blob: b0c32c1be95a6d833a4c7ce4424160b36b3ced17 [file] [log] [blame]
//------------------------------------------------------------------------------
// Copyright (c) 2004-2010 Atheros Communications Inc.
// All rights reserved.
//
//
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//
//
//
// Author(s): ="Atheros"
//------------------------------------------------------------------------------
/*
* This driver is a pseudo ethernet driver to access the Atheros AR6000
* WLAN Device
*/
#include <linux/vmalloc.h>
#include "ar6000_drv.h"
#ifdef ATH6K_CONFIG_CFG80211
#include "cfg80211.h"
#endif /* ATH6K_CONFIG_CFG80211 */
#include "htc.h"
#include "wmi_filter_linux.h"
#include "epping_test.h"
#include "wlan_config.h"
#include "ar3kconfig.h"
#ifdef ATH_SUPPORT_DFS
#include "dfs_host.h"
#endif
#include "ar6k_pal.h"
#include "AR6002/addrs.h"
#include "target_reg_table.h"
#ifdef P2P
#include "p2p_api.h"
#endif
#include "a_drv_api.h"
#ifdef CONFIG_PLAT_AMBARELLA
#include <mach/board.h>
#include <plat/sd.h>
#endif
/* LINUX_HACK_FUDGE_FACTOR -- this is used to provide a workaround for linux behavior. When
* the meta data was added to the header it was found that linux did not correctly provide
* enough headroom. However when more headroom was requested beyond what was truly needed
* Linux gave the requested headroom. Therefore to get the necessary headroom from Linux
* the driver requests more than is needed by the amount = LINUX_HACK_FUDGE_FACTOR */
#define LINUX_HACK_FUDGE_FACTOR 16
#define BDATA_BDADDR_OFFSET 28
A_UINT8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
A_UINT8 null_mac[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
#ifdef DEBUG
#define ATH_DEBUG_DBG_LOG ATH_DEBUG_MAKE_MODULE_MASK(0)
#define ATH_DEBUG_WLAN_CONNECT ATH_DEBUG_MAKE_MODULE_MASK(1)
#define ATH_DEBUG_WLAN_SCAN ATH_DEBUG_MAKE_MODULE_MASK(2)
#define ATH_DEBUG_WLAN_TX ATH_DEBUG_MAKE_MODULE_MASK(3)
#define ATH_DEBUG_WLAN_RX ATH_DEBUG_MAKE_MODULE_MASK(4)
#define ATH_DEBUG_HTC_RAW ATH_DEBUG_MAKE_MODULE_MASK(5)
#define ATH_DEBUG_HCI_BRIDGE ATH_DEBUG_MAKE_MODULE_MASK(6)
static ATH_DEBUG_MASK_DESCRIPTION driver_debug_desc[] = {
{ ATH_DEBUG_DBG_LOG , "Target Debug Logs"},
{ ATH_DEBUG_WLAN_CONNECT , "WLAN connect"},
{ ATH_DEBUG_WLAN_SCAN , "WLAN scan"},
{ ATH_DEBUG_WLAN_TX , "WLAN Tx"},
{ ATH_DEBUG_WLAN_RX , "WLAN Rx"},
{ ATH_DEBUG_HTC_RAW , "HTC Raw IF tracing"},
{ ATH_DEBUG_HCI_BRIDGE , "HCI Bridge Setup"},
{ ATH_DEBUG_HCI_RECV , "HCI Recv tracing"},
{ ATH_DEBUG_HCI_DUMP , "HCI Packet dumps"},
};
ATH_DEBUG_INSTANTIATE_MODULE_VAR(driver,
"driver",
"Linux Driver Interface",
ATH_DEBUG_MASK_DEFAULTS | ATH_DEBUG_WLAN_SCAN |
ATH_DEBUG_HCI_BRIDGE,
ATH_DEBUG_DESCRIPTION_COUNT(driver_debug_desc),
driver_debug_desc);
#endif
#define IS_MAC_NULL(mac) (mac[0]==0 && mac[1]==0 && mac[2]==0 && mac[3]==0 && mac[4]==0 && mac[5]==0)
#define IS_MAC_BCAST(mac) (*mac==0xff)
#define DESCRIPTION "Driver to access the AR600x Device, version " __stringify(__VER_MAJOR_) "." __stringify(__VER_MINOR_) "." __stringify(__VER_PATCH_) "." __stringify(__BUILD_NUMBER_)
MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION(DESCRIPTION);
MODULE_LICENSE("Dual BSD/GPL");
#ifndef REORG_APTC_HEURISTICS
#undef ADAPTIVE_POWER_THROUGHPUT_CONTROL
#endif /* REORG_APTC_HEURISTICS */
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
A_TIMER aptcTimer[NUM_DEV];
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
#ifdef EXPORT_HCI_BRIDGE_INTERFACE
// callbacks registered by HCI transport driver
HCI_TRANSPORT_CALLBACKS ar6kHciTransCallbacks = { NULL };
#endif
unsigned int processDot11Hdr = 0;
char targetconf[10]={0,};
int bmienable = BMIENABLE_DEFAULT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
char ifname[IFNAMSIZ] = {0,};
char devmode[32] ={0,};
char submode[32] ={0,};
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) */
int regcode = 0;
int wlaninitmode = WLAN_INIT_MODE_DEFAULT;
unsigned int bypasswmi = 0;
unsigned int debuglevel = 0;
int tspecCompliance = ATHEROS_COMPLIANCE;
unsigned int busspeedlow = 0;
unsigned int onebitmode = 0;
unsigned int skipflash = 0;
unsigned int wmitimeout = 2;
unsigned int wlanNodeCaching = 1;
unsigned int enableuartprint = ENABLEUARTPRINT_DEFAULT;
unsigned int logWmiRawMsgs = 0;
unsigned int enabletimerwar = 0;
unsigned int fwmode = 1;
unsigned int fwsubmode = 0;
unsigned int mbox_yield_limit = 99;
unsigned int enablerssicompensation = 0;
int reduce_credit_dribble = 1 + HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_ONE_HALF;
int allow_trace_signal = 0;
#ifdef CONFIG_HOST_TCMD_SUPPORT
unsigned int testmode =0;
#endif
unsigned int firmware_bridge = 0;
unsigned int irqprocmode = HIF_DEVICE_IRQ_SYNC_ONLY;//HIF_DEVICE_IRQ_ASYNC_SYNC;
unsigned int panic_on_assert = 1;
unsigned int nohifscattersupport = NOHIFSCATTERSUPPORT_DEFAULT;
unsigned int setuphci = SETUPHCI_DEFAULT;
unsigned int setuphcipal = SETUPHCIPAL_DEFAULT;
unsigned int loghci = 0;
unsigned int setupbtdev = SETUPBTDEV_DEFAULT;
#ifndef EXPORT_HCI_BRIDGE_INTERFACE
unsigned int ar3khcibaud = AR3KHCIBAUD_DEFAULT;
unsigned int hciuartscale = HCIUARTSCALE_DEFAULT;
unsigned int hciuartstep = HCIUARTSTEP_DEFAULT;
#endif
#ifdef CONFIG_CHECKSUM_OFFLOAD
unsigned int csumOffload=0;
unsigned int csumOffloadTest=0;
#endif
unsigned int eppingtest=0;
unsigned int regscanmode=0;
unsigned int num_device=1;
unsigned char ar6k_init=FALSE;
unsigned int rtc_reset_only_on_exit=0;
unsigned int mac_addr_method=0;
A_BOOL avail_ev_called=FALSE;
#if defined(CONFIG_MMC_MSM) && defined(CONFIG_ARCH_MSM7X27) && defined(CONFIG_MSM_SOC_REV_A)
unsigned int refClock = 19200000;
#else
unsigned int refClock = 26000000;
#endif
unsigned int max_psq_depth = MAX_DEFAULT_PS_QUEUE_DEPTH;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
module_param_string(ifname, ifname, sizeof(ifname), 0644);
module_param(regcode, int, 0644);
module_param(wlaninitmode, int, 0644);
module_param(bmienable, int, 0644);
module_param(bypasswmi, uint, 0644);
module_param(debuglevel, uint, 0644);
module_param(tspecCompliance, int, 0644);
module_param(onebitmode, uint, 0644);
module_param(busspeedlow, uint, 0644);
module_param(skipflash, uint, 0644);
module_param(wmitimeout, uint, 0644);
module_param(wlanNodeCaching, uint, 0644);
module_param(logWmiRawMsgs, uint, 0644);
module_param(enableuartprint, uint, 0644);
module_param(enabletimerwar, uint, 0644);
module_param(mbox_yield_limit, uint, 0644);
module_param(reduce_credit_dribble, int, 0644);
module_param(allow_trace_signal, int, 0644);
module_param(enablerssicompensation, uint, 0644);
module_param(processDot11Hdr, uint, 0644);
#ifdef CONFIG_CHECKSUM_OFFLOAD
module_param(csumOffload, uint, 0644);
#endif
#ifdef CONFIG_HOST_TCMD_SUPPORT
module_param(testmode, uint, 0644);
#endif
module_param(firmware_bridge, uint, 0644);
module_param(irqprocmode, uint, 0644);
module_param(nohifscattersupport, uint, 0644);
module_param(panic_on_assert, uint, 0644);
module_param(setuphci, uint, 0644);
module_param(setuphcipal, uint, 0644);
module_param(loghci, uint, 0644);
module_param(setupbtdev, uint, 0644);
#ifndef EXPORT_HCI_BRIDGE_INTERFACE
module_param(ar3khcibaud, uint, 0644);
module_param(hciuartscale, uint, 0644);
module_param(hciuartstep, uint, 0644);
#endif
module_param(eppingtest, uint, 0644);
module_param(regscanmode, uint, 0644);
module_param_string(devmode, devmode, sizeof(devmode), 0644);
module_param_string(submode, submode, sizeof(submode), 0644);
module_param_string(targetconf, targetconf, sizeof(targetconf), 0644);
module_param(rtc_reset_only_on_exit, uint, 0644);
module_param(mac_addr_method, uint, 0644);
module_param(refClock, uint, 0644);
module_param(max_psq_depth, uint, 0644);
#else
#define __user
/* for linux 2.4 and lower */
MODULE_PARM(bmienable,"i");
MODULE_PARM(wlaninitmode,"i");
MODULE_PARM(bypasswmi,"i");
MODULE_PARM(debuglevel, "i");
MODULE_PARM(onebitmode,"i");
MODULE_PARM(busspeedlow, "i");
MODULE_PARM(skipflash, "i");
MODULE_PARM(wmitimeout, "i");
MODULE_PARM(wlanNodeCaching, "i");
MODULE_PARM(enableuartprint,"i");
MODULE_PARM(logWmiRawMsgs, "i");
MODULE_PARM(enabletimerwar,"i");
MODULE_PARM(mbox_yield_limit,"i");
MODULE_PARM(reduce_credit_dribble,"i");
MODULE_PARM(allow_trace_signal,"i");
MODULE_PARM(enablerssicompensation,"i");
MODULE_PARM(processDot11Hdr,"i");
#ifdef CONFIG_CHECKSUM_OFFLOAD
MODULE_PARM(csumOffload,"i");
#endif
#ifdef CONFIG_HOST_TCMD_SUPPORT
MODULE_PARM(testmode, "i");
#endif
MODULE_PARM(irqprocmode, "i");
MODULE_PARM(nohifscattersupport, "i");
MODULE_PARM(panic_on_assert, "i");
MODULE_PARM(setuphci, "i");
MODULE_PARM(setuphcipal, "i");
MODULE_PARM(loghci, "i");
MODULE_PARM(regscanmode, "i");
MODULE_PARM(rtc_reset_only_on_exit, "i");
MODULE_PARM(mac_addr_method, "i");
MODULE_PARM(refClock, "i");
MODULE_PARM(max_psq_depth, "i");
#endif
#if WLAN_CONFIG_FIRST_SCAN_2G_ONLY
unsigned int first_scan_2g_only = WLAN_CONFIG_FIRST_SCAN_2G_ONLY;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
module_param(first_scan_2g_only, uint, 0644);
#else
MODULE_PARM(first_scan_2g_only, "i");
#endif
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,10)
/* in 2.6.10 and later this is now a pointer to a uint */
unsigned int _mboxnum = HTC_MAILBOX_NUM_MAX;
#define mboxnum &_mboxnum
#else
unsigned int mboxnum = HTC_MAILBOX_NUM_MAX;
#endif
#ifdef DEBUG
A_UINT32 g_dbg_flags = DBG_DEFAULTS;
unsigned int debugflags = 0;
int debugdriver = 0;
unsigned int debughtc = 0;
unsigned int debugbmi = 0;
unsigned int debughif = 0;
unsigned int txcreditsavailable[HTC_MAILBOX_NUM_MAX] = {0};
unsigned int txcreditsconsumed[HTC_MAILBOX_NUM_MAX] = {0};
unsigned int txcreditintrenable[HTC_MAILBOX_NUM_MAX] = {0};
unsigned int txcreditintrenableaggregate[HTC_MAILBOX_NUM_MAX] = {0};
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
module_param(debugflags, uint, 0644);
module_param(debugdriver, int, 0644);
module_param(debughtc, uint, 0644);
module_param(debugbmi, uint, 0644);
module_param(debughif, uint, 0644);
module_param_array(txcreditsavailable, uint, mboxnum, 0644);
module_param_array(txcreditsconsumed, uint, mboxnum, 0644);
module_param_array(txcreditintrenable, uint, mboxnum, 0644);
module_param_array(txcreditintrenableaggregate, uint, mboxnum, 0644);
#else
/* linux 2.4 and lower */
MODULE_PARM(debugflags,"i");
MODULE_PARM(debugdriver, "i");
MODULE_PARM(debughtc, "i");
MODULE_PARM(debugbmi, "i");
MODULE_PARM(debughif, "i");
MODULE_PARM(txcreditsavailable, "0-3i");
MODULE_PARM(txcreditsconsumed, "0-3i");
MODULE_PARM(txcreditintrenable, "0-3i");
MODULE_PARM(txcreditintrenableaggregate, "0-3i");
#endif
#endif /* DEBUG */
unsigned int resetok = 1;
unsigned int tx_attempt[HTC_MAILBOX_NUM_MAX] = {0};
unsigned int tx_post[HTC_MAILBOX_NUM_MAX] = {0};
unsigned int tx_complete[HTC_MAILBOX_NUM_MAX] = {0};
unsigned int hifBusRequestNumMax = 40;
unsigned int war23838_disabled = 0;
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
unsigned int enableAPTCHeuristics = 1;
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
unsigned int psm_info = 99;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
module_param_array(tx_attempt, uint, mboxnum, 0644);
module_param_array(tx_post, uint, mboxnum, 0644);
module_param_array(tx_complete, uint, mboxnum, 0644);
module_param(hifBusRequestNumMax, uint, 0644);
module_param(war23838_disabled, uint, 0644);
module_param(resetok, uint, 0644);
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
module_param(enableAPTCHeuristics, uint, 0644);
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
module_param(psm_info, uint, 0444);
#else
MODULE_PARM(tx_attempt, "0-3i");
MODULE_PARM(tx_post, "0-3i");
MODULE_PARM(tx_complete, "0-3i");
MODULE_PARM(hifBusRequestNumMax, "i");
MODULE_PARM(war23838_disabled, "i");
MODULE_PARM(resetok, "i");
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
MODULE_PARM(enableAPTCHeuristics, "i");
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
MODULE_PARM(psm_info, "i");
#endif
#ifdef BLOCK_TX_PATH_FLAG
int blocktx = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
module_param(blocktx, int, 0644);
#else
MODULE_PARM(blocktx, "i");
#endif
#endif /* BLOCK_TX_PATH_FLAG */
static A_INT16 rssi_compensation_table[NUM_DEV][96];
int reconnect_flag = 0;
static ar6k_pal_config_t ar6k_pal_config_g;
// Load unload synchronization
DECLARE_WAIT_QUEUE_HEAD(load_complete);
DECLARE_WAIT_QUEUE_HEAD(scan_complete);
// Indicates if the module load completed
static int mod_loaded = FALSE;
/* Function declarations */
static int ar6000_init_module(void);
static void ar6000_cleanup_module(void);
struct completion avail_ev_completion;
int ar6000_init(struct net_device *dev);
static int ar6000_open(struct net_device *dev);
static int ar6000_close(struct net_device *dev);
static int ar6000_init_control_info(AR_SOFTC_DEV_T *arPriv);
static int ar6000_data_tx(struct sk_buff *skb, struct net_device *dev);
void ar6000_destroy(struct net_device *dev, unsigned int unregister);
void ar6000_cleanup(AR_SOFTC_T *ar);
static void ar6000_detect_error(unsigned long ptr);
static void ar6000_set_multicast_list(struct net_device *dev);
static struct net_device_stats *ar6000_get_stats(struct net_device *dev);
static struct iw_statistics *ar6000_get_iwstats(struct net_device * dev);
static void disconnect_timer_handler(unsigned long ptr);
void read_rssi_compensation_param(AR_SOFTC_T *ar);
void target_register_tbl_attach(A_UINT32 target_type);
static void ar6000_uapsd_trigger_frame_rx(AR_SOFTC_DEV_T *arPriv, conn_t *conn);
static void delba_timer_callback(unsigned long ptr);
static int ar6000_check_hold_conn_status(AR_SOFTC_DEV_T *arPriv, A_UINT8 conn_status);
extern int android_readwrite_file(const A_CHAR *filename, A_CHAR *rbuf, const A_CHAR *wbuf, size_t length);
/* for android builds we call external APIs that handle firmware download and configuration */
#ifdef ANDROID_ENV
/* !!!! Interim android support to make it easier to patch the default driver for
* android use. You must define an external source file ar6000_android.c that handles the following
* APIs */
extern void android_module_init(OSDRV_CALLBACKS *osdrvCallbacks);
extern void android_module_exit(void);
extern void android_send_reload_event(AR_SOFTC_DEV_T *arPriv);
#define ANDROID_RELOAD_THRESHOLD_FOR_EP_FULL 5
static int android_epfull_cnt;
#endif
/*
* HTC service connection handlers
*/
static A_STATUS ar6000_avail_ev(void *context, void *hif_handle);
static A_STATUS ar6000_unavail_ev(void *context, void *hif_handle);
A_STATUS ar6000_configure_target(AR_SOFTC_T *ar);
static void ar6000_target_failure(void *Instance, A_STATUS Status);
static void ar6000_rx(void *Context, HTC_PACKET *pPacket);
static void ar6000_rx_refill(void *Context,HTC_ENDPOINT_ID Endpoint);
static void ar6000_tx_complete(void *Context, HTC_PACKET_QUEUE *pPackets);
static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, HTC_PACKET *pPacket);
#ifdef ATH_AR6K_11N_SUPPORT
static void ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, A_UINT16 num);
#endif
static void ar6000_deliver_frames_to_nw_stack(void * dev, void *osbuf);
//static void ar6000_deliver_frames_to_bt_stack(void * dev, void *osbuf);
static HTC_PACKET *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length);
static void ar6000_refill_amsdu_rxbufs(AR_SOFTC_T *ar, int Count);
static void ar6000_cleanup_amsdu_rxbufs(AR_SOFTC_T *ar);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35)
static ssize_t
ar6000_sysfs_bmi_read(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count);
static ssize_t
ar6000_sysfs_bmi_write(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count);
#else
static ssize_t
ar6000_sysfs_bmi_read(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count);
static ssize_t
ar6000_sysfs_bmi_write(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count);
#endif
static A_STATUS
ar6000_sysfs_bmi_init(AR_SOFTC_T *ar);
/* HCI PAL callback function declarations */
A_STATUS ar6k_setup_hci_pal(AR_SOFTC_DEV_T *ar);
void ar6k_cleanup_hci_pal(AR_SOFTC_DEV_T *ar);
static void
ar6000_sysfs_bmi_deinit(AR_SOFTC_T *ar);
A_STATUS
ar6000_sysfs_bmi_get_config(AR_SOFTC_T *ar, A_UINT32 mode);
/*
* Static variables
*/
struct net_device *ar6000_devices[NUM_DEV];
extern struct iw_handler_def ath_iw_handler_def;
static void ar6000_cookie_init(AR_SOFTC_T *ar);
static void ar6000_cookie_cleanup(AR_SOFTC_T *ar);
static void ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie);
static struct ar_cookie *ar6000_alloc_cookie(AR_SOFTC_T *ar);
#ifdef USER_KEYS
static A_STATUS ar6000_reinstall_keys(AR_SOFTC_DEV_T *arPriv,A_UINT8 key_op_ctrl);
#endif
static struct ar_cookie s_ar_cookie_mem[MAX_COOKIE_NUM];
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29)
static struct net_device_ops ar6000_netdev_ops = {
.ndo_init = NULL,
.ndo_open = ar6000_open,
.ndo_stop = ar6000_close,
.ndo_get_stats = ar6000_get_stats,
.ndo_do_ioctl = ar6000_ioctl,
.ndo_start_xmit = ar6000_data_tx,
.ndo_set_multicast_list = ar6000_set_multicast_list,
.ndo_change_mtu = eth_change_mtu,
};
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,29) */
/* Debug log support */
/*
* Flag to govern whether the debug logs should be parsed in the kernel
* or reported to the application.
