blob: a0d400f7ee62d06af8e52cf4a18adbcf42af2d6a [file] [log] [blame]
/*
* ADIS16251 Programmable Digital Gyroscope Sensor Driver
*
* Copyright 2010 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/list.h>
#include "../iio.h"
#include "../sysfs.h"
#include "gyro.h"
#include "../adc/adc.h"
#include "adis16251.h"
#define DRIVER_NAME "adis16251"
/* At the moment the spi framework doesn't allow global setting of cs_change.
* It's in the likely to be added comment at the top of spi.h.
* This means that use cannot be made of spi_write etc.
*/
/**
* adis16251_spi_write_reg_8() - write single byte to a register
* @dev: device associated with child of actual device (iio_dev or iio_trig)
* @reg_address: the address of the register to be written
* @val: the value to write
**/
int adis16251_spi_write_reg_8(struct device *dev,
u8 reg_address,
u8 val)
{
int ret;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adis16251_state *st = iio_dev_get_devdata(indio_dev);
mutex_lock(&st->buf_lock);
st->tx[0] = ADIS16251_WRITE_REG(reg_address);
st->tx[1] = val;
ret = spi_write(st->us, st->tx, 2);
mutex_unlock(&st->buf_lock);
return ret;
}
/**
* adis16251_spi_write_reg_16() - write 2 bytes to a pair of registers
* @dev: device associated with child of actual device (iio_dev or iio_trig)
* @reg_address: the address of the lower of the two registers. Second register
* is assumed to have address one greater.
* @val: value to be written
**/
static int adis16251_spi_write_reg_16(struct device *dev,
u8 lower_reg_address,
u16 value)
{
int ret;
struct spi_message msg;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adis16251_state *st = iio_dev_get_devdata(indio_dev);
struct spi_transfer xfers[] = {
{
.tx_buf = st->tx,
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
}, {
.tx_buf = st->tx + 2,
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
},
};
mutex_lock(&st->buf_lock);
st->tx[0] = ADIS16251_WRITE_REG(lower_reg_address);
st->tx[1] = value & 0xFF;
st->tx[2] = ADIS16251_WRITE_REG(lower_reg_address + 1);
st->tx[3] = (value >> 8) & 0xFF;
spi_message_init(&msg);
spi_message_add_tail(&xfers[0], &msg);
spi_message_add_tail(&xfers[1], &msg);
ret = spi_sync(st->us, &msg);
mutex_unlock(&st->buf_lock);
return ret;
}
/**
* adis16251_spi_read_reg_16() - read 2 bytes from a 16-bit register
* @dev: device associated with child of actual device (iio_dev or iio_trig)
* @reg_address: the address of the lower of the two registers. Second register
* is assumed to have address one greater.
* @val: somewhere to pass back the value read
**/
static int adis16251_spi_read_reg_16(struct device *dev,
u8 lower_reg_address,
u16 *val)
{
struct spi_message msg;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adis16251_state *st = iio_dev_get_devdata(indio_dev);
int ret;
struct spi_transfer xfers[] = {
{
.tx_buf = st->tx,
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
}, {
.rx_buf = st->rx,
.bits_per_word = 8,
.len = 2,
.cs_change = 1,
},
};
mutex_lock(&st->buf_lock);
st->tx[0] = ADIS16251_READ_REG(lower_reg_address);
st->tx[1] = 0;
st->tx[2] = 0;
st->tx[3] = 0;
spi_message_init(&msg);
spi_message_add_tail(&xfers[0], &msg);
spi_message_add_tail(&xfers[1], &msg);
ret = spi_sync(st->us, &msg);
if (ret) {
dev_err(&st->us->dev, "problem when reading 16 bit register 0x%02X",
lower_reg_address);
goto error_ret;
}
*val = (st->rx[0] << 8) | st->rx[1];
error_ret:
mutex_unlock(&st->buf_lock);
return ret;
}
/**
* adis16251_spi_read_burst() - read all data registers
