MASK) | DD4(reg) | (-argw >> 2));
}
/* Slow cases */
SLJIT_ASSERT(!(arg & OFFS_REG_MASK));
if (compiler->cache_arg == arg) {
tmp = argw - compiler->cache_argw;
if (!(tmp & ~0x3fc))
return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg) | (tmp >> 2));
if (!(-tmp & ~0x3fc))
return push_inst32(compiler, inst | RN4(TMP_REG3) | DD4(reg) | (-tmp >> 2));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, tmp) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg));
}
}
if (arg & REG_MASK) {
if (emit_set_delta(compiler, TMP_REG1, arg & REG_MASK, argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg));
}
imm = get_imm(argw & ~0x3fc);
if (imm != INVALID_IMM) {
FAIL_IF(push_inst32(compiler, ADD_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm));
return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2));
}
imm = get_imm(-argw & ~0x3fc);
if (imm != INVALID_IMM) {
argw = -argw;
FAIL_IF(push_inst32(compiler, SUB_WI | RD4(TMP_REG1) | RN4(arg & REG_MASK) | imm));
return push_inst32(compiler, inst | RN4(TMP_REG1) | DD4(reg) | ((argw & 0x3fc) >> 2));
}
}
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
if (arg & REG_MASK)
FAIL_IF(push_inst16(compiler, ADD | SET_REGS44(TMP_REG3, (arg & REG_MASK))));
return push_inst32(compiler, inst | 0x800000 | RN4(TMP_REG3) | DD4(reg));
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
if (src & SLJIT_MEM) {
FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src, srcw));
src = TMP_FREG1;
}
FAIL_IF(push_inst32(compiler, VCVT_S32_F32 | (op & SLJIT_SINGLE_OP) | DD4(TMP_FREG1) | DM4(src)));
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst32(compiler, VMOV | (1 << 20) | RT4(dst) | DN4(TMP_FREG1));
/* Store the integer value from a VFP register. */
return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw);
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (FAST_IS_REG(src))
FAIL_IF(push_inst32(compiler, VMOV | RT4(src) | DN4(TMP_FREG1)));
else if (src & SLJIT_MEM) {
/* Load the integer value into a VFP register. */
FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw));
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
FAIL_IF(push_inst32(compiler, VMOV | RT4(TMP_REG1) | DN4(TMP_FREG1)));
}
FAIL_IF(push_inst32(compiler, VCVT_F32_S32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(TMP_FREG1)));
if (dst & SLJIT_MEM)
return emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), TMP_FREG1, dst, dstw);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
if (src1 & SLJIT_MEM) {
emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src1, src1w);
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG2, src2, src2w);
src2 = TMP_FREG2;
}
FAIL_IF(push_inst32(compiler, VCMP_F32 | (op & SLJIT_SINGLE_OP) | DD4(src1) | DM4(src2)));
return push_inst32(compiler, VMRS);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r;
CHECK_ERROR();
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (GET_OPCODE(op) != SLJIT_CONVD_FROMS)
op ^= SLJIT_SINGLE_OP;
SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100), float_transfer_bit_error);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, dst_r, src, srcw);
src = dst_r;
}
switch (GET_OPCODE(op)) {
case SLJIT_DMOV:
if (src != dst_r) {
if (dst_r != TMP_FREG1)
FAIL_IF(push_inst32(compiler, VMOV_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
else
dst_r = src;
}
break;
case SLJIT_DNEG:
FAIL_IF(push_inst32(compiler, VNEG_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
break;
case SLJIT_DABS:
FAIL_IF(push_inst32(compiler, VABS_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
break;
case SLJIT_CONVD_FROMS:
FAIL_IF(push_inst32(compiler, VCVT_F64_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DM4(src)));
op ^= SLJIT_SINGLE_OP;
break;
}
if (dst & SLJIT_MEM)
return emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), dst_r, dst, dstw);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
op ^= SLJIT_SINGLE_OP;
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
if (src1 & SLJIT_MEM) {
emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG1, src1, src1w);
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP) | FPU_LOAD, TMP_FREG2, src2, src2w);
src2 = TMP_FREG2;
}
switch (GET_OPCODE(op)) {
case SLJIT_DADD:
FAIL_IF(push_inst32(compiler, VADD_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
break;
case SLJIT_DSUB:
FAIL_IF(push_inst32(compiler, VSUB_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
break;
case SLJIT_DMUL:
FAIL_IF(push_inst32(compiler, VMUL_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
break;
case SLJIT_DDIV:
FAIL_IF(push_inst32(compiler, VDIV_F32 | (op & SLJIT_SINGLE_OP) | DD4(dst_r) | DN4(src1) | DM4(src2)));
break;
}
if (!(dst & SLJIT_MEM))
return SLJIT_SUCCESS;
return emit_fop_mem(compiler, (op & SLJIT_SINGLE_OP), TMP_FREG1, dst, dstw);
}
#undef FPU_LOAD
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst16(compiler, MOV | SET_REGS44(dst, TMP_REG3));
/* Memory. */
if (getput_arg_fast(compiler, WORD_SIZE | STORE, TMP_REG3, dst, dstw))
return compiler->error;
/* TMP_REG3 is used for caching. */
FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG2, TMP_REG3)));
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, 0, 0);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG3, src)));
else if (src & SLJIT_MEM) {