*/
#define REPORT_DEBUG_LOGS_TO_APP
A_STATUS
ar6000_set_host_app_area(AR_SOFTC_T *ar)
{
A_UINT32 address, data;
struct host_app_area_s host_app_area;
/* Fetch the address of the host_app_area_s instance in the host interest area */
address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_app_host_interest));
if (ar6000_ReadRegDiag(ar->arHifDevice, &address, &data) != A_OK) {
return A_ERROR;
}
address = TARG_VTOP(ar->arTargetType, data);
host_app_area.wmi_protocol_ver = WMI_PROTOCOL_VERSION;
if (ar6000_WriteDataDiag(ar->arHifDevice, address,
(A_UCHAR *)&host_app_area,
sizeof(struct host_app_area_s)) != A_OK)
{
return A_ERROR;
}
return A_OK;
}
A_UINT32
dbglog_get_debug_hdr_ptr(AR_SOFTC_T *ar)
{
A_UINT32 param;
A_UINT32 address;
A_STATUS status;
address = TARG_VTOP(ar->arTargetType, HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_dbglog_hdr));
if ((status = ar6000_ReadDataDiag(ar->arHifDevice, address,
(A_UCHAR *)&param, 4)) != A_OK)
{
param = 0;
}
return param;
}
/*
* The dbglog module has been initialized. Its ok to access the relevant
* data stuctures over the diagnostic window.
*/
void
ar6000_dbglog_init_done(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
ar->dbglog_init_done = TRUE;
}
A_UINT32
dbglog_get_debug_fragment(A_INT8 *datap, A_UINT32 len, A_UINT32 limit)
{
A_INT32 *buffer;
A_UINT32 count;
A_UINT32 numargs;
A_UINT32 length;
A_UINT32 fraglen;
count = fraglen = 0;
buffer = (A_INT32 *)datap;
length = (limit >> 2);
if (len <= limit) {
fraglen = len;
} else {
while (count < length) {
numargs = DBGLOG_GET_NUMARGS(buffer[count]);
fraglen = (count << 2);
count += numargs + 1;
}
}
return fraglen;
}
void
dbglog_parse_debug_logs(A_INT8 *datap, A_UINT32 len)
{
A_INT32 *buffer;
A_UINT32 count;
A_UINT32 timestamp;
A_UINT32 debugid;
A_UINT32 moduleid;
A_UINT32 numargs;
A_UINT32 length;
count = 0;
buffer = (A_INT32 *)datap;
length = (len >> 2);
while (count < length) {
debugid = DBGLOG_GET_DBGID(buffer[count]);
moduleid = DBGLOG_GET_MODULEID(buffer[count]);
numargs = DBGLOG_GET_NUMARGS(buffer[count]);
timestamp = DBGLOG_GET_TIMESTAMP(buffer[count]);
switch (numargs) {
case 0:
AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d)\n", moduleid, debugid, timestamp));
break;
case 1:
AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x\n", moduleid, debugid,
timestamp, buffer[count+1]));
break;
case 2:
AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("%d %d (%d): 0x%x, 0x%x\n", moduleid, debugid,
timestamp, buffer[count+1], buffer[count+2]));
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid args: %d\n", numargs));
}
count += numargs + 1;
}
}
int
ar6000_dbglog_get_debug_logs(AR_SOFTC_T *ar)
{
struct dbglog_hdr_s debug_hdr;
struct dbglog_buf_s debug_buf;
A_UINT32 address;
A_UINT32 length;
A_UINT32 dropped;
A_UINT32 firstbuf;
A_UINT32 debug_hdr_ptr;
if (!ar->dbglog_init_done) return A_ERROR;
AR6000_SPIN_LOCK(&ar->arLock, 0);
if (ar->dbgLogFetchInProgress) {
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
return A_EBUSY;
}
/* block out others */
ar->dbgLogFetchInProgress = TRUE;
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
debug_hdr_ptr = dbglog_get_debug_hdr_ptr(ar);
printk("debug_hdr_ptr: 0x%x\n", debug_hdr_ptr);
/* Get the contents of the ring buffer */
if (debug_hdr_ptr) {
address = TARG_VTOP(ar->arTargetType, debug_hdr_ptr);
length = sizeof(struct dbglog_hdr_s);
ar6000_ReadDataDiag(ar->arHifDevice, address,
(A_UCHAR *)&debug_hdr, length);
address = TARG_VTOP(ar->arTargetType, (A_UINT32)debug_hdr.dbuf);
firstbuf = address;
dropped = debug_hdr.dropped;
length = sizeof(struct dbglog_buf_s);
ar6000_ReadDataDiag(ar->arHifDevice, address,
(A_UCHAR *)&debug_buf, length);
do {
address = TARG_VTOP(ar->arTargetType, (A_UINT32)debug_buf.buffer);
length = debug_buf.length;
if ((length) && (debug_buf.length <= debug_buf.bufsize)) {
/* Rewind the index if it is about to overrun the buffer */
if (ar->log_cnt > (DBGLOG_HOST_LOG_BUFFER_SIZE - length)) {
ar->log_cnt = 0;
}
if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address,
(A_UCHAR *)&ar->log_buffer[ar->log_cnt], length))
{
break;
}
ar6000_dbglog_event(ar->arDev[0], dropped, (A_INT8*)&ar->log_buffer[ar->log_cnt], length);
ar->log_cnt += length;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_DBG_LOG,("Length: %d (Total size: %d)\n",
debug_buf.length, debug_buf.bufsize));
}
address = TARG_VTOP(ar->arTargetType, (A_UINT32)debug_buf.next);
length = sizeof(struct dbglog_buf_s);
if(A_OK != ar6000_ReadDataDiag(ar->arHifDevice, address,
(A_UCHAR *)&debug_buf, length))
{
break;
}
} while (address != firstbuf);
}
ar->dbgLogFetchInProgress = FALSE;
return A_OK;
}
void
ar6000_dbglog_event(AR_SOFTC_DEV_T *arPriv, A_UINT32 dropped,
A_INT8 *buffer, A_UINT32 length)
{
#ifdef REPORT_DEBUG_LOGS_TO_APP
#define MAX_WIRELESS_EVENT_SIZE 252
/*
* Break it up into chunks of MAX_WIRELESS_EVENT_SIZE bytes of messages.
* There seems to be a limitation on the length of message that could be
* transmitted to the user app via this mechanism.
*/
A_UINT32 send, sent;
sent = 0;
send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
MAX_WIRELESS_EVENT_SIZE);
while (send) {
ar6000_send_event_to_app(arPriv, WMIX_DBGLOG_EVENTID, (A_UINT8*)&buffer[sent], send);
sent += send;
send = dbglog_get_debug_fragment(&buffer[sent], length - sent,
MAX_WIRELESS_EVENT_SIZE);
}
#else
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Dropped logs: 0x%x\nDebug info length: %d\n",
dropped, length));
/* Interpret the debug logs */
dbglog_parse_debug_logs((A_INT8*)buffer, length);
#endif /* REPORT_DEBUG_LOGS_TO_APP */
}
void
ar6000_parse_dev_mode(A_CHAR *mode)
{
A_UINT8 i, match = FALSE, mode_len;
#ifdef P2P
A_UINT8 val_mode, val_submode;
#endif
A_UINT8 num_submode;
char *valid_modes[] = { "sta",
"ap",
"ibss",
"bt30amp",
"sta,ap",
"ap,sta",
"ap,ap",
"sta,sta",
"sta,bt30amp",
"sta,ap,ap"
};
#ifdef P2P
char *valid_submodes[] = { "none",
"p2pdev",
/*"p2pclient",*/ //persistent p2p support
/*"p2pgo", */ // persistent p2p support
"none,none",
"none,none,none",
"none,p2pdev",
"p2pdev,none",
/*"none,p2pclient",*/ //persistent p2p support
/*"none,p2pgo"*/ // persistent p2p support
};
#endif
A_CHAR *dev_mode;
A_CHAR *str;
A_UINT32 host_int = 0;
dev_mode = mode;
str = mode;
num_device = 0;
fwmode = 0;
mode_len = strlen(dev_mode);
for (i=0; i <= 9; i++) {
if ((mode_len == strlen(valid_modes[i])) && (strcmp(dev_mode,valid_modes[i]))==0) {
match = TRUE;
break;
}
}
if(!match) {
num_device = fwmode = 1;
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ERROR: Wrong mode. using default (single device STA mode).\n"));
return;
}
do
{
str++;
if(*str == ',' || *str == '\0') {
num_device++;
if(strncmp(dev_mode,"ap",2) == 0) {
host_int = HI_OPTION_FW_MODE_AP;
}
else if(strncmp(dev_mode,"sta",3) == 0) {
host_int = HI_OPTION_FW_MODE_BSS_STA;
}
else if(strncmp(dev_mode,"ibss",4) == 0 ) {
host_int = HI_OPTION_FW_MODE_IBSS;
} else if(strncmp(dev_mode,"bt30amp",7) == 0) {
host_int = HI_OPTION_FW_MODE_BT30AMP;
}
fwmode |= (host_int << ((num_device -1) * HI_OPTION_FW_MODE_BITS));
dev_mode = ++str;
}
}while(*dev_mode != '\0');
/* Validate submode if present */
if (!submode[0]) {
/* default "none" submode for all devices */
fwsubmode = 0;
return;
}
dev_mode = submode;
str = submode;
num_submode = 0;
fwsubmode = 0;
match = FALSE;
#ifdef P2P
mode_len = strlen(dev_mode);
for (i=0; i<6; i++) {
if ((mode_len == strlen(valid_submodes[i])) && (strcmp(dev_mode,valid_submodes[i]))==0) {
match = TRUE;
break;
}
}
if (!match) {
fwsubmode = 0;
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ERROR: Wrong submode. using default (none for all devs).\n"));
return;
}
do
{
str++;
if(*str == ',' || *str == '\0') {
num_submode++;
if(strncmp(dev_mode,"none",4) == 0) {
host_int = HI_OPTION_FW_SUBMODE_NONE;
}
else if(strncmp(dev_mode,"p2pdev",6) == 0) {
host_int = HI_OPTION_FW_SUBMODE_P2PDEV;
}
else if(strncmp(dev_mode,"p2pclient",9) == 0 ) {
host_int = HI_OPTION_FW_SUBMODE_P2PCLIENT;
} else if(strncmp(dev_mode,"p2pgo",5) == 0 ) {
host_int = HI_OPTION_FW_SUBMODE_P2PGO;
}
fwsubmode |= (host_int << ((num_submode -1) * HI_OPTION_FW_SUBMODE_BITS));
dev_mode = ++str;
}
}while(*dev_mode != '\0');
/* Validate if the subopmode is specified for all the devs.
*/
if (num_device != num_submode) {
/* default to "none" submode for all devices */
fwsubmode = 0;
return;
}
/* Validate if the submode specified is appropriate for the device modes
* specified for each device. The following is the validation recipe.