* @dev: device associated with child of actual device (iio_dev or iio_trig)
* @rx: somewhere to pass back the value read (min size is 24 bytes)
**/
int adis16251_spi_read_burst(struct device *dev, u8 *rx)
{
struct spi_message msg;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adis16251_state *st = iio_dev_get_devdata(indio_dev);
u32 old_speed_hz = st->us->max_speed_hz;
int ret;
struct spi_transfer xfers[] = {
{
.tx_buf = st->tx,
.bits_per_word = 8,
.len = 2,
.cs_change = 0,
}, {
.rx_buf = rx,
.bits_per_word = 8,
.len = 24,
.cs_change = 1,
},
};
mutex_lock(&st->buf_lock);
st->tx[0] = ADIS16251_READ_REG(ADIS16251_GLOB_CMD);
st->tx[1] = 0;
spi_message_init(&msg);
spi_message_add_tail(&xfers[0], &msg);
spi_message_add_tail(&xfers[1], &msg);
st->us->max_speed_hz = min(ADIS16251_SPI_BURST, old_speed_hz);
spi_setup(st->us);
ret = spi_sync(st->us, &msg);
if (ret)
dev_err(&st->us->dev, "problem when burst reading");
st->us->max_speed_hz = old_speed_hz;
spi_setup(st->us);
mutex_unlock(&st->buf_lock);
return ret;
}
/**
* adis16251_spi_read_sequence() - read a sequence of 16-bit registers
* @dev: device associated with child of actual device (iio_dev or iio_trig)
* @tx: register addresses in bytes 0,2,4,6... (min size is 2*num bytes)
* @rx: somewhere to pass back the value read (min size is 2*num bytes)
**/
int adis16251_spi_read_sequence(struct device *dev,
u8 *tx, u8 *rx, int num)
{
struct spi_message msg;
struct spi_transfer *xfers;
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adis16251_state *st = iio_dev_get_devdata(indio_dev);
int ret, i;
xfers = kzalloc(num + 1, GFP_KERNEL);
if (xfers == NULL) {
dev_err(&st->us->dev, "memory alloc failed");
ret = -ENOMEM;
goto error_ret;
}
/* tx: |add1|addr2|addr3|...|addrN |zero|
* rx: |zero|res1 |res2 |...|resN-1|resN| */
spi_message_init(&msg);
for (i = 0; i < num + 1; i++) {
if (i > 0)
xfers[i].rx_buf = st->rx + 2*(i - 1);
if (i < num)
xfers[i].tx_buf = st->tx + 2*i;
xfers[i].bits_per_word = 8;
xfers[i].len = 2;
xfers[i].cs_change = 1;
spi_message_add_tail(&xfers[i], &msg);
}
mutex_lock(&st->buf_lock);
ret = spi_sync(st->us, &msg);
if (ret)
dev_err(&st->us->dev, "problem when reading sequence");
mutex_unlock(&st->buf_lock);
kfree(xfers);
error_ret:
return ret;
}
static ssize_t adis16251_spi_read_signed(struct device *dev,
struct device_attribute *attr,
char *buf,
unsigned bits)
{
int ret;
s16 val = 0;
unsigned shift = 16 - bits;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
ret = adis16251_spi_read_reg_16(dev, this_attr->address, (u16 *)&val);
if (ret)
return ret;
if (val & ADIS16251_ERROR_ACTIVE)
adis16251_check_status(dev);
val = ((s16)(val << shift) >> shift);
return sprintf(buf, "%d\n", val);
}
static ssize_t adis16251_read_12bit_unsigned(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret;
u16 val = 0;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
ret = adis16251_spi_read_reg_16(dev, this_attr->address, &val);
if (ret)
return ret;
if (val & ADIS16251_ERROR_ACTIVE)
adis16251_check_status(dev);
return sprintf(buf, "%u\n", val & 0x0FFF);
}
static ssize_t adis16251_read_14bit_signed(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
ssize_t ret;
/* Take the iio_dev status lock */
mutex_lock(&indio_dev->mlock);
ret = adis16251_spi_read_signed(dev, attr, buf, 14);
mutex_unlock(&indio_dev->mlock);
return ret;
}
static ssize_t adis16251_read_12bit_signed(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