if (getput_arg_fast(compiler, WORD_SIZE, TMP_REG3, src, srcw))
FAIL_IF(compiler->error);
else {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
FAIL_IF(getput_arg(compiler, WORD_SIZE, TMP_REG2, src, srcw, 0, 0));
FAIL_IF(push_inst16(compiler, MOV | SET_REGS44(TMP_REG3, TMP_REG2)));
}
}
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
return push_inst16(compiler, BLX | RN3(TMP_REG3));
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
static sljit_uw get_cc(sljit_si type)
{
switch (type) {
case SLJIT_EQUAL:
case SLJIT_MUL_NOT_OVERFLOW:
case SLJIT_D_EQUAL:
return 0x0;
case SLJIT_NOT_EQUAL:
case SLJIT_MUL_OVERFLOW:
case SLJIT_D_NOT_EQUAL:
return 0x1;
case SLJIT_LESS:
case SLJIT_D_LESS:
return 0x3;
case SLJIT_GREATER_EQUAL:
case SLJIT_D_GREATER_EQUAL:
return 0x2;
case SLJIT_GREATER:
case SLJIT_D_GREATER:
return 0x8;
case SLJIT_LESS_EQUAL:
case SLJIT_D_LESS_EQUAL:
return 0x9;
case SLJIT_SIG_LESS:
return 0xb;
case SLJIT_SIG_GREATER_EQUAL:
return 0xa;
case SLJIT_SIG_GREATER:
return 0xc;
case SLJIT_SIG_LESS_EQUAL:
return 0xd;
case SLJIT_OVERFLOW:
case SLJIT_D_UNORDERED:
return 0x6;
case SLJIT_NOT_OVERFLOW:
case SLJIT_D_ORDERED:
return 0x7;
default: /* SLJIT_JUMP */
SLJIT_ASSERT_STOP();
return 0xe;
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
sljit_ins cc;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
/* In ARM, we don't need to touch the arguments. */
PTR_FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0));
if (type < SLJIT_JUMP) {
jump->flags |= IS_COND;
cc = get_cc(type);
jump->flags |= cc << 8;
PTR_FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8));
}
jump->addr = compiler->size;
if (type <= SLJIT_JUMP)
PTR_FAIL_IF(push_inst16(compiler, BX | RN3(TMP_REG1)));
else {
jump->flags |= IS_BL;
PTR_FAIL_IF(push_inst16(compiler, BLX | RN3(TMP_REG1)));
}
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
struct sljit_jump *jump;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
/* In ARM, we don't need to touch the arguments. */
if (!(src & SLJIT_IMM)) {
if (FAST_IS_REG(src))
return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(src));
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, src, srcw));
if (type >= SLJIT_FAST_CALL)
return push_inst16(compiler, BLX | RN3(TMP_REG1));
}
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
jump->u.target = srcw;
FAIL_IF(emit_imm32_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
return push_inst16(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RN3(TMP_REG1));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si dst_r, flags = GET_ALL_FLAGS(op);
sljit_ins cc, ins;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
cc = get_cc(type & 0xff);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
if (op < SLJIT_ADD) {
FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4));
if (reg_map[dst_r] > 7) {
FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 1));
FAIL_IF(push_inst32(compiler, MOV_WI | RD4(dst_r) | 0));
} else {
FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 1));
FAIL_IF(push_inst16(compiler, MOVSI | RDN3(dst_r) | 0));
}
if (dst_r != TMP_REG2)
return SLJIT_SUCCESS;
return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw);
}
ins = (op == SLJIT_AND ? ANDI : (op == SLJIT_OR ? ORRI : EORI));
if ((op == SLJIT_OR || op == SLJIT_XOR) && FAST_IS_REG(dst) && dst == src) {
/* Does not change the other bits. */
FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8));
FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst) | 1));
if (flags & SLJIT_SET_E) {
/* The condition must always be set, even if the ORRI/EORI is not executed above. */
if (reg_map[dst] <= 7)
return push_inst16(compiler, MOVS | RD3(TMP_REG1) | RN3(dst));
return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst));
}
return SLJIT_SUCCESS;
}
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, WORD_SIZE, TMP_REG2, src, srcw, dst, dstw));
src = TMP_REG2;
srcw = 0;
} else if (src & SLJIT_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG2, srcw));
src = TMP_REG2;
srcw = 0;
}
if (op == SLJIT_AND || src != dst_r) {
FAIL_IF(push_inst16(compiler, IT | (cc << 4) | (((cc & 0x1) ^ 0x1) << 3) | 0x4));
FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 1));
FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 0));
}
else {
FAIL_IF(push_inst16(compiler, IT | (cc << 4) | 0x8));
FAIL_IF(push_inst32(compiler, ins | RN4(src) | RD4(dst_r) | 1));
}
if (dst_r == TMP_REG2)
FAIL_IF(emit_op_mem2(compiler, WORD_SIZE | STORE, TMP_REG2, dst, dstw, 0, 0));
if (flags & SLJIT_SET_E) {
/* The condition must always be set, even if the ORR/EORI is not executed above. */
if (reg_map[dst_r] <= 7)
return push_inst16(compiler, MOVS | RD3(TMP_REG1) | RN3(dst_r));
return push_inst32(compiler, MOV_W | SET_FLAGS | RD4(TMP_REG1) | RM4(dst_r));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si dst_r;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
PTR_FAIL_IF(emit_imm32_const(compiler, dst_r, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
sljit_uh *inst = (sljit_uh*)addr;
modify_imm32_const(inst, new_addr);
SLJIT_CACHE_FLUSH(inst, inst + 4);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
sljit_uh *inst = (sljit_uh*)addr;
modify_imm32_const(inst, new_constant);
SLJIT_CACHE_FLUSH(inst, inst + 4);
}