* fwmode fwsubmode
* -----------------------
* IBSS none
* STA none,p2pdev,p2pclient
* AP none,p2pgo
*/
for (i=0; i<num_device; i++) {
val_mode = (fwmode >> (i * HI_OPTION_FW_MODE_BITS)) &
HI_OPTION_FW_MODE_MASK;
val_submode = (fwsubmode >> (i * HI_OPTION_FW_SUBMODE_BITS)) &
HI_OPTION_FW_SUBMODE_MASK;
switch (val_mode) {
case HI_OPTION_FW_MODE_IBSS:
if (val_submode != HI_OPTION_FW_SUBMODE_NONE) {
/* set submode to none */
fwsubmode &= ~(HI_OPTION_FW_SUBMODE_MASK << (i*HI_OPTION_FW_SUBMODE_BITS));
fwsubmode |= (HI_OPTION_FW_SUBMODE_NONE << (i * HI_OPTION_FW_SUBMODE_BITS));
}
break;
case HI_OPTION_FW_MODE_BSS_STA:
if (val_submode == HI_OPTION_FW_SUBMODE_P2PGO) {
/* set submode to none */
fwsubmode &= ~(HI_OPTION_FW_SUBMODE_MASK << (i*HI_OPTION_FW_SUBMODE_BITS));
fwsubmode |= (HI_OPTION_FW_SUBMODE_NONE << (i * HI_OPTION_FW_SUBMODE_BITS));
}
break;
case HI_OPTION_FW_MODE_AP:
if (val_submode == HI_OPTION_FW_SUBMODE_P2PDEV ||
val_submode == HI_OPTION_FW_SUBMODE_P2PCLIENT) {
/* set submode to none */
fwsubmode &= ~(HI_OPTION_FW_SUBMODE_MASK << (i*HI_OPTION_FW_SUBMODE_BITS));
fwsubmode |= (HI_OPTION_FW_SUBMODE_NONE << (i * HI_OPTION_FW_SUBMODE_BITS));
}
break;
default:
break;
}
}
#endif
return;
}
static int __init
ar6000_init_module(void)
{
static int probed = 0;
A_STATUS status;
OSDRV_CALLBACKS osdrvCallbacks;
a_module_debug_support_init();
printk("init-AR6003-driver 844\n");
#ifdef DEBUG
/* check for debug mask overrides */
if (debughtc != 0) {
ATH_DEBUG_SET_DEBUG_MASK(htc,debughtc);
}
if (debugbmi != 0) {
ATH_DEBUG_SET_DEBUG_MASK(bmi,debugbmi);
}
if (debughif != 0) {
ATH_DEBUG_SET_DEBUG_MASK(hif,debughif);
}
if (debugdriver != 0) {
ATH_DEBUG_SET_DEBUG_MASK(driver,debugdriver);
}
#endif
A_REGISTER_MODULE_DEBUG_INFO(driver);
ar6k_init = FALSE;
A_MEMZERO(&osdrvCallbacks,sizeof(osdrvCallbacks));
osdrvCallbacks.deviceInsertedHandler = ar6000_avail_ev;
osdrvCallbacks.deviceRemovedHandler = ar6000_unavail_ev;
#ifdef CONFIG_PM
osdrvCallbacks.deviceSuspendHandler = ar6000_suspend_ev;
osdrvCallbacks.deviceResumeHandler = ar6000_resume_ev;
osdrvCallbacks.devicePowerChangeHandler = ar6000_power_change_ev;
#endif
init_completion(&avail_ev_completion);
ar6000_pm_init();
if(devmode[0])
ar6000_parse_dev_mode(devmode);
#ifdef ANDROID_ENV
android_module_init(&osdrvCallbacks);
#endif
#ifdef DEBUG
/* Set the debug flags if specified at load time */
if(debugflags != 0)
{
g_dbg_flags = debugflags;
}
#endif
if (probed) {
return -ENODEV;
}
probed++;
#ifdef CONFIG_HOST_GPIO_SUPPORT
ar6000_gpio_init();
#endif /* CONFIG_HOST_GPIO_SUPPORT */
status = HIFInit(&osdrvCallbacks);
if(status != A_OK)
return -ENODEV;
return 0;
}
#define AR6K_AVAIL_EV_COMPLETION_TIMEOUT (60 * HZ)
static void __exit
ar6000_cleanup_module(void)
{
int i = 0;
struct net_device *ar6000_netdev;
AR_SOFTC_T *ar;
AR_SOFTC_DEV_T *arPriv = NULL;
unsigned long tmo = AR6K_AVAIL_EV_COMPLETION_TIMEOUT;
if (!wait_event_interruptible_timeout(load_complete, mod_loaded != FALSE, 5 * HZ)) {
printk(KERN_ERR "Load did not complete. Unload did not proceed\n");
return;
}
A_PRINTF("\nAR6K: %s()\n", __func__);
tmo = wait_for_completion_timeout(&avail_ev_completion, tmo);
if (tmo == 0) {
A_PRINTF("AR6K: wait for avail_ev_completion %d sec timeout\n",
AR6K_AVAIL_EV_COMPLETION_TIMEOUT / HZ);
}
if (ar6000_devices[0] != NULL) {
arPriv = (AR_SOFTC_DEV_T *) ar6k_priv(ar6000_devices[0]);
ar = arPriv->arSoftc;
ar6000_cleanup(ar);
}
for (i=0; i < num_device; i++) {
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
/* Delete the Adaptive Power Control timer */
if (timer_pending(&aptcTimer[i])) {
del_timer_sync(&aptcTimer[i]);
}
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
if (ar6000_devices[i] != NULL) {
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
if (arPriv) {
A_UNTIMEOUT(&arPriv->arSta.disconnect_timer);
}
ar6000_netdev = ar6000_devices[i];
ar6000_devices[i] = NULL;
ar6000_destroy(ar6000_netdev, 1);
}
}
#ifdef P2P
p2p_deinit();
#endif /* P2P */
HIFShutDownDevice(NULL);
a_module_debug_support_cleanup();
ar6000_pm_exit();
#ifdef ANDROID_ENV
android_module_exit();
#endif
a_meminfo_report(TRUE);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_cleanup: success\n"));
}
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
void
aptcTimerHandler(unsigned long arg)
{
A_UINT32 numbytes;
A_UINT32 throughput;
AR_SOFTC_T *ar;
A_STATUS status;
APTC_TRAFFIC_RECORD *aptcTR;
A_UNIT8 i;
ar = (AR_SOFTC_T *)arg;
A_ASSERT(ar != NULL);
for(i = 0; i < num_device; i++) {
aptcTR = ar->arDev[i].aptcTR;
A_ASSERT(!timer_pending(&aptcTimer[i]));
AR6000_SPIN_LOCK(&ar->arLock, 0);
/* Get the number of bytes transferred */
numbytes = aptcTR->bytesTransmitted + aptcTR->bytesReceived;
aptcTR->bytesTransmitted = aptcTR->bytesReceived = 0;
/* Calculate and decide based on throughput thresholds */
throughput = ((numbytes * 8)/APTC_TRAFFIC_SAMPLING_INTERVAL); /* Kbps */
if (throughput < APTC_LOWER_THROUGHPUT_THRESHOLD) {
/* Enable Sleep and delete the timer */
A_ASSERT(ar->arWmiReady == TRUE);
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
status = wmi_powermode_cmd(ar->arWmi, REC_POWER);
AR6000_SPIN_LOCK(&ar->arLock, 0);
A_ASSERT(status == A_OK);
aptcTR->timerScheduled = FALSE;
} else {
A_TIMEOUT_MS(&aptcTimer[i], APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
}
}
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
#ifdef ATH_AR6K_11N_SUPPORT
static void
ar6000_alloc_netbufs(A_NETBUF_QUEUE_T *q, A_UINT16 num)
{
void * osbuf;
while(num) {
if((osbuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE))) {
A_NETBUF_ENQUEUE(q, osbuf);
} else {
break;
}
num--;
}
if(num) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(), allocation of netbuf failed", __func__));
}
}
#endif
static struct bin_attribute bmi_attr = {
.attr = {.name = "bmi", .mode = 0600},
.read = ar6000_sysfs_bmi_read,
.write = ar6000_sysfs_bmi_write,
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35)
static ssize_t
ar6000_sysfs_bmi_read(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count)
#else
static ssize_t
ar6000_sysfs_bmi_read(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count)
#endif
{
int index;
AR_SOFTC_DEV_T *arPriv;
AR_SOFTC_T *ar = NULL;
HIF_DEVICE_OS_DEVICE_INFO *osDevInfo;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Read %d bytes\n", count));
for (index=0; index < num_device; index++) {
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[index]);
ar = arPriv->arSoftc;
osDevInfo = &ar->osDevInfo;
if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) {
break;
}
}
if (ar == NULL) return 0;
if (index == num_device) return 0;
if ((BMIRawRead(ar->arHifDevice, (A_UCHAR*)buf, count, TRUE)) != A_OK) {
return 0;
}
return count;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35)
static ssize_t
ar6000_sysfs_bmi_write(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count)
#else
static ssize_t
ar6000_sysfs_bmi_write(struct file *fp, struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos, size_t count)
#endif
{
int index;
AR_SOFTC_DEV_T *arPriv;
AR_SOFTC_T *ar = NULL;
HIF_DEVICE_OS_DEVICE_INFO *osDevInfo;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Write %d bytes\n", count));
for (index=0; index < num_device; index++) {
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[index]);
ar = arPriv->arSoftc;
osDevInfo = &ar->osDevInfo;
if (kobj == (&(((struct device *)osDevInfo->pOSDevice)->kobj))) {
break;
}
}
if (ar == NULL) return 0;
if (index == num_device) return 0;
if ((BMIRawWrite(ar->arHifDevice, (A_UCHAR*)buf, count)) != A_OK) {
return 0;
}
return count;
}
static A_STATUS
ar6000_sysfs_bmi_init(AR_SOFTC_T *ar)
{
A_STATUS status;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Creating sysfs entry\n"));
A_MEMZERO(&ar->osDevInfo, sizeof(HIF_DEVICE_OS_DEVICE_INFO));
/* Get the underlying OS device */
status = HIFConfigureDevice(ar->arHifDevice,
HIF_DEVICE_GET_OS_DEVICE,
&ar->osDevInfo,
sizeof(HIF_DEVICE_OS_DEVICE_INFO));
if (A_FAILED(status)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failed to get OS device info from HIF\n"));
return A_ERROR;
}
/* Create a bmi entry in the sysfs filesystem */
if ((sysfs_create_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr)) < 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMI: Failed to create entry for bmi in sysfs filesystem\n"));
return A_ERROR;
}
return A_OK;
}
static void
ar6000_sysfs_bmi_deinit(AR_SOFTC_T *ar)
{
if (ar->osDevInfo.pOSDevice) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Deleting sysfs entry\n"));
sysfs_remove_bin_file(&(((struct device *)ar->osDevInfo.pOSDevice)->kobj), &bmi_attr);
ar->osDevInfo.pOSDevice = NULL;
}
}
#define bmifn(fn) do { \
if ((fn) < A_OK) { \
A_PRINTF("BMI operation failed: %d\n", __LINE__); \
return A_ERROR; \
} \
} while(0)
#ifdef INIT_MODE_DRV_ENABLED
#define MCKINLEY_MAC_ADDRESS_OFFSET 0x16
static
void calculate_crc(A_UINT32 TargetType, A_UCHAR *eeprom_data, size_t eeprom_size)
{
A_UINT16 *ptr_crc;
A_UINT16 *ptr16_eeprom;
A_UINT16 checksum;
A_UINT32 i;
if (TargetType == TARGET_TYPE_AR6001)
{
ptr_crc = (A_UINT16 *)eeprom_data;
}
else if (TargetType == TARGET_TYPE_AR6003)
{
ptr_crc = (A_UINT16 *)((A_UCHAR *)eeprom_data + 0x04);
}
else if (TargetType == TARGET_TYPE_MCKINLEY)
{
eeprom_size = 1024;
ptr_crc = (A_UINT16 *)((A_UCHAR *)eeprom_data + 0x04);
}
else
{
ptr_crc = (A_UINT16 *)((A_UCHAR *)eeprom_data + 0x04);
}
// Clear the crc
*ptr_crc = 0;
// Recalculate new CRC
checksum = 0;
ptr16_eeprom = (A_UINT16 *)eeprom_data;
for (i = 0;i < eeprom_size; i += 2)
{
checksum = checksum ^ (*ptr16_eeprom);
ptr16_eeprom++;
}
checksum = 0xFFFF ^ checksum;
*ptr_crc = checksum;
}
#ifdef SOFTMAC_USED
#define AR6002_MAC_ADDRESS_OFFSET 0x0A
#define AR6003_MAC_ADDRESS_OFFSET 0x16
static void
ar6000_softmac(AR_SOFTC_T *ar, A_UCHAR *eeprom_data, size_t eeprom_size)
{
A_UCHAR *ptr_mac;
switch (ar->arTargetType) {
case TARGET_TYPE_AR6002:
ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6002_MAC_ADDRESS_OFFSET);
break;
case TARGET_TYPE_AR6003:
ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6003_MAC_ADDRESS_OFFSET);
break;
case TARGET_TYPE_MCKINLEY:
ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + MCKINLEY_MAC_ADDRESS_OFFSET);
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid Target Type \n"));
return;
}
ptr_mac[0] = ambarella_board_generic.wifi0_mac[0];
ptr_mac[1] = ambarella_board_generic.wifi0_mac[1];
ptr_mac[2] = ambarella_board_generic.wifi0_mac[2];
ptr_mac[3] = ambarella_board_generic.wifi0_mac[3];
ptr_mac[4] = ambarella_board_generic.wifi0_mac[4];
ptr_mac[5] = ambarella_board_generic.wifi0_mac[5];
if (0==memcmp(ptr_mac, "\0\0\0\0\0\0",6)) {
ptr_mac[0] = 0x00;
ptr_mac[1] = 0x03;
ptr_mac[2] = 0x7F;
ptr_mac[3] = random32() & 0xff;
ptr_mac[4] = random32() & 0xff;
ptr_mac[5] = random32() & 0xff;
//memcpy(ptr_mac+3, "\3\4\5", 3);
ambarella_board_generic.wifi0_mac[0] = ptr_mac[0];
ambarella_board_generic.wifi0_mac[1] = ptr_mac[1];
ambarella_board_generic.wifi0_mac[2] = ptr_mac[2];
ambarella_board_generic.wifi0_mac[3] = ptr_mac[3];
ambarella_board_generic.wifi0_mac[4] = ptr_mac[4];
ambarella_board_generic.wifi0_mac[5] = ptr_mac[5];
}
calculate_crc(ar->arTargetType, eeprom_data, eeprom_size);
}
#endif
#ifdef SOFTMAC_FILE_USED
#define AR6002_MAC_ADDRESS_OFFSET 0x0A
#define AR6003_MAC_ADDRESS_OFFSET 0x16
static void
ar6000_softmac_update(AR_SOFTC_T *ar, A_UCHAR *eeprom_data, size_t eeprom_size)
{
/* We need to store the MAC, which comes either from the softmac file or is
* randomly generated, because we do not want to load a new MAC address
* if the chip goes into suspend and then is resumed later on. We ONLY
* want to load a new MAC if the driver is unloaded and then reloaded
*/
static A_UCHAR random_mac[6];
const char *source = "random generated";
const struct firmware *softmac_entry;
A_UCHAR *ptr_mac;
switch (ar->arTargetType) {
case TARGET_TYPE_AR6002:
ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6002_MAC_ADDRESS_OFFSET);
break;
case TARGET_TYPE_AR6003:
ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + AR6003_MAC_ADDRESS_OFFSET);
break;
case TARGET_TYPE_MCKINLEY:
ptr_mac = (A_UINT8 *)((A_UCHAR *)eeprom_data + MCKINLEY_MAC_ADDRESS_OFFSET);
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid Target Type \n"));
return;
}
AR_DEBUG_PRINTF(ATH_DEBUG_WARN,
("MAC from EEPROM %02X:%02X:%02X:%02X:%02X:%02X\n",
ptr_mac[0], ptr_mac[1], ptr_mac[2],
ptr_mac[3], ptr_mac[4], ptr_mac[5]));
if (memcmp(random_mac, "\0\0\0\0\0\0", 6)!=0) {
memcpy(ptr_mac, random_mac, 6);
} else {
/* create a random MAC in case we cannot read file from system */
ptr_mac[0] = random_mac[0] = 2; /* locally administered */
ptr_mac[1] = random_mac[1] = 0x03;
ptr_mac[2] = random_mac[2] = 0x7F;
ptr_mac[3] = random_mac[3] = random32() & 0xff;
ptr_mac[4] = random_mac[4] = random32() & 0xff;
ptr_mac[5] = random_mac[5] = random32() & 0xff;
}
#if defined(CONFIG_ARCH_MSM9615)
if ((A_REQUEST_FIRMWARE(&softmac_entry, "ath6k/AR6003/hw2.1.1/softmac", ((struct device *)ar->osDevInfo.pOSDevice))) == 0)
#else
if ((A_REQUEST_FIRMWARE(&softmac_entry, "softmac", ((struct device *)ar->osDevInfo.pOSDevice))) == 0)
#endif
{
A_CHAR *macbuf = A_MALLOC_NOWAIT(softmac_entry->size+1);
if (macbuf) {
unsigned int softmac[6];
memcpy(macbuf, softmac_entry->data, softmac_entry->size);
macbuf[softmac_entry->size] = '\0';
if (sscanf(macbuf, "%02x:%02x:%02x:%02x:%02x:%02x",
&softmac[0], &softmac[1], &softmac[2],
&softmac[3], &softmac[4], &softmac[5])==6) {
int i;
for (i=0; i<6; ++i) {
ptr_mac[i] = softmac[i] & 0xff;
}
source = "softmac file";
A_MEMZERO(random_mac, sizeof(random_mac));
}
A_FREE(macbuf);
}
A_RELEASE_FIRMWARE(softmac_entry);
}
if (memcmp(random_mac, "\0\0\0\0\0\0", 6)!=0) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Warning! Random MAC address is just for testing purpose\n"));
}
AR_DEBUG_PRINTF(ATH_DEBUG_WARN,
("MAC from %s %02X:%02X:%02X:%02X:%02X:%02X\n", source,
ptr_mac[0], ptr_mac[1], ptr_mac[2],
ptr_mac[3], ptr_mac[4], ptr_mac[5]));
calculate_crc(ar->arTargetType, eeprom_data, eeprom_size);
}
#endif /* SOFTMAC_FILE_USED */
static void
ar6000_reg_update(AR_SOFTC_T *ar, A_UCHAR *eeprom_data, size_t eeprom_size, int regCode)
{
A_UCHAR *ptr_reg;
switch (ar->arTargetType) {
case TARGET_TYPE_AR6002:
ptr_reg = (A_UINT8 *)((A_UCHAR *)eeprom_data + 8);
break;
case TARGET_TYPE_AR6003:
ptr_reg = (A_UINT8 *)((A_UCHAR *)eeprom_data + 12);
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Invalid Target Type \n"));
return;
}
ptr_reg[0] = (A_UCHAR)(regCode&0xFF);
ptr_reg[1] = (A_UCHAR)((regCode>>8)&0xFF);
calculate_crc(ar->arTargetType, eeprom_data, eeprom_size);
}
#ifdef ANDROID_ENV
static void
ar6000_psminfo_update(void)
{
char psm_filename[256];
do {
int ret = 0;
size_t length;
u8 *pdata = NULL;
snprintf(psm_filename, sizeof(psm_filename), "/data/.psm.info");
if ( (ret = android_readwrite_file(psm_filename, NULL, NULL, 0)) < 0) {
break;
} else {
length = ret;
}
pdata = vmalloc(length);
if (!pdata) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: Cannot allocate buffer for psm_info (%d)\n", __FUNCTION__,length));
break;
}
if ( android_readwrite_file(psm_filename, (char*)pdata, NULL, length) != length) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: file read error, length %d\n", __FUNCTION__, length));
vfree(pdata);
break;
}
psm_info = *pdata - '0';
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s: psm_info is %d\n", __FUNCTION__, psm_info));
vfree(pdata);
} while (0);
}
#endif
static A_STATUS
ar6000_transfer_bin_file(AR_SOFTC_T *ar, AR6K_BIN_FILE file, A_UINT32 address, A_BOOL compressed)
{
A_STATUS status;
const char *filename;
const struct firmware *fw_entry;
A_UINT32 fw_entry_size;
A_UCHAR *tempEeprom;
A_UINT32 board_data_size;
switch (file) {
case AR6K_OTP_FILE:
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_OTP_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_OTP_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
return A_ERROR;
}
break;
case AR6K_FIRMWARE_FILE:
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_FIRMWARE_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
if(ar->arVersion.targetconf_ver == AR6003_SUBVER_ROUTER)
filename = AR6003_REV3_ROUTER_FIRMWARE_FILE;
else if (ar->arVersion.targetconf_ver == AR6003_SUBVER_MOBILE)
filename = AR6003_REV3_MOBILE_FIRMWARE_FILE;
else if (ar->arVersion.targetconf_ver == AR6003_SUBVER_TABLET)
filename = AR6003_REV3_TABLET_FIRMWARE_FILE;
else
filename = AR6003_REV3_DEFAULT_FIRMWARE_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s firmware will be loaded\n", filename));
if (eppingtest) {
bypasswmi = TRUE;
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_EPPING_FIRMWARE_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_EPPING_FIRMWARE_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("eppingtest : unsupported firmware revision: %d\n",
ar->arVersion.target_ver));
return A_ERROR;
}
compressed = 0;
}
#ifdef CONFIG_HOST_TCMD_SUPPORT
if(testmode == 1) {
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_TCMD_FIRMWARE_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_TCMD_FIRMWARE_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
return A_ERROR;
}
compressed = 0;
}
#endif
#ifdef HTC_RAW_INTERFACE
if (!eppingtest && bypasswmi) {
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_ART_FIRMWARE_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_ART_FIRMWARE_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
return A_ERROR;
}
compressed = 0;
}
#endif
break;
case AR6K_PATCH_FILE:
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_PATCH_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_PATCH_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
return A_ERROR;
}
break;
case AR6K_BOARD_DATA_FILE:
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_BOARD_DATA_FILE;
} else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_BOARD_DATA_FILE;
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown firmware revision: %d\n", ar->arVersion.target_ver));