ssize_t ret;
/* Take the iio_dev status lock */
mutex_lock(&indio_dev->mlock);
ret = adis16251_spi_read_signed(dev, attr, buf, 12);
mutex_unlock(&indio_dev->mlock);
return ret;
}
static ssize_t adis16251_write_16bit(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
long val;
ret = strict_strtol(buf, 10, &val);
if (ret)
goto error_ret;
ret = adis16251_spi_write_reg_16(dev, this_attr->address, val);
error_ret:
return ret ? ret : len;
}
static ssize_t adis16251_read_frequency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret, len = 0;
u16 t;
int sps;
ret = adis16251_spi_read_reg_16(dev,
ADIS16251_SMPL_PRD,
&t);
if (ret)
return ret;
sps = (t & ADIS16251_SMPL_PRD_TIME_BASE) ? 8 : 256;
sps /= (t & ADIS16251_SMPL_PRD_DIV_MASK) + 1;
len = sprintf(buf, "%d SPS\n", sps);
return len;
}
static ssize_t adis16251_write_frequency(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct adis16251_state *st = iio_dev_get_devdata(indio_dev);
long val;
int ret;
u8 t;
ret = strict_strtol(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&indio_dev->mlock);
t = (256 / val);
if (t > 0)
t--;
t &= ADIS16251_SMPL_PRD_DIV_MASK;
if ((t & ADIS16251_SMPL_PRD_DIV_MASK) >= 0x0A)
st->us->max_speed_hz = ADIS16251_SPI_SLOW;
else
st->us->max_speed_hz = ADIS16251_SPI_FAST;
ret = adis16251_spi_write_reg_8(dev,
ADIS16251_SMPL_PRD,
t);
mutex_unlock(&indio_dev->mlock);
return ret ? ret : len;
}
static ssize_t adis16251_write_reset(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
if (len < 1)
return -1;
switch (buf[0]) {
case '1':
case 'y':
case 'Y':
return adis16251_reset(dev);
}
return -1;
}
int adis16251_set_irq(struct device *dev, bool enable)
{
int ret;
u16 msc;
ret = adis16251_spi_read_reg_16(dev, ADIS16251_MSC_CTRL, &msc);
if (ret)
goto error_ret;
msc |= ADIS16251_MSC_CTRL_DATA_RDY_POL_HIGH;
if (enable)
msc |= ADIS16251_MSC_CTRL_DATA_RDY_EN;
else
msc &= ~ADIS16251_MSC_CTRL_DATA_RDY_EN;
ret = adis16251_spi_write_reg_16(dev, ADIS16251_MSC_CTRL, msc);
if (ret)
goto error_ret;
error_ret:
return ret;
}
int adis16251_reset(struct device *dev)
{
int ret;
ret = adis16251_spi_write_reg_8(dev,
ADIS16251_GLOB_CMD,
ADIS16251_GLOB_CMD_SW_RESET);
if (ret)
dev_err(dev, "problem resetting device");
return ret;
}
/* Power down the device */
int adis16251_stop_device(struct device *dev)
{
int ret;
u16 val = ADIS16251_SLP_CNT_POWER_OFF;
ret = adis16251_spi_write_reg_16(dev, ADIS16251_SLP_CNT, val);
if (ret)
dev_err(dev, "problem with turning device off: SLP_CNT");
return ret;
}
static int adis16251_self_test(struct device *dev)
{
int ret;
ret = adis16251_spi_write_reg_16(dev,
ADIS16251_MSC_CTRL,
ADIS16251_MSC_CTRL_INT_SELF_TEST);
if (ret) {
dev_err(dev, "problem starting self test");
goto err_ret;
}
adis16251_check_status(dev);
err_ret:
return ret;
}
int adis16251_check_status(struct device *dev)
{
u16 status;
int ret;
ret = adis16251_spi_read_reg_16(dev, ADIS16251_DIAG_STAT, &status);
if (ret < 0) {
dev_err(dev, "Reading status failed\n");
goto error_ret;
}
if (!(status & ADIS16251_DIAG_STAT_ERR_MASK)) {
ret = 0;
goto error_ret;
}
ret = -EFAULT;
if (status & ADIS16251_DIAG_STAT_ALARM2)
dev_err(dev, "Alarm 2 active\n");
if (status & ADIS16251_DIAG_STAT_ALARM1)
dev_err(dev, "Alarm 1 active\n");
if (status & ADIS16251_DIAG_STAT_SELF_TEST)
dev_err(dev, "Self test error\n");
if (status & ADIS16251_DIAG_STAT_OVERFLOW)
dev_err(dev, "Sensor overrange\n");
if (status & ADIS16251_DIAG_STAT_SPI_FAIL)
dev_err(dev, "SPI failure\n");
