blob: c4adfa50aa618339aeca310e80f7a927a12d19d9 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package com.google.protobuf.nano;
import java.io.UnsupportedEncodingException;
import java.util.Arrays;
/**
* The classes contained within are used internally by the Protocol Buffer
* library and generated message implementations. They are public only because
* those generated messages do not reside in the {@code protobuf} package.
* Others should not use this class directly.
*
* @author kenton@google.com (Kenton Varda)
*/
public final class InternalNano {
private InternalNano() {}
/**
* An object to provide synchronization when lazily initializing static fields
* of {@link MessageNano} subclasses.
* <p>
* To enable earlier versions of ProGuard to inline short methods from a
* generated MessageNano subclass to the call sites, that class must not have
* a class initializer, which will be created if there is any static variable
* initializers. To lazily initialize the static variables in a thread-safe
* manner, the initialization code will synchronize on this object.
*/
public static final Object LAZY_INIT_LOCK = new Object();
/**
* Helper called by generated code to construct default values for string
* fields.
* <p>
* The protocol compiler does not actually contain a UTF-8 decoder -- it
* just pushes UTF-8-encoded text around without touching it. The one place
* where this presents a problem is when generating Java string literals.
* Unicode characters in the string literal would normally need to be encoded
* using a Unicode escape sequence, which would require decoding them.
* To get around this, protoc instead embeds the UTF-8 bytes into the
* generated code and leaves it to the runtime library to decode them.
* <p>
* It gets worse, though. If protoc just generated a byte array, like:
* new byte[] {0x12, 0x34, 0x56, 0x78}
* Java actually generates *code* which allocates an array and then fills
* in each value. This is much less efficient than just embedding the bytes
* directly into the bytecode. To get around this, we need another
* work-around. String literals are embedded directly, so protoc actually
* generates a string literal corresponding to the bytes. The easiest way
* to do this is to use the ISO-8859-1 character set, which corresponds to
* the first 256 characters of the Unicode range. Protoc can then use
* good old CEscape to generate the string.
* <p>
* So we have a string literal which represents a set of bytes which
* represents another string. This function -- stringDefaultValue --
* converts from the generated string to the string we actually want. The
* generated code calls this automatically.
*/
public static String stringDefaultValue(String bytes) {
try {
return new String(bytes.getBytes("ISO-8859-1"), "UTF-8");
} catch (UnsupportedEncodingException e) {
// This should never happen since all JVMs are required to implement
// both of the above character sets.
throw new IllegalStateException(
"Java VM does not support a standard character set.", e);
}
}
/**
* Helper called by generated code to construct default values for bytes
* fields.
* <p>
* This is a lot like {@link #stringDefaultValue}, but for bytes fields.
* In this case we only need the second of the two hacks -- allowing us to
* embed raw bytes as a string literal with ISO-8859-1 encoding.
*/
public static byte[] bytesDefaultValue(String bytes) {
try {
return bytes.getBytes("ISO-8859-1");
} catch (UnsupportedEncodingException e) {
// This should never happen since all JVMs are required to implement
// ISO-8859-1.
throw new IllegalStateException(
"Java VM does not support a standard character set.", e);
}
}
/**
* Helper function to convert a string into UTF-8 while turning the
* UnsupportedEncodingException to a RuntimeException.
*/
public static byte[] copyFromUtf8(final String text) {
try {
return text.getBytes("UTF-8");
} catch (UnsupportedEncodingException e) {
throw new RuntimeException("UTF-8 not supported?");
}
}
/**
* Checks repeated int field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(int[] field1, int[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated long field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(long[] field1, long[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated float field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(float[] field1, float[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated double field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(double[] field1, double[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated boolean field equality; null-value and 0-length fields are
* considered equal.
*/
public static boolean equals(boolean[] field1, boolean[] field2) {
if (field1 == null || field1.length == 0) {
return field2 == null || field2.length == 0;
} else {
return Arrays.equals(field1, field2);
}
}
/**
* Checks repeated bytes field equality. Only non-null elements are tested.
* Returns true if the two fields have the same sequence of non-null
* elements. Null-value fields and fields of any length with only null
* elements are considered equal.
*/
public static boolean equals(byte[][] field1, byte[][] field2) {
int index1 = 0;
int length1 = field1 == null ? 0 : field1.length;
int index2 = 0;
int length2 = field2 == null ? 0 : field2.length;
while (true) {
while (index1 < length1 && field1[index1] == null) {
index1++;
}
while (index2 < length2 && field2[index2] == null) {
index2++;
}
boolean atEndOf1 = index1 >= length1;
boolean atEndOf2 = index2 >= length2;
if (atEndOf1 && atEndOf2) {
// no more non-null elements to test in both arrays
return true;
} else if (atEndOf1 != atEndOf2) {
// one of the arrays have extra non-null elements
return false;
} else if (!Arrays.equals(field1[index1], field2[index2])) {
// element mismatch
return false;
}
index1++;
index2++;
}
}
/**
* Checks repeated string/message field equality. Only non-null elements are
* tested. Returns true if the two fields have the same sequence of non-null
* elements. Null-value fields and fields of any length with only null
* elements are considered equal.
*/
public static boolean equals(Object[] field1, Object[] field2) {
int index1 = 0;
int length1 = field1 == null ? 0 : field1.length;
int index2 = 0;
int length2 = field2 == null ? 0 : field2.length;
while (true) {
while (index1 < length1 && field1[index1] == null) {
index1++;
}
while (index2 < length2 && field2[index2] == null) {
index2++;
}
boolean atEndOf1 = index1 >= length1;
boolean atEndOf2 = index2 >= length2;
if (atEndOf1 && atEndOf2) {
// no more non-null elements to test in both arrays
return true;
} else if (atEndOf1 != atEndOf2) {
// one of the arrays have extra non-null elements
return false;
} else if (!field1[index1].equals(field2[index2])) {
// element mismatch
return false;
}
index1++;
index2++;
}
}
/**
* Computes the hash code of a repeated int field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(int[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated long field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(long[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated float field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(float[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated double field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(double[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated boolean field. Null-value and 0-length
* fields have the same hash code.
*/
public static int hashCode(boolean[] field) {
return field == null || field.length == 0 ? 0 : Arrays.hashCode(field);
}
/**
* Computes the hash code of a repeated bytes field. Only the sequence of all
* non-null elements are used in the computation. Null-value fields and fields
* of any length with only null elements have the same hash code.
*/
public static int hashCode(byte[][] field) {
int result = 0;
for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) {
byte[] element = field[i];
if (element != null) {
result = 31 * result + Arrays.hashCode(element);
}
}
return result;
}
/**
* Computes the hash code of a repeated string/message field. Only the
* sequence of all non-null elements are used in the computation. Null-value
* fields and fields of any length with only null elements have the same hash
* code.
*/
public static int hashCode(Object[] field) {
int result = 0;
for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) {
Object element = field[i];
if (element != null) {
result = 31 * result + element.hashCode();
}
}
return result;
}
// This avoids having to make FieldArray public.
public static void cloneUnknownFieldData(ExtendableMessageNano original,
ExtendableMessageNano cloned) {
if (original.unknownFieldData != null) {
cloned.unknownFieldData = (FieldArray) original.unknownFieldData.clone();
}
}
}