return A_ERROR;
}
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Unknown file type: %d\n", file));
return A_ERROR;
}
if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
return A_ENOENT;
}
fw_entry_size = fw_entry->size;
tempEeprom = NULL;
/* Load extended board data for AR6003 */
if ((file==AR6K_BOARD_DATA_FILE) && (fw_entry->data)) {
A_UINT32 board_ext_address;
A_INT32 board_ext_data_size;
tempEeprom = A_MALLOC_NOWAIT(fw_entry->size);
if (!tempEeprom) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Memory allocation failed\n"));
A_RELEASE_FIRMWARE(fw_entry);
return A_ERROR;
}
board_data_size = (((ar)->arTargetType == TARGET_TYPE_AR6002) ? AR6002_BOARD_DATA_SZ : \
(((ar)->arTargetType == TARGET_TYPE_AR6003) ? AR6003_BOARD_DATA_SZ : 0));
board_ext_data_size = 0;
if (ar->arTargetType == TARGET_TYPE_AR6002) {
board_ext_data_size = AR6002_BOARD_EXT_DATA_SZ;
} else if (ar->arTargetType == TARGET_TYPE_AR6003) {
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
board_ext_data_size = AR6003_VER2_BOARD_EXT_DATA_SZ;
} else {
board_ext_data_size = AR6003_BOARD_EXT_DATA_SZ;
}
}
/* AR6003 2.1.1 support 1792 bytes and 2048 bytes board file */
if ((board_ext_data_size) &&
(fw_entry->size < (board_data_size + board_ext_data_size)))
{
board_ext_data_size = fw_entry->size - board_data_size;
if (board_ext_data_size < 0) {
board_ext_data_size = 0;
}
}
A_MEMCPY(tempEeprom, (A_UCHAR *)fw_entry->data, fw_entry->size);
#ifdef SOFTMAC_FILE_USED
ar6000_softmac_update(ar, tempEeprom, board_data_size);
#endif
#ifdef SOFTMAC_USED
ar6000_softmac(ar, tempEeprom, board_data_size);
#endif
if (regcode!=0) {
ar6000_reg_update(ar, tempEeprom, board_data_size, regcode);
}
#ifdef ANDROID_ENV
ar6000_psminfo_update();
#endif
/* Determine where in Target RAM to write Board Data */
bmifn(BMIReadMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_ext_data), (A_UCHAR *)&board_ext_address, 4));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board extended Data download address: 0x%x\n", board_ext_address));
/* check whether the target has allocated memory for extended board data and file contains extended board data */
if ((board_ext_address) && (fw_entry->size == (board_data_size + board_ext_data_size))) {
A_UINT32 param;
status = BMIWriteMemory(ar->arHifDevice, board_ext_address, (A_UCHAR *)(((A_UINT32)tempEeprom) + board_data_size), board_ext_data_size);
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__));
A_RELEASE_FIRMWARE(fw_entry);
return A_ERROR;
}
/* Record the fact that extended board Data IS initialized */
param = (board_ext_data_size << 16) | 1;
bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_ext_data_config), (A_UCHAR *)&param, 4));
}
fw_entry_size = board_data_size;
}
if (compressed) {
status = BMIFastDownload(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry_size);
} else {
if (file==AR6K_BOARD_DATA_FILE && fw_entry->data)
{
status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)tempEeprom, fw_entry_size);
}
else
{
status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry_size);
}
}
if (tempEeprom) {
A_FREE(tempEeprom);
}
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI operation failed: %d\n", __LINE__));
A_RELEASE_FIRMWARE(fw_entry);
return A_ERROR;
}
A_RELEASE_FIRMWARE(fw_entry);
return A_OK;
}
#endif /* INIT_MODE_DRV_ENABLED */
A_STATUS
ar6000_update_bdaddr(AR_SOFTC_T *ar)
{
if (setupbtdev != 0) {
A_UINT32 address;
if (BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_data), (A_UCHAR *)&address, 4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for hi_board_data failed\n"));
return A_ERROR;
}
if (BMIReadMemory(ar->arHifDevice, address + BDATA_BDADDR_OFFSET, (A_UCHAR *)ar->bdaddr, 6) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for BD address failed\n"));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BDADDR 0x%x:0x%x:0x%x:0x%x:0x%x:0x%x\n", ar->bdaddr[0],
ar->bdaddr[1], ar->bdaddr[2], ar->bdaddr[3],
ar->bdaddr[4], ar->bdaddr[5]));
}
return A_OK;
}
A_STATUS
ar6000_sysfs_bmi_get_config(AR_SOFTC_T *ar, A_UINT32 mode)
{
#if defined(INIT_MODE_DRV_ENABLED) && defined(CONFIG_HOST_TCMD_SUPPORT)
const char *filename;
const struct firmware *fw_entry;
#endif
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("BMI: Requesting device specific configuration\n"));
if (mode == WLAN_INIT_MODE_UDEV) {
A_CHAR version[16];
const struct firmware *fw_entry;
/* Get config using udev through a script in user space */
if (snprintf(version, sizeof(version), "%2.2x",
ar->arVersion.target_ver) >= sizeof(version)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("snprintf: Target version-%2.2x\n",
ar->arVersion.target_ver));
return A_ERROR;
}
if ((A_REQUEST_FIRMWARE(&fw_entry, version, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("BMI: Failure to get configuration for target version: %s\n", version));
return A_ERROR;
}
A_RELEASE_FIRMWARE(fw_entry);
#ifdef INIT_MODE_DRV_ENABLED
} else {
/* The config is contained within the driver itself */
A_STATUS status;
A_UINT32 param, options, sleep, address;
/* Temporarily disable system sleep */
address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_OFFSET;
bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
options = param;
param |= AR6K_OPTION_SLEEP_DISABLE;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
address = RTC_WMAC_BASE_ADDRESS + WLAN_SYSTEM_SLEEP_OFFSET;
bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
sleep = param;
param |= WLAN_SYSTEM_SLEEP_DISABLE_SET(1);
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("old options: %d, old sleep: %d\n", options, sleep));
if (ar->arTargetType == TARGET_TYPE_MCKINLEY) {
/* Run at 40/44MHz by default */
param = CPU_CLOCK_STANDARD_SET(0);
} else if (ar->arTargetType == TARGET_TYPE_AR6003) {
/* Program analog PLL register */
bmifn(BMIWriteSOCRegister(ar->arHifDevice, ANALOG_INTF_BASE_ADDRESS + 0x284, 0xF9104001));
/* Run at 80/88MHz by default */
param = CPU_CLOCK_STANDARD_SET(1);
} else {
/* Run at 40/44MHz by default */
param = CPU_CLOCK_STANDARD_SET(0);
}
address = RTC_SOC_BASE_ADDRESS + CPU_CLOCK_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
param = 0;
if (ar->arTargetType == TARGET_TYPE_AR6002) {
bmifn(BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_ext_clk_detected),
(A_UCHAR *)&param, 4));
}
/* LPO_CAL.ENABLE = 1 if no external clk is detected */
if (param != 1) {
address = RTC_SOC_BASE_ADDRESS + LPO_CAL_OFFSET;
param = LPO_CAL_ENABLE_SET(1);
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
}
/* Venus2.0: Lower SDIO pad drive strength */
if ((ar->arVersion.target_ver == AR6003_REV2_VERSION) ||
(ar->arVersion.target_ver == AR6003_REV3_VERSION))
{
param = 0x28;
address = GPIO_BASE_ADDRESS + GPIO_PIN9_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
param = 0x20;
address = GPIO_BASE_ADDRESS + GPIO_PIN10_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
address = GPIO_BASE_ADDRESS + GPIO_PIN11_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
address = GPIO_BASE_ADDRESS + GPIO_PIN12_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
address = GPIO_BASE_ADDRESS + GPIO_PIN13_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
}
/* Change the clock with module parameter refclock Mhz */
bmifn(BMIWriteSOCRegister(ar->arHifDevice, 0x540678, refClock));
#ifdef FORCE_INTERNAL_CLOCK
/* Ignore external clock, if any, and force use of internal clock */
if (ar->arTargetType == TARGET_TYPE_AR6003 || ar->arTargetType == TARGET_TYPE_MCKINLEY) {
/* hi_ext_clk_detected = 0 */
param = 0;
bmifn(BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_ext_clk_detected),
(A_UCHAR *)&param, 4));
/* CLOCK_CONTROL &= ~LF_CLK32 */
address = RTC_BASE_ADDRESS + CLOCK_CONTROL_ADDRESS;
bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
param &= (~CLOCK_CONTROL_LF_CLK32_SET(1));
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
}
#endif /* FORCE_INTERNAL_CLOCK */
/* Transfer Board Data from Target EEPROM to Target RAM */
if (ar->arTargetType == TARGET_TYPE_AR6003 || ar->arTargetType == TARGET_TYPE_MCKINLEY) {
/* Determine where in Target RAM to write Board Data */
bmifn(BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_data),
(A_UCHAR *)&address, 4));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("Board Data download address: 0x%x\n", address));
/* Write EEPROM data to Target RAM */
if ((status=ar6000_transfer_bin_file(ar, AR6K_BOARD_DATA_FILE, address, FALSE)) != A_OK) {
return A_ERROR;
}
/* Record the fact that Board Data IS initialized */
param = 1;
bmifn(BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_data_initialized),
(A_UCHAR *)&param, 4));
/* Transfer One time Programmable data */
AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
address = BMI_SEGMENTED_WRITE_ADDR;
}
status = ar6000_transfer_bin_file(ar, AR6K_OTP_FILE, address, TRUE);
if (status == A_OK) {
/* Execute the OTP code */
#ifdef SOFTMAC_FILE_USED
param = 1;
#else
param = 0;
#endif
#ifdef SOFTMAC_USED
param = 1;
#else
param = 0;
#endif
if (regcode != 0)
param |= 0x2;
AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver);
bmifn(BMIExecute(ar->arHifDevice, address, &param));
} else if (status != A_ENOENT) {
return A_ERROR;
}
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Programming of board data for chip %d not supported\n", ar->arTargetType));
return A_ERROR;
}
/* Download Target firmware */
AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
address = BMI_SEGMENTED_WRITE_ADDR;
}
if ((ar6000_transfer_bin_file(ar, AR6K_FIRMWARE_FILE, address, TRUE)) != A_OK) {
return A_ERROR;
}
if (ar->arVersion.target_ver == AR6003_REV2_VERSION)
{
/* Set starting address for firmware */
AR6K_APP_START_OVERRIDE_ADDRESS(address, ar->arVersion.target_ver);
bmifn(BMISetAppStart(ar->arHifDevice, address));
}
/* Apply the patches */
if (ar->arTargetType == TARGET_TYPE_AR6003) {
AR6K_DATASET_PATCH_ADDRESS(address, ar->arVersion.target_ver);
if ((ar6000_transfer_bin_file(ar, AR6K_PATCH_FILE, address, FALSE)) != A_OK) {
return A_ERROR;
}
param = address;
bmifn(BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_dset_list_head),
(A_UCHAR *)&param, 4));
}
/* Restore system sleep */
address = RTC_WMAC_BASE_ADDRESS + WLAN_SYSTEM_SLEEP_OFFSET;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, sleep));
address = MBOX_BASE_ADDRESS + LOCAL_SCRATCH_OFFSET;
param = options | 0x20;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
if (ar->arTargetType == TARGET_TYPE_AR6003 || ar->arTargetType == TARGET_TYPE_MCKINLEY) {
/* Configure GPIO AR6003 UART */
#ifndef CONFIG_AR600x_DEBUG_UART_TX_PIN
#define CONFIG_AR600x_DEBUG_UART_TX_PIN 8
#endif
param = CONFIG_AR600x_DEBUG_UART_TX_PIN;
bmifn(BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_dbg_uart_txpin),
(A_UCHAR *)&param, 4));
#if (CONFIG_AR600x_DEBUG_UART_TX_PIN == 23)
if (ATH_REGISTER_SUPPORTED_BY_TARGET(CLOCK_GPIO_OFFSET)) {
address = GPIO_BASE_ADDRESS + CLOCK_GPIO_OFFSET;
bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
param |= CLOCK_GPIO_BT_CLK_OUT_EN_SET(1);
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
} else {
/* AR6004 has no need for a CLOCK_GPIO register */
}
#endif
/* Configure GPIO for BT Reset */
#ifdef ATH6KL_CONFIG_GPIO_BT_RESET
#define CONFIG_AR600x_BT_RESET_PIN 0x16
param = CONFIG_AR600x_BT_RESET_PIN;
bmifn(BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_hci_uart_support_pins),
(A_UCHAR *)&param, 4));
#endif /* ATH6KL_CONFIG_GPIO_BT_RESET */
/* Configure UART flow control polarity */
#ifndef CONFIG_ATH6KL_BT_UART_FC_POLARITY
#define CONFIG_ATH6KL_BT_UART_FC_POLARITY 0
#endif
#if (CONFIG_ATH6KL_BT_UART_FC_POLARITY == 1)
if ((ar->arVersion.target_ver == AR6003_REV2_VERSION) ||
(ar->arVersion.target_ver == AR6003_REV3_VERSION))
{
param = ((CONFIG_ATH6KL_BT_UART_FC_POLARITY << 1) & 0x2);
bmifn(BMIWriteMemory(ar->arHifDevice, HOST_INTEREST_ITEM_ADDRESS(ar, hi_hci_uart_pwr_mgmt_params), (A_UCHAR *)&param, 4));
}
#endif /* CONFIG_ATH6KL_BT_UART_FC_POLARITY */
}
#ifdef HTC_RAW_INTERFACE
if (!eppingtest && bypasswmi) {
/* Don't run BMIDone for ART mode and force resetok=0 */
resetok = 0;
msleep(1000);
param = 1;
status = BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_data_initialized),
(A_UCHAR *)&param, 4);
}
#endif /* HTC_RAW_INTERFACE */
#ifdef CONFIG_HOST_TCMD_SUPPORT
if (testmode == 2) {
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
filename = AR6003_REV2_UTF_FIRMWARE_FILE;
if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
return A_ENOENT;
}
/* Download Target firmware */
AR6K_APP_LOAD_ADDRESS(address, ar->arVersion.target_ver);
status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry->size);
address = HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_end_RAM_reserve_sz);
param = 11008;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
address = 0x57D884;
filename = AR6003_REV2_TESTSCRIPT_FILE;
if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
return A_ENOENT;
}
status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry->size);
param = 0x57D884;
address = HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_ota_testscript);
bmifn(BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)&param, 4));
address = HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_test_apps_related);
bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
param |= 1;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
A_RELEASE_FIRMWARE(fw_entry);
}
else if (ar->arVersion.target_ver == AR6003_REV3_VERSION) {
filename = AR6003_REV3_UTF_FIRMWARE_FILE;
if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
return A_ENOENT;
}
/* Download Target firmware */
address = BMI_SEGMENTED_WRITE_ADDR;
status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry->size);
address = HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_end_RAM_reserve_sz);
param = 4096;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
address = 0x57EF74;
filename = AR6003_REV3_TESTSCRIPT_FILE;
if ((A_REQUEST_FIRMWARE(&fw_entry, filename, ((struct device *)ar->osDevInfo.pOSDevice))) != 0)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Failed to get %s\n", filename));
return A_ENOENT;
}
status = BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)fw_entry->data, fw_entry->size);
param = 0x57EF74;
address = HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_ota_testscript);
bmifn(BMIWriteMemory(ar->arHifDevice, address, (A_UCHAR *)&param, 4));
address = HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_test_apps_related);
bmifn(BMIReadSOCRegister(ar->arHifDevice, address, &param));
param |= 1;
bmifn(BMIWriteSOCRegister(ar->arHifDevice, address, param));
A_RELEASE_FIRMWARE(fw_entry);
}
}
#endif
#endif /* INIT_MODE_DRV_ENABLED */
}
return A_OK;
}
A_STATUS
ar6000_configure_target(AR_SOFTC_T *ar)
{
A_UINT32 param;
if (enableuartprint) {
param = 1;
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_serial_enable),
(A_UCHAR *)&param,
4)!= A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enableuartprint failed \n"));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Serial console prints enabled\n"));
}
/* Tell target which HTC version it is used*/
param = HTC_PROTOCOL_VERSION;
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_app_host_interest),
(A_UCHAR *)&param,
4)!= A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for htc version failed \n"));
return A_ERROR;
}
if (enabletimerwar) {
A_UINT32 param;
if (BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4)!= A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for enabletimerwar failed \n"));
return A_ERROR;
}
param |= HI_OPTION_TIMER_WAR;
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for enabletimerwar failed \n"));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Timer WAR enabled\n"));
}
/* set the firmware mode to STA/IBSS/AP */
{
A_UINT32 param;
if (BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4)!= A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for setting fwmode failed \n"));
return A_ERROR;
}
param |= (num_device << HI_OPTION_NUM_DEV_SHIFT);
param |= (fwmode << HI_OPTION_FW_MODE_SHIFT);
param |= (mac_addr_method << HI_OPTION_MAC_ADDR_METHOD_SHIFT);
param |= (firmware_bridge << HI_OPTION_FW_BRIDGE_SHIFT);
param |= (fwsubmode << HI_OPTION_FW_SUBMODE_SHIFT);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("NUM_DEV=%d FWMODE=0x%x FWSUBMODE=0x%x FWBR_BUF %d\n",
num_device, fwmode, fwsubmode, firmware_bridge));
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for setting fwmode failed \n"));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n"));
}
#ifdef ATH6KL_DISABLE_TARGET_DBGLOGS
{
A_UINT32 param;
if (BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4)!= A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for disabling debug logs failed\n"));
return A_ERROR;
}
param |= HI_OPTION_DISABLE_DBGLOG;
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for HI_OPTION_DISABLE_DBGLOG\n"));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Firmware mode set\n"));
}
#endif /* ATH6KL_DISABLE_TARGET_DBGLOGS */
if (regscanmode) {
A_UINT32 param;
if (BMIReadMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4)!= A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIReadMemory for setting regscanmode failed\n"));
return A_ERROR;
}
if (regscanmode == 1) {
param |= HI_OPTION_SKIP_REG_SCAN;
} else if (regscanmode == 2) {
param |= HI_OPTION_INIT_REG_SCAN;
}
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_option_flag),
(A_UCHAR *)&param,
4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for setting regscanmode failed\n"));
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Regulatory scan mode set\n"));
}
/*
* Hardcode the address use for the extended board data
* Ideally this should be pre-allocate by the OS at boot time
* But since it is a new feature and board data is loaded
* at init time, we have to workaround this from host.