if (status & ADIS16251_DIAG_STAT_FLASH_UPT)
dev_err(dev, "Flash update failed\n");
if (status & ADIS16251_DIAG_STAT_POWER_HIGH)
dev_err(dev, "Power supply above 5.25V\n");
if (status & ADIS16251_DIAG_STAT_POWER_LOW)
dev_err(dev, "Power supply below 4.75V\n");
error_ret:
return ret;
}
static int adis16251_initial_setup(struct adis16251_state *st)
{
int ret;
u16 smp_prd;
struct device *dev = &st->indio_dev->dev;
/* use low spi speed for init */
st->us->max_speed_hz = ADIS16251_SPI_SLOW;
st->us->mode = SPI_MODE_3;
spi_setup(st->us);
/* Disable IRQ */
ret = adis16251_set_irq(dev, false);
if (ret) {
dev_err(dev, "disable irq failed");
goto err_ret;
}
/* Do self test */
/* Read status register to check the result */
ret = adis16251_check_status(dev);
if (ret) {
adis16251_reset(dev);
dev_err(dev, "device not playing ball -> reset");
msleep(ADIS16251_STARTUP_DELAY);
ret = adis16251_check_status(dev);
if (ret) {
dev_err(dev, "giving up");
goto err_ret;
}
}
printk(KERN_INFO DRIVER_NAME ": at CS%d (irq %d)\n",
st->us->chip_select, st->us->irq);
/* use high spi speed if possible */
ret = adis16251_spi_read_reg_16(dev, ADIS16251_SMPL_PRD, &smp_prd);
if (!ret && (smp_prd & ADIS16251_SMPL_PRD_DIV_MASK) < 0x0A) {
st->us->max_speed_hz = ADIS16251_SPI_SLOW;
spi_setup(st->us);
}
err_ret:
return ret;
}
static IIO_DEV_ATTR_IN_NAMED_RAW(0, supply, adis16251_read_12bit_signed,
ADIS16251_SUPPLY_OUT);
static IIO_CONST_ATTR(in0_supply_scale, "0.0018315");
static IIO_DEV_ATTR_GYRO(adis16251_read_14bit_signed,
ADIS16251_GYRO_OUT);
static IIO_DEV_ATTR_GYRO_SCALE(S_IWUSR | S_IRUGO,
adis16251_read_12bit_signed,
adis16251_write_16bit,
ADIS16251_GYRO_SCALE);
static IIO_DEV_ATTR_GYRO_OFFSET(S_IWUSR | S_IRUGO,
adis16251_read_12bit_signed,
adis16251_write_16bit,
ADIS16251_GYRO_OFF);
static IIO_DEV_ATTR_TEMP_RAW(adis16251_read_12bit_signed);
static IIO_CONST_ATTR(temp_offset, "25 K");
static IIO_CONST_ATTR(temp_scale, "0.1453 K");
static IIO_DEV_ATTR_IN_NAMED_RAW(1, aux, adis16251_read_12bit_unsigned,
ADIS16251_AUX_ADC);
static IIO_CONST_ATTR(in1_aux_scale, "0.0006105");
static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
adis16251_read_frequency,
adis16251_write_frequency);
static IIO_DEV_ATTR_ANGL(adis16251_read_14bit_signed,
ADIS16251_ANGL_OUT);
static IIO_DEV_ATTR_RESET(adis16251_write_reset);
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("0.129 ~ 256");
static IIO_CONST_ATTR(name, "adis16251");
static struct attribute *adis16251_event_attributes[] = {
NULL
};
static struct attribute_group adis16251_event_attribute_group = {
.attrs = adis16251_event_attributes,
};
static struct attribute *adis16251_attributes[] = {
&iio_dev_attr_in0_supply_raw.dev_attr.attr,
&iio_const_attr_in0_supply_scale.dev_attr.attr,
&iio_dev_attr_gyro_raw.dev_attr.attr,
&iio_dev_attr_gyro_scale.dev_attr.attr,
&iio_dev_attr_gyro_offset.dev_attr.attr,
&iio_dev_attr_angl_raw.dev_attr.attr,
&iio_dev_attr_temp_raw.dev_attr.attr,
&iio_const_attr_temp_offset.dev_attr.attr,
&iio_const_attr_temp_scale.dev_attr.attr,
&iio_dev_attr_in1_aux_raw.dev_attr.attr,
&iio_const_attr_in1_aux_scale.dev_attr.attr,
&iio_dev_attr_sampling_frequency.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_reset.dev_attr.attr,
&iio_const_attr_name.dev_attr.attr,
NULL
};
static const struct attribute_group adis16251_attribute_group = {
.attrs = adis16251_attributes,
};
static int __devinit adis16251_probe(struct spi_device *spi)
{
int ret, regdone = 0;
struct adis16251_state *st = kzalloc(sizeof *st, GFP_KERNEL);