* It is difficult to patch the firmware boot code,
* but possible in theory.
*/
if (ar->arTargetType == TARGET_TYPE_AR6003) {
A_UINT32 ramReservedSz;
if (ar->arVersion.target_ver == AR6003_REV2_VERSION) {
param = AR6003_REV2_BOARD_EXT_DATA_ADDRESS;
ramReservedSz = AR6003_REV2_RAM_RESERVE_SIZE;
} else {
param = AR6003_REV3_BOARD_EXT_DATA_ADDRESS;
if (testmode) {
ramReservedSz = AR6003_REV3_RAM_RESERVE_SIZE_TCMD;
} else {
ramReservedSz = AR6003_REV3_RAM_RESERVE_SIZE;
}
}
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_board_ext_data),
(A_UCHAR *)&param,
4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for hi_board_ext_data failed \n"));
return A_ERROR;
}
if (BMIWriteMemory(ar->arHifDevice,
HOST_INTEREST_ITEM_ADDRESS(ar->arTargetType, hi_end_RAM_reserve_sz),
(A_UCHAR *)&ramReservedSz, 4) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("BMIWriteMemory for hi_end_RAM_reserve_sz failed \n"));
return A_ERROR;
}
}
/* since BMIInit is called in the driver layer, we have to set the block
* size here for the target */
if (A_FAILED(ar6000_set_htc_params(ar->arHifDevice,
ar->arTargetType,
mbox_yield_limit,
0 /* use default number of control buffers */
))) {
return A_ERROR;
}
if (setupbtdev != 0) {
if (A_FAILED(ar6000_set_hci_bridge_flags(ar->arHifDevice,
ar->arTargetType,
setupbtdev))) {
return A_ERROR;
}
}
return A_OK;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
static void ar6000_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
A_STATUS status;
HIF_DEVICE_OS_DEVICE_INFO osDevInfo;
AR_SOFTC_T *ar;
AR_SOFTC_DEV_T *arPriv;
struct ar6000_version *revinfo;
if((dev == NULL) || ((arPriv = ar6k_priv(dev)) == NULL)) {
return;
}
ar = arPriv->arSoftc;
revinfo = &ar->arVersion;
strcpy(info->driver, "AR6000");
snprintf(info->version, sizeof(info->version), "%u.%u.%u.%u",
((revinfo->host_ver)&0xf0000000)>>28,
((revinfo->host_ver)&0x0f000000)>>24,
((revinfo->host_ver)&0x00ff0000)>>16,
((revinfo->host_ver)&0x0000ffff));
snprintf(info->fw_version, sizeof(info->fw_version), "%u.%u.%u.%u",
((revinfo->wlan_ver)&0xf0000000)>>28,
((revinfo->wlan_ver)&0x0f000000)>>24,
((revinfo->wlan_ver)&0x00ff0000)>>16,
((revinfo->wlan_ver)&0x0000ffff));
status = HIFConfigureDevice(ar->arHifDevice,
HIF_DEVICE_GET_OS_DEVICE,
&osDevInfo,
sizeof(HIF_DEVICE_OS_DEVICE_INFO));
if (A_SUCCESS(status) && osDevInfo.pOSDevice) {
struct device *dev = (struct device*)osDevInfo.pOSDevice;
if (dev->bus && dev->bus->name) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
const char *dinfo = dev_name(dev);
#else
const char *dinfo = kobject_name(&dev->kobj);
#endif
snprintf(info->bus_info, sizeof(info->bus_info), dinfo);
}
}
}
static u32 ar6000_ethtool_get_link(struct net_device *dev)
{
AR_SOFTC_DEV_T *arPriv;
return ((arPriv = ar6k_priv(dev))!=NULL) ? arPriv->arConnected : 0;
}
#ifdef CONFIG_CHECKSUM_OFFLOAD
static u32 ar6000_ethtool_get_rx_csum(struct net_device *dev)
{
AR_SOFTC_DEV_T *arPriv;
if((dev == NULL) || ((arPriv = ar6k_priv(dev)) == NULL)) {
return 0;
}
return (arPriv->arSoftc->rxMetaVersion==WMI_META_VERSION_2);
}
static int ar6000_ethtool_set_rx_csum(struct net_device *dev, u32 enable)
{
AR_SOFTC_T *ar;
AR_SOFTC_DEV_T *arPriv;
A_UINT8 metaVersion;
if((dev == NULL) || ((arPriv = ar6k_priv(dev)) == NULL)) {
return -EIO;
}
ar = arPriv->arSoftc;
if (ar->arWmiReady == FALSE || ar->arWlanState == WLAN_DISABLED) {
return -EIO;
}
metaVersion = (enable) ? WMI_META_VERSION_2 : 0;
if ((wmi_set_rx_frame_format_cmd(arPriv->arWmi, metaVersion, processDot11Hdr, processDot11Hdr)) != A_OK) {
return -EFAULT;
}
ar->rxMetaVersion = metaVersion;
return 0;
}
static u32 ar6000_ethtool_get_tx_csum(struct net_device *dev)
{
return csumOffload;
}
static int ar6000_ethtool_set_tx_csum(struct net_device *dev, u32 enable)
{
csumOffload = enable;
if(enable){
dev->features |= NETIF_F_IP_CSUM;
} else {
dev->features &= ~NETIF_F_IP_CSUM;
}
return 0;
}
#endif /* CONFIG_CHECKSUM_OFFLOAD */
static const struct ethtool_ops ar6000_ethtool_ops = {
.get_drvinfo = ar6000_ethtool_get_drvinfo,
.get_link = ar6000_ethtool_get_link,
#ifdef CONFIG_CHECKSUM_OFFLOAD
.get_rx_csum = ar6000_ethtool_get_rx_csum,
.set_rx_csum = ar6000_ethtool_set_rx_csum,
.get_tx_csum = ar6000_ethtool_get_tx_csum,
.set_tx_csum = ar6000_ethtool_set_tx_csum,
#endif /* CONFIG_CHECKSUM_OFFLOAD */
};
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */
/*
* HTC Event handlers
*/
static A_STATUS
ar6000_avail_ev(void *context, void *hif_handle)
{
int i;
struct net_device *dev;
void *ar_netif;
AR_SOFTC_T *ar=NULL;
AR_SOFTC_DEV_T *arPriv;
int device_index = 0;
HTC_INIT_INFO htcInfo;
#ifdef ATH6K_CONFIG_CFG80211
struct wireless_dev *wdev;
#endif /* ATH6K_CONFIG_CFG80211 */
A_STATUS init_status = A_OK;
unsigned char devnum = 0;
unsigned char cnt = 0;
#ifdef SET_NETDEV_DEV
HIF_DEVICE_OS_DEVICE_INFO osDevInfo;
A_MEMZERO(&osDevInfo, sizeof(osDevInfo));
if (A_OK != HIFConfigureDevice(hif_handle, HIF_DEVICE_GET_OS_DEVICE,
&osDevInfo, sizeof(osDevInfo))) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: Failed to get OS device instance\n",
__func__));
return A_ERROR;
}
#endif
/*
* If ar6000_avail_ev is called more than once, this means that
* multiple AR600x devices have been inserted into the system.
* We do not support more than one AR600x device at this time.
*/
if (avail_ev_called) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("ERROR: More than one AR600x device not supported by driver\n"));
complete(&avail_ev_completion);
return A_ERROR;
}
avail_ev_called = TRUE;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_available\n"));
ar = A_MALLOC(sizeof(AR_SOFTC_T));
if (ar == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("AR_SOFTC: can not allocate\n"));
complete(&avail_ev_completion);
return A_ERROR;
}
A_MEMZERO(ar, sizeof(AR_SOFTC_T));
#ifdef ATH_AR6K_11N_SUPPORT
if(aggr_init(ar6000_alloc_netbufs, ar6000_deliver_frames_to_nw_stack) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize aggr.\n", __func__));
init_status = A_ERROR;
goto avail_ev_failed;
}
#endif
A_MEMZERO((A_UINT8 *)ar->connTbl, NUM_CONN * sizeof(conn_t));
/* Init the PS queues */
for (i=0; i < NUM_CONN ; i++) {
#ifdef ATH_AR6K_11N_SUPPORT
if ((ar->connTbl[i].conn_aggr = aggr_init_conn()) == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s() Failed to initialize aggr.\n", __func__));
A_FREE(ar);
complete(&avail_ev_completion);
return A_ERROR;
}
#endif
A_MUTEX_INIT(&ar->connTbl[i].psqLock);
A_NETBUF_QUEUE_INIT(&ar->connTbl[i].psq);
A_NETBUF_QUEUE_INIT(&ar->connTbl[i].apsdq);
}
if (ifname[0] == '\0')
strcpy(ifname, "wlan0");
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
if(ifname[0]) {
for(i = 0; i < strlen(ifname); i++) {
if(ifname[i] >= '0' && ifname[i] <= '9' ) {
devnum = (devnum * 10) + (ifname[i] - '0');
}
else {
cnt++;
}
}
ifname[cnt]='\0';
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) */
ar->arConfNumDev = num_device;
for (i=0; i < num_device; i++) {
if (ar6000_devices[i] != NULL) {
break;
}
/* Save this. It gives a bit better readability especially since */
/* we use another local "i" variable below. */
device_index = i;
#ifdef ATH6K_CONFIG_CFG80211
#ifdef SET_NETDEV_DEV
wdev = ar6k_cfg80211_init(osDevInfo.pOSDevice);
#else
wdev = ar6k_cfg80211_init(NULL);
#endif
if (IS_ERR(wdev)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: ar6k_cfg80211_init failed\n", __func__));
complete(&avail_ev_completion);
return A_ERROR;
}
ar_netif = wdev_priv(wdev);
#else
dev = alloc_etherdev(sizeof(AR_SOFTC_DEV_T));
if (dev == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_available: can't alloc etherdev\n"));
A_FREE(ar);
complete(&avail_ev_completion);
return A_ERROR;
}
ether_setup(dev);
ar_netif = ar6k_priv(dev);
#endif /* ATH6K_CONFIG_CFG80211 */
if (ar_netif == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("%s: Can't allocate ar6k priv memory\n", __func__));
A_FREE(ar);
complete(&avail_ev_completion);
return A_ERROR;
}
A_MEMZERO(ar_netif, sizeof(AR_SOFTC_DEV_T));
arPriv = (AR_SOFTC_DEV_T *)ar_netif;
#ifdef ATH6K_CONFIG_CFG80211
arPriv->wdev = wdev;
wdev->iftype = NL80211_IFTYPE_STATION;
dev = alloc_netdev_mq(0, "wlan%d", ether_setup, NUM_SUBQUEUE);
if (!dev) {
printk(KERN_CRIT "AR6K: no memory for network device instance\n");
ar6k_cfg80211_deinit(arPriv);
A_FREE(ar);
return A_ERROR;
}
dev->ieee80211_ptr = wdev;
SET_NETDEV_DEV(dev, wiphy_dev(wdev->wiphy));
wdev->netdev = dev;
arPriv->arNetworkType = INFRA_NETWORK;
#endif /* ATH6K_CONFIG_CFG80211 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
if (ifname[0])
{
sprintf(dev->name, "%s%d", ifname,(devnum + device_index));
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) */
#ifdef SET_MODULE_OWNER
SET_MODULE_OWNER(dev);
#endif
#ifdef SET_NETDEV_DEV
#if 0
if (ar_netif) {
HIF_DEVICE_OS_DEVICE_INFO osDevInfo;
A_MEMZERO(&osDevInfo, sizeof(osDevInfo));
if ( A_SUCCESS( HIFConfigureDevice(hif_handle, HIF_DEVICE_GET_OS_DEVICE,
&osDevInfo, sizeof(osDevInfo))) ) {
SET_NETDEV_DEV(dev, osDevInfo.pOSDevice);
}
}
#endif
#endif
arPriv->arNetDev = dev;
ar6000_devices[device_index] = dev;
arPriv->arSoftc = ar;
ar->arDev[device_index] = arPriv;
ar->arWlanState = WLAN_ENABLED;
arPriv->arDeviceIndex = device_index;
ar->arWlanPowerState = WLAN_POWER_STATE_ON;
#ifndef ATH6K_CONFIG_CFG80211
#ifdef SET_NETDEV_DEV
SET_NETDEV_DEV(dev, osDevInfo.pOSDevice);
#endif
#endif
if(ar6000_init_control_info(arPriv) != A_OK) {
init_status = A_ERROR;
goto avail_ev_failed;
}
init_waitqueue_head(&arPriv->arEvent);
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
A_INIT_TIMER(&aptcTimer[i], aptcTimerHandler, ar);
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
spin_lock_init(&arPriv->arPrivLock);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29)
dev->open = &ar6000_open;
dev->stop = &ar6000_close;
dev->hard_start_xmit = &ar6000_data_tx;
dev->get_stats = &ar6000_get_stats;
/* dev->tx_timeout = ar6000_tx_timeout; */
dev->do_ioctl = &ar6000_ioctl;
dev->set_multicast_list = &ar6000_set_multicast_list;
#else
dev->netdev_ops = &ar6000_netdev_ops;
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
dev->ethtool_ops = &ar6000_ethtool_ops;
#endif
dev->watchdog_timeo = AR6000_TX_TIMEOUT;
dev->wireless_handlers = &ath_iw_handler_def;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
dev->get_wireless_stats = ar6000_get_iwstats; /*Displayed via proc fs */
#else
ath_iw_handler_def.get_wireless_stats = ar6000_get_iwstats; /*Displayed via proc fs */
#endif
#ifdef CONFIG_CHECKSUM_OFFLOAD
if(csumOffload){
dev->features |= NETIF_F_IP_CSUM;/*advertise kernel capability
to do TCP/UDP CSUM offload for IPV4*/
}
#endif
if (processDot11Hdr) {
dev->hard_header_len = sizeof(struct ieee80211_qosframe) + sizeof(ATH_LLC_SNAP_HDR) + sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR;
} else {
/*
* We need the OS to provide us with more headroom in order to
* perform dix to 802.3, WMI header encap, and the HTC header
*/
dev->hard_header_len = ETH_HLEN + sizeof(ATH_LLC_SNAP_HDR) +
sizeof(WMI_DATA_HDR) + HTC_HEADER_LEN + WMI_MAX_TX_META_SZ + LINUX_HACK_FUDGE_FACTOR;
}
if (!bypasswmi && !eppingtest)
{
/* Indicate that WMI is enabled (although not ready yet) */
arPriv->arWmiEnabled = TRUE;
if ((arPriv->arWmi = wmi_init((void *) arPriv,arPriv->arDeviceIndex)) == NULL)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize WMI.\n", __func__));
init_status = A_ERROR;
goto avail_ev_failed;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s() Got WMI @ 0x%08x.\n", __func__,
(unsigned int) arPriv->arWmi));
}
#ifdef P2P
/* Allocate P2P module context if this dev is in any of the P2P modes.
* For non-P2P devices, this may be allocated just in time when the
* device assumes a P2P submode. This may be needed when we do
* mode switch between none and P2P submodes. For later enhancement.
*/
if (arPriv->arNetworkSubType == SUBTYPE_P2PDEV ||
arPriv->arNetworkSubType == SUBTYPE_P2PCLIENT ||
arPriv->arNetworkSubType == SUBTYPE_P2PGO) {
arPriv->p2p_ctx = p2p_init(arPriv);
if (arPriv->p2p_ctx == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize p2p_ctx.\n", __func__));
init_status = A_ERROR;
goto avail_ev_failed;
}
p2p_update_capability(A_WMI_GET_P2P_CTX(arPriv),arPriv->arNetworkSubType,num_device);
}
#endif /* P2P */
}
#ifdef CONFIG_HOST_TCMD_SUPPORT
if(testmode) {
ar->arTargetMode = AR6000_TCMD_MODE;
}else {
ar->arTargetMode = AR6000_WLAN_MODE;
}
#endif
ar->arWlanOff = FALSE; /* We are in ON state */
#ifdef CONFIG_PM
ar->arWowState = WLAN_WOW_STATE_NONE;
ar->arBTOff = TRUE; /* BT chip assumed to be OFF */
ar->arBTSharing = WLAN_CONFIG_BT_SHARING;
ar->arWlanOffConfig = WLAN_CONFIG_WLAN_OFF;
ar->arSuspendConfig = WLAN_CONFIG_PM_SUSPEND;
ar->arWow2Config = WLAN_CONFIG_PM_WOW2;
#endif /* CONFIG_PM */
A_INIT_TIMER(&ar->arHBChallengeResp.timer, ar6000_detect_error, ar);
ar->arHBChallengeResp.seqNum = 0;
ar->arHBChallengeResp.outstanding = FALSE;
ar->arHBChallengeResp.missCnt = 0;
ar->arHBChallengeResp.frequency = AR6000_HB_CHALLENGE_RESP_FREQ_DEFAULT;
ar->arHBChallengeResp.missThres = AR6000_HB_CHALLENGE_RESP_MISS_THRES_DEFAULT;
ar->arHifDevice = hif_handle;
sema_init(&ar->arSem, 1);
ar->bIsDestroyProgress = FALSE;
ar->delbaState = REASON_DELBA_INIT;
ar->IsdelbaTimerInitialized = FALSE;
A_INIT_TIMER (&ar->delbaTimer, delba_timer_callback, ar);
ar->isHostAsleep = 0;
INIT_HTC_PACKET_QUEUE(&ar->amsdu_rx_buffer_queue);
/*
* If requested, perform some magic which requires no cooperation from
* the Target. It causes the Target to ignore flash and execute to the
* OS from ROM.
*
* This is intended to support recovery from a corrupted flash on Targets
* that support flash.
*/
if (skipflash)
{
//ar6000_reset_device_skipflash(ar->arHifDevice);
}
BMIInit();
if (bmienable) {
ar6000_sysfs_bmi_init(ar);
}
{
struct bmi_target_info targ_info;
A_MEMZERO(&targ_info, sizeof(targ_info));
if (BMIGetTargetInfo(ar->arHifDevice, &targ_info) != A_OK) {
init_status = A_ERROR;
goto avail_ev_failed;
}
ar->arVersion.target_ver = targ_info.target_ver;
ar->arTargetType = targ_info.target_type;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s() TARGET TYPE: %d\n", __func__,ar->arTargetType));
target_register_tbl_attach(ar->arTargetType);
/* do any target-specific preparation that can be done through BMI */
if (ar6000_prepare_target(ar->arHifDevice,
targ_info.target_type,
targ_info.target_ver) != A_OK) {
init_status = A_ERROR;
goto avail_ev_failed;
}
}
if (ar6000_configure_target(ar) != A_OK) {
init_status = A_ERROR;
goto avail_ev_failed;
}
A_MEMZERO(&htcInfo,sizeof(htcInfo));
htcInfo.pContext = ar;
htcInfo.TargetFailure = ar6000_target_failure;
ar->arHtcTarget = HTCCreate(ar->arHifDevice,&htcInfo);
if (ar->arHtcTarget == NULL) {
init_status = A_ERROR;
goto avail_ev_failed;
}
spin_lock_init(&ar->arLock);
#ifdef CONFIG_CHECKSUM_OFFLOAD
if(csumOffload){
ar->rxMetaVersion=WMI_META_VERSION_2;/*if external frame work is also needed, change and use an extended rxMetaVerion*/
}
#endif
HIFClaimDevice(ar->arHifDevice, ar);
if (bmienable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("BMI enabled: %d\n", wlaninitmode));
if ((wlaninitmode == WLAN_INIT_MODE_UDEV) ||
(wlaninitmode == WLAN_INIT_MODE_DRV))
{
A_STATUS status = A_OK;
do {
if ((status = ar6000_sysfs_bmi_get_config(ar, wlaninitmode)) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_sysfs_bmi_get_config failed\n"));
break;
}
dev = ar6000_devices[0];
#ifdef HTC_RAW_INTERFACE
if (!eppingtest && bypasswmi) {
break; /* Don't call ar6000_init for ART */
}
#endif
status = (ar6000_init(dev)==0) ? A_OK : A_ERROR;
if (status != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_init\n"));
}
} while (FALSE);
if (status != A_OK) {
init_status = status;
goto avail_ev_failed;
}
}
}
#ifdef CONFIG_PM
init_waitqueue_head(&ar->sleep_mode_cmd_completed_event);
#endif
for (i=0; i < num_device; i++)
{
dev = ar6000_devices[i];
arPriv = ar6k_priv(dev);
ar = arPriv->arSoftc;
/* Don't install the init function if BMI is requested */
if (!bmienable) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29)
dev->init = ar6000_init;
#else
ar6000_netdev_ops.ndo_init = ar6000_init;
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) */
}
/* This runs the init function if registered */
if (register_netdev(dev)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("ar6000_avail: register_netdev failed\n"));
ar6000_cleanup(ar);
ar6000_devices[i] = NULL;
ar6000_destroy(dev, 0);
complete(&avail_ev_completion);
return A_ERROR;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_avail: name=%s hifdevice=0x%lx, dev=0x%lx (%d), ar=0x%lx\n",
dev->name, (unsigned long)ar->arHifDevice, (unsigned long)dev, device_index,
(unsigned long)ar));
}
avail_ev_failed :
if (A_FAILED(init_status)) {
if (bmienable) {
ar6000_sysfs_bmi_deinit(ar);
}
for (i=0; i < num_device; i++)
{
dev = ar6000_devices[i];
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
if(arPriv->arWmiEnabled == TRUE)
{
wmi_shutdown(arPriv->arWmi);
arPriv->arWmiEnabled = FALSE;
}
ar6000_devices[i] = NULL;
}
A_FREE(ar);
}
complete(&avail_ev_completion);
mod_loaded = TRUE;
wake_up_interruptible(&load_complete);
printk("Completed loading the module %s\n", __func__);
return init_status;
}
static void ar6000_target_failure(void *Instance, A_STATUS Status)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)Instance;
WMI_TARGET_ERROR_REPORT_EVENT errEvent;
static A_BOOL sip = FALSE;
A_UINT8 i;
if (Status != A_OK) {
printk(KERN_ERR "ar6000_target_failure: target asserted \n");
if (timer_pending(&ar->arHBChallengeResp.timer)) {
A_UNTIMEOUT(&ar->arHBChallengeResp.timer);
}
/* try dumping target assertion information (if any) */
ar6000_dump_target_assert_info(ar->arHifDevice,ar->arTargetType);
/*
* Fetch the logs from the target via the diagnostic
* window.
*/
ar6000_dbglog_get_debug_logs(ar);
/* Report the error only once */
if (!sip) {
sip = TRUE;
errEvent.errorVal = WMI_TARGET_COM_ERR |
WMI_TARGET_FATAL_ERR;
for(i = 0; i < num_device; i++)
{
ar6000_send_event_to_app(ar->arDev[i], WMI_ERROR_REPORT_EVENTID,
(A_UINT8 *)&errEvent,
sizeof(WMI_TARGET_ERROR_REPORT_EVENT));
}
}
}
}
static A_STATUS
ar6000_unavail_ev(void *context, void *hif_handle)
{
unsigned int old_reset_ok = resetok;
A_UINT8 i;
struct net_device *ar6000_netdev;
AR_SOFTC_T *ar = (AR_SOFTC_T*)context;
resetok = 0; /* card is remove, don't reset */
ar6000_cleanup(ar);
resetok = old_reset_ok;
/* NULL out it's entry in the global list */
for(i = 0; i < num_device; i++) {
ar6000_netdev = ar6000_devices[i];
ar6000_devices[i] = NULL;
ar6000_destroy(ar6000_netdev, 1);
}
return A_OK;
}
/*
* EV93295 Kernel panic "cannot create duplicate filename 'bmi'"
*/
A_BOOL restart_endpoint_called = FALSE;
void
ar6000_restart_endpoint(AR_SOFTC_T *ar)
{
A_STATUS status = A_OK;
AR_SOFTC_DEV_T *arPriv;
struct net_device *dev;
A_UINT8 i = 0;
if(restart_endpoint_called) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6K: %s() already called.\n", __func__));
dump_stack();
return;
}
restart_endpoint_called = TRUE;
/*
* Call wmi_init for each device. This must be done BEFORE ar6000_init() is
* called, or we will get a null pointer exception in the wmi code. We must
* also set the arWmiEnabled flag for each device.
*/
for(i = 0; i < num_device; i++) {
arPriv = ar->arDev[i];
arPriv->arWmiEnabled = TRUE;
if ((arPriv->arWmi = wmi_init((void *) arPriv,arPriv->arDeviceIndex)) == NULL)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() Failed to initialize WMI.\n", __func__));
status = A_ERROR;
goto exit;
}
}
BMIInit();
if (bmienable) {
ar6000_sysfs_bmi_init(ar);
}
do {
if ( (status=ar6000_configure_target(ar))!=A_OK)
break;
if ( (status=ar6000_sysfs_bmi_get_config(ar, wlaninitmode)) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_avail: ar6000_sysfs_bmi_get_config failed\n"));
break;
}
} while(0);
dev = ar6000_devices[0];
status = (ar6000_init(dev)==0) ? A_OK : A_ERROR;
if (status != A_OK) {
goto exit;
}
for(i = 0; i < num_device; i++) {
arPriv = ar->arDev[i];
if (arPriv->arDoConnectOnResume &&
arPriv->arSsidLen &&
ar->arWlanState == WLAN_ENABLED)
{
ar6000_connect_to_ap(arPriv);
}
}
if (status == A_OK) {
restart_endpoint_called = FALSE;
return;
}
exit:
for(i = 0; i < num_device; i++) {
arPriv = ar->arDev[i];
ar6000_devices[i] = NULL;
ar6000_destroy(arPriv->arNetDev, 1);
}
restart_endpoint_called = FALSE;
}
void
ar6000_stop_endpoint(AR_SOFTC_T *ar, A_BOOL keepprofile, A_BOOL getdbglogs)
{
AR_SOFTC_DEV_T *arPriv ;
A_UINT8 i;
A_UINT8 ctr;
AR_SOFTC_STA_T *arSta;
for(i = 0; i < num_device; i++)
{
arPriv = ar->arDev[i];
arSta = &arPriv->arSta;
/* Stop the transmit queues */
netif_stop_queue(arPriv->arNetDev);
/* Disable the target and the interrupts associated with it */
if (ar->arWmiReady == TRUE)
{
if (!bypasswmi) {
A_BOOL disconnectIssued;
arPriv->arDoConnectOnResume = arPriv->arConnected;
A_UNTIMEOUT(&arPriv->arSta.disconnect_timer);
A_UNTIMEOUT(&ar->ap_reconnect_timer);
// AP + BTCOEX State variables resetted here.
ar->IsdelbaTimerInitialized = FALSE;
A_UNTIMEOUT(&ar->delbaTimer);
ar->delbaState = REASON_DELBA_INIT;
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
/* Delete the Adaptive Power Control timer */
if (timer_pending(&aptcTimer[i])) {
del_timer_sync(&aptcTimer[i]);
}
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
#ifdef ATH_AR6K_11N_SUPPORT
for (ctr=0; ctr < NUM_CONN ; ctr++) {
aggr_module_destroy_timers(ar->connTbl[ctr].conn_aggr);
}
#endif
if (!wait_event_interruptible_timeout(scan_complete, !arSta->scan_triggered, 2 * HZ)) {
printk(KERN_ERR "scan complete not received\n");
}
disconnectIssued = (arPriv->arConnected) || (arPriv->arSta.arConnectPending);
ar6000_disconnect(arPriv);
if (!keepprofile) {
ar6000_init_profile_info(arPriv);
}
if (getdbglogs) {
ar6000_dbglog_get_debug_logs(ar);
}
ar->arWmiReady = FALSE;
arPriv->arWmiEnabled = FALSE;
wmi_shutdown(arPriv->arWmi);
arPriv->arWmi = NULL;
/*
* After wmi_shudown all WMI events will be dropped.
* We need to cleanup the buffers allocated in AP mode
* and give disconnect notification to stack, which usually
* happens in the disconnect_event.
* Simulate the disconnect_event by calling the function directly.
* Sometimes disconnect_event will be received when the debug logs
* are collected.
*/
if (disconnectIssued) {
if(arPriv->arNetworkType & AP_NETWORK) {
ar6000_disconnect_event(arPriv, DISCONNECT_CMD, bcast_mac, 0, NULL, 0);
} else {
ar6000_disconnect_event(arPriv, DISCONNECT_CMD, arPriv->arBssid, 0, NULL, 0);
}
}
#ifdef USER_KEYS
arPriv->arSta.user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
arPriv->arSta.user_key_ctrl = 0;
#endif
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI stopped\n", __func__));
}
else
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): WMI not ready 0x%lx 0x%lx\n",
__func__, (unsigned long) ar, (unsigned long) arPriv->arWmi));
/* Shut down WMI if we have started it */
if(arPriv->arWmiEnabled == TRUE)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s(): Shut down WMI\n", __func__));
arPriv->arWmiEnabled = FALSE;
wmi_shutdown(arPriv->arWmi);
arPriv->arWmi = NULL;
}
}
/* cleanup hci pal driver data structures */
if (setuphcipal && (arPriv->isBt30amp == TRUE)) {
ar6k_cleanup_hci_pal(arPriv);
}
}
if (ar->arHtcTarget != NULL) {
#ifdef EXPORT_HCI_BRIDGE_INTERFACE
if (NULL != ar6kHciTransCallbacks.cleanupTransport) {
ar6kHciTransCallbacks.cleanupTransport(NULL);
}
#else
// FIXME: workaround to reset BT's UART baud rate to default
if (NULL != ar->exitCallback) {
AR3K_CONFIG_INFO ar3kconfig;
A_STATUS status;
A_MEMZERO(&ar3kconfig,sizeof(ar3kconfig));
ar6000_set_default_ar3kconfig(ar, (void *)&ar3kconfig);
status = ar->exitCallback(&ar3kconfig);
if (A_OK != status) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Failed to reset AR3K baud rate! \n"));
}
}
// END workaround
if (setuphci)
ar6000_cleanup_hci(ar);
#endif
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Shutting down HTC .... \n"));
/* stop HTC */
HTCStop(ar->arHtcTarget);
ar6k_init = FALSE;
}
if (resetok) {
/* try to reset the device if we can
* The driver may have been configure NOT to reset the target during
* a debug session */
AR_DEBUG_PRINTF(ATH_DEBUG_ANY,(" Attempting to reset target on instance destroy.... \n"));
if (ar->arHifDevice != NULL) {
#if defined(CONFIG_MMC_MSM) || defined(CONFIG_MMC_SDHCI_S3C)
A_BOOL coldReset = ((ar->arTargetType == TARGET_TYPE_AR6003)|| (ar->arTargetType == TARGET_TYPE_MCKINLEY)) ? TRUE: FALSE;
#else
A_BOOL coldReset = (ar->arTargetType == TARGET_TYPE_MCKINLEY) ? TRUE: FALSE;
#endif
ar6000_reset_device(ar->arHifDevice, ar->arTargetType, TRUE, coldReset);
}
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" Host does not want target reset. \n"));
}
/* Done with cookies */
ar6000_cookie_cleanup(ar);
/* cleanup any allocated AMSDU buffers */
ar6000_cleanup_amsdu_rxbufs(ar);
if (bmienable) {
ar6000_sysfs_bmi_deinit(ar);
}
}
void ar6000_cleanup(AR_SOFTC_T *ar)
{
A_UINT8 ctr;
ar->bIsDestroyProgress = TRUE;
if (down_interruptible(&ar->arSem)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): down_interruptible failed \n", __func__));
return;
}
if (ar->arWlanPowerState != WLAN_POWER_STATE_CUT_PWR) {
/* only stop endpoint if we are not stop it in suspend_ev */
ar6000_stop_endpoint(ar, FALSE, TRUE);
} else {
/* clear up the platform power state before rmmod */
plat_setup_power(ar, 1, 0);
ar->arPlatPowerOff = FALSE;
}
#ifdef ATH_AR6K_11N_SUPPORT
for (ctr=0; ctr < NUM_CONN ; ctr++) {
aggr_module_destroy_conn(ar->connTbl[ctr].conn_aggr);
}
aggr_module_destroy();
#endif
ar->arWlanState = WLAN_DISABLED;
up(&ar->arSem);
if (ar->arHtcTarget != NULL) {
/* destroy HTC */
HTCDestroy(ar->arHtcTarget);
}
if (ar->arHifDevice != NULL) {
/*release the device so we do not get called back on remove incase we
* we're explicity destroyed by module unload */
HIFReleaseDevice(ar->arHifDevice);
HIFShutDownDevice(ar->arHifDevice);
}
/* Done with cookies */
ar6000_cookie_cleanup(ar);
/* cleanup any allocated AMSDU buffers */
ar6000_cleanup_amsdu_rxbufs(ar);
if (bmienable) {
ar6000_sysfs_bmi_deinit(ar);
}
/* Cleanup BMI */
BMICleanup();
/* Clear the tx counters */
memset(tx_attempt, 0, sizeof(tx_attempt));
memset(tx_post, 0, sizeof(tx_post));
memset(tx_complete, 0, sizeof(tx_complete));
#ifdef HTC_RAW_INTERFACE
if (ar->arRawHtc) {
A_FREE(ar->arRawHtc);
ar->arRawHtc = NULL;
}
#endif
A_UNTIMEOUT(&ar->ap_reconnect_timer);
A_UNTIMEOUT(&ar->arHBChallengeResp.timer);
// AP + BTCOEX State variables resetted here.