if (!st) {
ret = -ENOMEM;
goto error_ret;
}
/* this is only used for removal purposes */
spi_set_drvdata(spi, st);
/* Allocate the comms buffers */
st->rx = kzalloc(sizeof(*st->rx)*ADIS16251_MAX_RX, GFP_KERNEL);
if (st->rx == NULL) {
ret = -ENOMEM;
goto error_free_st;
}
st->tx = kzalloc(sizeof(*st->tx)*ADIS16251_MAX_TX, GFP_KERNEL);
if (st->tx == NULL) {
ret = -ENOMEM;
goto error_free_rx;
}
st->us = spi;
mutex_init(&st->buf_lock);
/* setup the industrialio driver allocated elements */
st->indio_dev = iio_allocate_device();
if (st->indio_dev == NULL) {
ret = -ENOMEM;
goto error_free_tx;
}
st->indio_dev->dev.parent = &spi->dev;
st->indio_dev->num_interrupt_lines = 1;
st->indio_dev->event_attrs = &adis16251_event_attribute_group;
st->indio_dev->attrs = &adis16251_attribute_group;
st->indio_dev->dev_data = (void *)(st);
st->indio_dev->driver_module = THIS_MODULE;
st->indio_dev->modes = INDIO_DIRECT_MODE;
ret = adis16251_configure_ring(st->indio_dev);
if (ret)
goto error_free_dev;
ret = iio_device_register(st->indio_dev);
if (ret)
goto error_unreg_ring_funcs;
regdone = 1;
ret = adis16251_initialize_ring(st->indio_dev->ring);
if (ret) {
printk(KERN_ERR "failed to initialize the ring\n");
goto error_unreg_ring_funcs;
}
if (spi->irq && gpio_is_valid(irq_to_gpio(spi->irq)) > 0) {
ret = iio_register_interrupt_line(spi->irq,
st->indio_dev,
0,
IRQF_TRIGGER_RISING,
"adis16251");
if (ret)
goto error_uninitialize_ring;
ret = adis16251_probe_trigger(st->indio_dev);
if (ret)
goto error_unregister_line;
}
/* Get the device into a sane initial state */
ret = adis16251_initial_setup(st);
if (ret)
goto error_remove_trigger;
return 0;
error_remove_trigger:
if (st->indio_dev->modes & INDIO_RING_TRIGGERED)
adis16251_remove_trigger(st->indio_dev);
error_unregister_line:
if (st->indio_dev->modes & INDIO_RING_TRIGGERED)
iio_unregister_interrupt_line(st->indio_dev, 0);
error_uninitialize_ring:
adis16251_uninitialize_ring(st->indio_dev->ring);
error_unreg_ring_funcs:
adis16251_unconfigure_ring(st->indio_dev);
error_free_dev:
if (regdone)
iio_device_unregister(st->indio_dev);
else
iio_free_device(st->indio_dev);
error_free_tx:
kfree(st->tx);
error_free_rx:
kfree(st->rx);
error_free_st:
kfree(st);
error_ret:
return ret;
}
/* fixme, confirm ordering in this function */
static int adis16251_remove(struct spi_device *spi)
{
int ret;
struct adis16251_state *st = spi_get_drvdata(spi);
struct iio_dev *indio_dev = st->indio_dev;
ret = adis16251_stop_device(&(indio_dev->dev));
if (ret)
goto err_ret;
flush_scheduled_work();
adis16251_remove_trigger(indio_dev);
if (spi->irq && gpio_is_valid(irq_to_gpio(spi->irq)) > 0)
iio_unregister_interrupt_line(indio_dev, 0);
adis16251_uninitialize_ring(indio_dev->ring);
adis16251_unconfigure_ring(indio_dev);
iio_device_unregister(indio_dev);
kfree(st->tx);
kfree(st->rx);
kfree(st);
return 0;
err_ret:
return ret;
}
static struct spi_driver adis16251_driver = {
.driver = {
.name = "adis16251",
.owner = THIS_MODULE,
},
.probe = adis16251_probe,
.remove = __devexit_p(adis16251_remove),
};
static __init int adis16251_init(void)
{
return spi_register_driver(&adis16251_driver);
}
module_init(adis16251_init);
static __exit void adis16251_exit(void)
{
spi_unregister_driver(&adis16251_driver);
}
module_exit(adis16251_exit);
MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>");
MODULE_DESCRIPTION("Analog Devices ADIS16251 Digital Gyroscope Sensor SPI driver");
MODULE_LICENSE("GPL v2");