ar->IsdelbaTimerInitialized = FALSE;
A_UNTIMEOUT(&ar->delbaTimer);
ar->delbaState = REASON_DELBA_INIT;
A_FREE(ar);
}
/*
* We need to differentiate between the surprise and planned removal of the
* device because of the following consideration:
* - In case of surprise removal, the hcd already frees up the pending
* for the device and hence there is no need to unregister the function
* driver inorder to get these requests. For planned removal, the function
* driver has to explictly unregister itself to have the hcd return all the
* pending requests before the data structures for the devices are freed up.
* Note that as per the current implementation, the function driver will
* end up releasing all the devices since there is no API to selectively
* release a particular device.
* - Certain commands issued to the target can be skipped for surprise
* removal since they will anyway not go through.
*/
void
ar6000_destroy(struct net_device *dev, unsigned int unregister)
{
AR_SOFTC_DEV_T *arPriv;
AR_SOFTC_AP_T *arAp;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("+ar6000_destroy \n"));
if((dev == NULL) || ((arPriv = ar6k_priv(dev)) == NULL))
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s(): Failed to get device structure.\n", __func__));
return;
}
aggr_module_destroy_conn(arPriv->conn_aggr);
if(arPriv->arNetworkType == AP_NETWORK)
{
arAp = &arPriv->arAp;
#ifdef ATH_SUPPORT_DFS
dfs_detach_host(arAp->pDfs);
#endif
}
#ifdef P2P
A_FREE(arPriv->p2p_ctx);
#endif /* P2P */
ar6k_init = FALSE;
/* Free up the device data structure */
if (unregister) {
unregister_netdev(dev);
}
#ifndef HAVE_FREE_NETDEV
kfree(dev);
#else
free_netdev(dev);
#endif
#ifdef ATH6K_CONFIG_CFG80211
ar6k_cfg80211_deinit(arPriv);
#endif /* ATH6K_CONFIG_CFG80211 */
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("-ar6000_destroy \n"));
}
static void delba_timer_callback(unsigned long ptr)
{
AR_SOFTC_T *ar= (AR_SOFTC_T *)ptr;
do
{
if (NULL != ar)
{
if (!ar->IsdelbaTimerInitialized)
{
break;
}
ar->IsdelbaTimerInitialized = FALSE;
A_UNTIMEOUT (&ar->delbaTimer);
ar6000_send_delba (ar, REASON_DELBA_TIMEOUT);
ar->delbaState = REASON_DELBA_INIT;
}
}while (FALSE);
}
static void ap_reconnect_timer_handler(unsigned long ptr)
{
AR_SOFTC_T *ar= (AR_SOFTC_T *)ptr;
AR_SOFTC_DEV_T *arTempPriv = NULL;
A_UINT8 i=0;
A_UNTIMEOUT(&ar->ap_reconnect_timer);
if(ar->arHoldConnection){
for(i=0;i<ar->arConfNumDev;i++){
arTempPriv = ar->arDev[i];
if((AP_NETWORK == arTempPriv->arNetworkType) &&
(ar->arHoldConnection & (1<<arTempPriv->arDeviceIndex))){
ar->arHoldConnection &= ~(1<<arTempPriv->arDeviceIndex);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ap_reconnect_timer_handler: starting AP %d", arTempPriv->arDeviceIndex));
ar6000_ap_mode_profile_commit(arTempPriv);
break;
}
}
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ar6000_reconnect_timer_handler : no"
" device pending for connect\n"));
}
}
static void disconnect_timer_handler(unsigned long ptr)
{
struct net_device *dev = (struct net_device *)ptr;
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
A_UNTIMEOUT(&arPriv->arSta.disconnect_timer);
ar6000_init_profile_info(arPriv);
ar6000_disconnect(arPriv);
}
static void ar6000_detect_error(unsigned long ptr)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)ptr;
A_UINT8 i;
WMI_TARGET_ERROR_REPORT_EVENT errEvent;
AR6000_SPIN_LOCK(&ar->arLock, 0);
if (ar->arHBChallengeResp.outstanding) {
ar->arHBChallengeResp.missCnt++;
} else {
ar->arHBChallengeResp.missCnt = 0;
}
if (ar->arHBChallengeResp.missCnt > ar->arHBChallengeResp.missThres) {
/* Send Error Detect event to the application layer and do not reschedule the error detection module timer */
ar->arHBChallengeResp.missCnt = 0;
ar->arHBChallengeResp.seqNum = 0;
errEvent.errorVal = WMI_TARGET_COM_ERR | WMI_TARGET_FATAL_ERR;
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
for(i = 0; i < num_device; i++)
{
ar6000_send_event_to_app(ar->arDev[i], WMI_ERROR_REPORT_EVENTID,
(A_UINT8 *)&errEvent,
sizeof(WMI_TARGET_ERROR_REPORT_EVENT));
}
return;
}
/* Generate the sequence number for the next challenge */
ar->arHBChallengeResp.seqNum++;
ar->arHBChallengeResp.outstanding = TRUE;
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
/* Send the challenge on the control channel */
if (wmi_get_challenge_resp_cmd(ar->arDev[0]->arWmi, ar->arHBChallengeResp.seqNum, DRV_HB_CHALLENGE) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to send heart beat challenge\n"));
}
/* Reschedule the timer for the next challenge */
A_TIMEOUT_MS(&ar->arHBChallengeResp.timer, ar->arHBChallengeResp.frequency * 1000, 0);
}
void ar6000_init_profile_info(AR_SOFTC_DEV_T *arPriv)
{
A_UINT8 mode = 0;
#ifdef P2P
A_UINT8 submode = 0;
#endif
mode = ((fwmode >> (arPriv->arDeviceIndex * HI_OPTION_FW_MODE_BITS)) & (HI_OPTION_FW_MODE_MASK ));
switch(mode) {
case HI_OPTION_FW_MODE_IBSS:
arPriv->arNetworkType = arPriv->arNextMode = ADHOC_NETWORK;
break;
case HI_OPTION_FW_MODE_BSS_STA:
arPriv->arNetworkType = arPriv->arNextMode = INFRA_NETWORK;
break;
case HI_OPTION_FW_MODE_AP:
arPriv->arNetworkType = arPriv->arNextMode = AP_NETWORK;
break;
case HI_OPTION_FW_MODE_BT30AMP:
arPriv->arNetworkType = arPriv->arNextMode = INFRA_NETWORK;
arPriv->isBt30amp = TRUE;
break;
}
#ifdef P2P
/* Initialize firware sub mode
*/
submode = ((fwsubmode>>(arPriv->arDeviceIndex * HI_OPTION_FW_SUBMODE_BITS))
& (HI_OPTION_FW_SUBMODE_MASK));
switch(submode) {
case HI_OPTION_FW_SUBMODE_NONE:
arPriv->arNetworkSubType = SUBTYPE_NONE;
break;
case HI_OPTION_FW_SUBMODE_P2PDEV:
arPriv->arNetworkSubType = SUBTYPE_P2PDEV;
break;
case HI_OPTION_FW_SUBMODE_P2PCLIENT:
arPriv->arNetworkSubType = SUBTYPE_P2PCLIENT;
break;
case HI_OPTION_FW_SUBMODE_P2PGO:
arPriv->arNetworkSubType = SUBTYPE_P2PGO;
break;
}
#endif
ar6000_init_mode_info(arPriv);
}
static int
ar6000_init_control_info(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
arPriv->arWmiEnabled = FALSE;
ar->arVersion.host_ver = AR6K_SW_VERSION;
if(!(strcmp(targetconf,"mobile")))
ar->arVersion.targetconf_ver = AR6003_SUBVER_MOBILE;
else if(!(strcmp(targetconf,"tablet")))
ar->arVersion.targetconf_ver = AR6003_SUBVER_TABLET;
else if(!(strcmp(targetconf,"router")))
ar->arVersion.targetconf_ver = AR6003_SUBVER_ROUTER;
else
ar->arVersion.targetconf_ver = AR6003_SUBVER_DEFAULT;
ar6000_init_profile_info(arPriv);
if((arPriv->conn_aggr = aggr_init_conn()) == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
("%s() Failed to initialize aggr.\n", __func__));
return A_ERROR;
}
return A_OK;
}
static int
ar6000_open(struct net_device *dev)
{
unsigned long flags;
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
spin_lock_irqsave(&arPriv->arPrivLock, flags);
#ifdef ATH6K_CONFIG_CFG80211
if(arPriv->arSoftc->arWlanState == WLAN_DISABLED) {
arPriv->arSoftc->arWlanState = WLAN_ENABLED;
}
#endif /* ATH6K_CONFIG_CFG80211 */
if( arPriv->arConnected || bypasswmi) {
netif_carrier_on(dev);
/* Wake up the queues */
netif_wake_queue(dev);
}
else
netif_carrier_off(dev);
spin_unlock_irqrestore(&arPriv->arPrivLock, flags);
return 0;
}
static int
ar6000_close(struct net_device *dev)
{
#ifdef ATH6K_CONFIG_CFG80211
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
#endif /* ATH6K_CONFIG_CFG80211 */
netif_stop_queue(dev);
#ifdef ATH6K_CONFIG_CFG80211
ar6000_disconnect(arPriv);
if(arPriv->arSoftc->arWmiReady == TRUE) {
if (wmi_scanparams_cmd(arPriv->arWmi, 0xFFFF, 0,
0, 0, 0, 0, 0, 0, 0, 0) != A_OK) {
return -EIO;
}
arPriv->arSoftc->arWlanState = WLAN_DISABLED;
}
#endif /* ATH6K_CONFIG_CFG80211 */
return 0;
}
/* connect to a service */
static A_STATUS ar6000_connectservice(AR_SOFTC_DEV_T *arPriv,
HTC_SERVICE_CONNECT_REQ *pConnect,
char *pDesc)
{
A_STATUS status;
HTC_SERVICE_CONNECT_RESP response;
AR_SOFTC_T *ar = arPriv->arSoftc;
do {
A_MEMZERO(&response,sizeof(response));
status = HTCConnectService(ar->arHtcTarget,
pConnect,
&response);
if (A_FAILED(status)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" Failed to connect to %s service status:%d \n",
pDesc, status));
break;
}
switch (pConnect->ServiceID) {
case WMI_CONTROL_SVC :
if(!bypasswmi)
{
/* set control endpoint for WMI use */
wmi_set_control_ep(arPriv->arWmi, response.Endpoint);
/* save EP for fast lookup */
ar->arControlEp = response.Endpoint;
}
break;
case WMI_DATA_BE_SVC :
arSetAc2EndpointIDMap(ar, WMM_AC_BE, response.Endpoint);
break;
case WMI_DATA_BK_SVC :
arSetAc2EndpointIDMap(ar, WMM_AC_BK, response.Endpoint);
break;
case WMI_DATA_VI_SVC :
arSetAc2EndpointIDMap(ar, WMM_AC_VI, response.Endpoint);
break;
case WMI_DATA_VO_SVC :
arSetAc2EndpointIDMap(ar, WMM_AC_VO, response.Endpoint);
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ServiceID not mapped %d\n", pConnect->ServiceID));
status = A_EINVAL;
break;
}
} while (FALSE);
return status;
}
void ar6000_TxDataCleanup(AR_SOFTC_T *ar)
{
/* flush all the data (non-control) streams
* we only flush packets that are tagged as data, we leave any control packets that
* were in the TX queues alone */
HTCFlushEndpoint(ar->arHtcTarget,
arAc2EndpointID(ar, WMM_AC_BE),
AR6K_DATA_PKT_TAG);
HTCFlushEndpoint(ar->arHtcTarget,
arAc2EndpointID(ar, WMM_AC_BK),
AR6K_DATA_PKT_TAG);
HTCFlushEndpoint(ar->arHtcTarget,
arAc2EndpointID(ar, WMM_AC_VI),
AR6K_DATA_PKT_TAG);
HTCFlushEndpoint(ar->arHtcTarget,
arAc2EndpointID(ar, WMM_AC_VO),
AR6K_DATA_PKT_TAG);
}
HTC_ENDPOINT_ID
ar6000_ac2_endpoint_id ( void * devt, A_UINT8 ac)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *) devt;
AR_SOFTC_T *ar = arPriv->arSoftc;
return(arAc2EndpointID(ar, ac));
}
A_UINT8
ar6000_endpoint_id2_ac(void * devt, HTC_ENDPOINT_ID ep )
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *) devt;
AR_SOFTC_T *ar = arPriv->arSoftc;
return(arEndpoint2Ac(ar, ep ));
}
/* This function does one time initialization for the lifetime of the device */
int ar6000_init(struct net_device *dev)
{
AR_SOFTC_DEV_T *arPriv;
AR_SOFTC_T *ar;
int ret = 0;
int i = 0;
int j = 0;
A_STATUS status;
A_INT32 timeleft;
#if defined(INIT_MODE_DRV_ENABLED) && defined(ENABLE_COEXISTENCE)
WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD sbcb_cmd;
WMI_SET_BTCOEX_FE_ANT_CMD sbfa_cmd;
#endif /* INIT_MODE_DRV_ENABLED && ENABLE_COEXISTENCE */
dev_hold(dev);
if(ar6k_init)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6000 Initialised\n"));
goto ar6000_init_done;
}
ar6k_init = TRUE;
if((arPriv = ar6k_priv(dev)) == NULL)
{
ret = -EIO;
goto ar6000_init_done;
}
ar = arPriv->arSoftc;
if (wlaninitmode == WLAN_INIT_MODE_USR || wlaninitmode == WLAN_INIT_MODE_DRV) {
ar6000_update_bdaddr(ar);
}
if (enablerssicompensation) {
ar6000_copy_cust_data_from_target(ar->arHifDevice, ar->arTargetType);
read_rssi_compensation_param(ar);
for(j=0; j<num_device; j++) {
for (i=-95; i<=0; i++) {
rssi_compensation_table[j][0-i] = rssi_compensation_calc(ar->arDev[j],i);
}
}
}
/* Do we need to finish the BMI phase */
if ((wlaninitmode==WLAN_INIT_MODE_USR || wlaninitmode==WLAN_INIT_MODE_DRV) &&
(BMIDone(ar->arHifDevice) != A_OK))
{
ret = -EIO;
goto ar6000_init_done;
}
do {
HTC_SERVICE_CONNECT_REQ connect;
/* the reason we have to wait for the target here is that the driver layer
* has to init BMI in order to set the host block size,
*/
status = HTCWaitTarget(ar->arHtcTarget);
if (A_FAILED(status)) {
break;
}
A_MEMZERO(&connect,sizeof(connect));
/* meta data is unused for now */
connect.pMetaData = NULL;
connect.MetaDataLength = 0;
/* these fields are the same for all service endpoints */
connect.EpCallbacks.pContext = ar;
connect.EpCallbacks.EpTxCompleteMultiple = ar6000_tx_complete;
connect.EpCallbacks.EpRecv = ar6000_rx;
connect.EpCallbacks.EpRecvRefill = ar6000_rx_refill;
connect.EpCallbacks.EpSendFull = ar6000_tx_queue_full;
/* set the max queue depth so that our ar6000_tx_queue_full handler gets called.
* Linux has the peculiarity of not providing flow control between the
* NIC and the network stack. There is no API to indicate that a TX packet
* was sent which could provide some back pressure to the network stack.
* Under linux you would have to wait till the network stack consumed all sk_buffs
* before any back-flow kicked in. Which isn't very friendly.
* So we have to manage this ourselves */
connect.MaxSendQueueDepth = MAX_DEFAULT_SEND_QUEUE_DEPTH;
connect.EpCallbacks.RecvRefillWaterMark = AR6000_MAX_RX_BUFFERS / 4; /* set to 25 % */
if (0 == connect.EpCallbacks.RecvRefillWaterMark) {
connect.EpCallbacks.RecvRefillWaterMark++;
}
/* connect to control service */
connect.ServiceID = WMI_CONTROL_SVC;
status = ar6000_connectservice(arPriv,
&connect,
"WMI CONTROL");
if (A_FAILED(status)) {
break;
}
connect.LocalConnectionFlags |= HTC_LOCAL_CONN_FLAGS_ENABLE_SEND_BUNDLE_PADDING;
/* limit the HTC message size on the send path, although we can receive A-MSDU frames of
* 4K, we will only send ethernet-sized (802.3) frames on the send path. */
connect.MaxSendMsgSize = WMI_MAX_TX_DATA_FRAME_LENGTH;
/* to reduce the amount of committed memory for larger A_MSDU frames, use the recv-alloc threshold
* mechanism for larger packets */
connect.EpCallbacks.RecvAllocThreshold = AR6000_BUFFER_SIZE;
connect.EpCallbacks.EpRecvAllocThresh = ar6000_alloc_amsdu_rxbuf;
/* for the remaining data services set the connection flag to reduce dribbling,
* if configured to do so */
if (reduce_credit_dribble) {
connect.ConnectionFlags |= HTC_CONNECT_FLAGS_REDUCE_CREDIT_DRIBBLE;
/* the credit dribble trigger threshold is (reduce_credit_dribble - 1) for a value
* of 0-3 */
connect.ConnectionFlags &= ~HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
connect.ConnectionFlags |=
((A_UINT16)reduce_credit_dribble - 1) & HTC_CONNECT_FLAGS_THRESHOLD_LEVEL_MASK;
}
/* connect to best-effort service */
connect.ServiceID = WMI_DATA_BE_SVC;
status = ar6000_connectservice(arPriv,
&connect,
"WMI DATA BE");
if (A_FAILED(status)) {
break;
}
/* connect to back-ground
* map this to WMI LOW_PRI */
connect.ServiceID = WMI_DATA_BK_SVC;
status = ar6000_connectservice(arPriv,
&connect,
"WMI DATA BK");
if (A_FAILED(status)) {
break;
}
/* connect to Video service, map this to
* to HI PRI */
connect.ServiceID = WMI_DATA_VI_SVC;
status = ar6000_connectservice(arPriv,
&connect,
"WMI DATA VI");
if (A_FAILED(status)) {
break;
}
/* connect to VO service, this is currently not
* mapped to a WMI priority stream due to historical reasons.
* WMI originally defined 3 priorities over 3 mailboxes
* We can change this when WMI is reworked so that priorities are not
* dependent on mailboxes */
connect.ServiceID = WMI_DATA_VO_SVC;
status = ar6000_connectservice(arPriv,
&connect,
"WMI DATA VO");
if (A_FAILED(status)) {
break;
}
A_ASSERT(arAc2EndpointID(ar,WMM_AC_BE) != 0);
A_ASSERT(arAc2EndpointID(ar,WMM_AC_BK) != 0);
A_ASSERT(arAc2EndpointID(ar,WMM_AC_VI) != 0);
A_ASSERT(arAc2EndpointID(ar,WMM_AC_VO) != 0);
/* setup access class priority mappings */
ar->arAcStreamPriMap[WMM_AC_BK] = 0; /* lowest */
ar->arAcStreamPriMap[WMM_AC_BE] = 1; /* */
ar->arAcStreamPriMap[WMM_AC_VI] = 2; /* */
ar->arAcStreamPriMap[WMM_AC_VO] = 3; /* highest */
#ifdef EXPORT_HCI_BRIDGE_INTERFACE
if (setuphci && (NULL != ar6kHciTransCallbacks.setupTransport)) {
HCI_TRANSPORT_MISC_HANDLES hciHandles;
hciHandles.netDevice = ar->arNetDev;
hciHandles.hifDevice = ar->arHifDevice;
hciHandles.htcHandle = ar->arHtcTarget;
status = (A_STATUS)(ar6kHciTransCallbacks.setupTransport(&hciHandles));
}
#else
if (setuphci) {
/* setup HCI */
status = ar6000_setup_hci(ar);
}
#endif
} while (FALSE);
if (A_FAILED(status)) {
ret = -EIO;
goto ar6000_init_done;
}
/*
* give our connected endpoints some buffers
*/
ar6000_rx_refill(ar, ar->arControlEp);
ar6000_rx_refill(ar, arAc2EndpointID(ar,WMM_AC_BE));
/*
* We will post the receive buffers only for SPE or endpoint ping testing so we are
* making it conditional on the 'bypasswmi' flag.
*/
if (bypasswmi) {
ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_BK));
ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VI));
ar6000_rx_refill(ar,arAc2EndpointID(ar,WMM_AC_VO));
}
/* allocate some buffers that handle larger AMSDU frames */
ar6000_refill_amsdu_rxbufs(ar,AR6000_MAX_AMSDU_RX_BUFFERS);
/* setup credit distribution */
ar6000_setup_credit_dist(ar->arHtcTarget, &ar->arCreditStateInfo);
/* Since cookies are used for HTC transports, they should be */
/* initialized prior to enabling HTC. */
ar6000_cookie_init(ar);
/* Initialize the control cookie counter to 0 */
ar->arControlCookieCount = 0;
/* start HTC */
status = HTCStart(ar->arHtcTarget);
if (status != A_OK) {
for(i = 0; i < num_device; i++)
{
if (ar->arDev[i]->arWmiEnabled == TRUE) {
wmi_shutdown(ar->arDev[i]->arWmi);
ar->arDev[i]->arWmiEnabled = FALSE;
ar->arDev[i]->arWmi = NULL;
}
}
ar6000_cookie_cleanup(ar);
ret = -EIO;
goto ar6000_init_done;
}
if (!bypasswmi) {
/* Wait for Wmi event to be ready */
timeleft = wait_event_interruptible_timeout(ar->arDev[0]->arEvent,
(ar->arWmiReady == TRUE), wmitimeout * HZ);
if (ar->arVersion.abi_ver != AR6K_ABI_VERSION) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ABI Version mismatch: Host(0x%x), Target(0x%x)\n", AR6K_ABI_VERSION, ar->arVersion.abi_ver));
#ifndef ATH6KL_SKIP_ABI_VERSION_CHECK
ret = -EIO;
goto ar6000_init_done;
#endif /* ATH6KL_SKIP_ABI_VERSION_CHECK */
}
if(!timeleft || signal_pending(current))
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI is not ready or wait was interrupted\n"));
ret = -EIO;
goto ar6000_init_done;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%s() WMI is ready\n", __func__));
/* init PAL driver after WMI is ready */
if(setuphcipal) {
A_BOOL bt30ampDevFound = FALSE;
for (i=0; i < num_device; i++) {
if ( ar->arDev[i]->isBt30amp == TRUE ) {
status = ar6k_setup_hci_pal(ar->arDev[i]);
bt30ampDevFound = TRUE;
}
}
}
/* Communicate the wmi protocol verision to the target */
if ((ar6000_set_host_app_area(ar)) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the host app area\n"));
}
/* configure the device for rx dot11 header rules 0,0 are the default values
* therefore this command can be skipped if the inputs are 0,FALSE,FALSE.Required
if checksum offload is needed. Set RxMetaVersion to 2*/
if ((wmi_set_rx_frame_format_cmd(arPriv->arWmi,ar->rxMetaVersion, processDot11Hdr, processDot11Hdr)) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set the rx frame format.\n"));
}
#if defined(INIT_MODE_DRV_ENABLED) && defined(ENABLE_COEXISTENCE)
/* Configure the type of BT collocated with WLAN */
A_MEMZERO(&sbcb_cmd, sizeof(WMI_SET_BTCOEX_COLOCATED_BT_DEV_CMD));
#ifdef CONFIG_AR600x_BT_QCOM
sbcb_cmd.btcoexCoLocatedBTdev = 1;
#elif defined(CONFIG_AR600x_BT_CSR)
sbcb_cmd.btcoexCoLocatedBTdev = 2;
#elif defined(CONFIG_AR600x_BT_AR3001)
sbcb_cmd.btcoexCoLocatedBTdev = 3;
#else
#error Unsupported Bluetooth Type
#endif /* Collocated Bluetooth Type */
if ((wmi_set_btcoex_colocated_bt_dev_cmd(arPriv->arWmi, &sbcb_cmd)) != A_OK)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set collocated BT type\n"));
}
/* Configure the type of BT collocated with WLAN */
A_MEMZERO(&sbfa_cmd, sizeof(WMI_SET_BTCOEX_FE_ANT_CMD));
#ifdef CONFIG_AR600x_DUAL_ANTENNA
sbfa_cmd.btcoexFeAntType = 2;
#elif defined(CONFIG_AR600x_SINGLE_ANTENNA)
sbfa_cmd.btcoexFeAntType = 1;
#else
#error Unsupported Front-End Antenna Configuration
#endif /* AR600x Front-End Antenna Configuration */
if ((wmi_set_btcoex_fe_ant_cmd(arPriv->arWmi, &sbfa_cmd)) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Unable to set fornt end antenna configuration\n"));
}
#endif /* INIT_MODE_DRV_ENABLED && ENABLE_COEXISTENCE */
}
ar->arNumDataEndPts = 1;
if (bypasswmi) {
/* for tests like endpoint ping, the MAC address needs to be non-zero otherwise
* the data path through a raw socket is disabled */
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x01;
dev->dev_addr[2] = 0x02;
dev->dev_addr[3] = 0xAA;
dev->dev_addr[4] = 0xBB;
dev->dev_addr[5] = 0xCC;
}
ar6000_init_done:
dev_put(dev);
return ret;
}
void
ar6000_bitrate_rx(void *devt, A_INT32 rateKbps)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
arPriv->arBitRate = rateKbps;
wake_up(&arPriv->arEvent);
}
void
ar6000_ratemask_rx(void *devt, A_UINT32 *ratemask)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
arPriv->arRateMask[0] = ratemask[0];
arPriv->arRateMask[1] = ratemask[1];
wake_up(&arPriv->arEvent);
}
void
ar6000_txPwr_rx(void *devt, A_UINT8 txPwr)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
arPriv->arTxPwr = txPwr;
wake_up(&arPriv->arEvent);
}
void
ar6000_channelList_rx(void *devt, A_INT8 numChan, A_UINT16 *chanList)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
A_MEMCPY(arPriv->arSta.arChannelList, chanList, numChan * sizeof (A_UINT16));
arPriv->arSta.arNumChannels = numChan;
wake_up(&arPriv->arEvent);
}
A_UINT8
ar6000_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, A_UINT32 * mapNo)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
AR_SOFTC_STA_T *arSta = &arPriv->arSta;
AR_SOFTC_T *ar = arPriv->arSoftc;
A_UINT8 *datap;
ATH_MAC_HDR *macHdr;
A_UINT32 i, eptMap;
(*mapNo) = 0;
datap = A_NETBUF_DATA(skb);
macHdr = (ATH_MAC_HDR *)(datap + sizeof(WMI_DATA_HDR));
if (IEEE80211_IS_MULTICAST(macHdr->dstMac)) {
return ENDPOINT_2;
}
eptMap = -1;
for (i = 0; i < arSta->arNodeNum; i ++) {
if (IEEE80211_ADDR_EQ(macHdr->dstMac, arSta->arNodeMap[i].macAddress)) {
(*mapNo) = i + 1;
arSta->arNodeMap[i].txPending ++;
return arSta->arNodeMap[i].epId;
}
if ((eptMap == -1) && !arSta->arNodeMap[i].txPending) {
eptMap = i;
}
}
if (eptMap == -1) {
eptMap = arSta->arNodeNum;
arSta->arNodeNum ++;
A_ASSERT(arSta->arNodeNum <= MAX_NODE_NUM);
}
A_MEMCPY(arSta->arNodeMap[eptMap].macAddress, macHdr->dstMac, IEEE80211_ADDR_LEN);
for (i = ENDPOINT_2; i <= ENDPOINT_5; i ++) {
if (!ar->arTxPending[i]) {
arSta->arNodeMap[eptMap].epId = i;
break;
}
// No free endpoint is available, start redistribution on the inuse endpoints.
if (i == ENDPOINT_5) {
arSta->arNodeMap[eptMap].epId = arSta->arNexEpId;
arSta->arNexEpId ++;
if (arSta->arNexEpId > ENDPOINT_5) {
arSta->arNexEpId = ENDPOINT_2;
}
}
}
(*mapNo) = eptMap + 1;
arSta->arNodeMap[eptMap].txPending ++;
return arSta->arNodeMap[eptMap].epId;
}
#ifdef DEBUG
static void ar6000_dump_skb(struct sk_buff *skb)
{
u_char *ch;
for (ch = A_NETBUF_DATA(skb);
(A_UINT32)ch < ((A_UINT32)A_NETBUF_DATA(skb) +
A_NETBUF_LEN(skb)); ch++)
{
AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("%2.2x ", *ch));
}
AR_DEBUG_PRINTF(ATH_DEBUG_WARN,("\n"));
}
#endif
#ifdef HTC_TEST_SEND_PKTS
static void DoHTCSendPktsTest(AR_SOFTC_T *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *skb);
#endif
static int
ar6000_data_tx(struct sk_buff *skb, struct net_device *dev)
{
#define AC_NOT_MAPPED 99
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
AR_SOFTC_T *ar = arPriv->arSoftc;
AR_SOFTC_STA_T *arSta = &arPriv->arSta;
AR_SOFTC_AP_T *arAp = &arPriv->arAp;
A_UINT8 ac = AC_NOT_MAPPED;
HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED;
A_UINT32 mapNo = 0;
int len;
struct ar_cookie *cookie;
A_BOOL checkAdHocPsMapping = FALSE;
HTC_TX_TAG htc_tag = AR6K_DATA_PKT_TAG;
A_UINT8 dot11Hdr = processDot11Hdr;
conn_t *conn = NULL;
A_UINT32 wmiDataFlags = 0;
#ifdef AR6K_ALLOC_DEBUG
A_NETBUF_CHECK(skb);
#endif
#ifdef CONFIG_PM
if ((ar->arWowState != WLAN_WOW_STATE_NONE) || (ar->arWlanState == WLAN_DISABLED)) {
A_NETBUF_FREE(skb);
return 0;
}
#endif /* CONFIG_PM */
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,13)
skb->list = NULL;
#endif
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_data_tx start - skb=0x%x, data=0x%x, len=0x%x\n",
(A_UINT32)skb, (A_UINT32)A_NETBUF_DATA(skb),
A_NETBUF_LEN(skb)));
/* If target is not associated */
if( (!arPriv->arConnected && !bypasswmi)
#ifdef CONFIG_HOST_TCMD_SUPPORT
/* TCMD doesnt support any data, free the buf and return */
|| (ar->arTargetMode == AR6000_TCMD_MODE)
#endif
) {
A_NETBUF_FREE(skb);
return 0;
}
do {
if (ar->arWmiReady == FALSE && bypasswmi == 0) {
break;
}
#ifdef BLOCK_TX_PATH_FLAG
if (blocktx) {
break;
}
#endif /* BLOCK_TX_PATH_FLAG */
/* AP mode Power save processing */
/* If the dst STA is in sleep state, queue the pkt in its PS queue */
if (arPriv->arNetworkType == AP_NETWORK) {
ATH_MAC_HDR *datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
struct sk_buff *skb_to_drop = NULL;
/* If the dstMac is a Multicast address & atleast one of the
* associated STA is in PS mode, then queue the pkt to the
* mcastq
*/
if (IEEE80211_IS_MULTICAST(datap->dstMac)) {
A_UINT8 ctr=0;
A_BOOL qMcast=FALSE;
for (ctr=0; ctr<NUM_CONN; ctr++) {
if(ar->connTbl[ctr].arPriv == arPriv) {
if (STA_IS_PWR_SLEEP((&ar->connTbl[ctr]))) {
qMcast = TRUE;
}
}
}
if(qMcast) {
/* If this transmit is not because of a Dtim Expiry q it */
if (arAp->DTIMExpired == FALSE) {
A_BOOL isMcastqEmpty = FALSE;
A_MUTEX_LOCK(&arAp->mcastpsqLock);
/* Check for queue depth, if overflowing then dequeue a
* packet so that there is room for new one
*/
if (max_psq_depth != 0 &&
A_NETBUF_QUEUE_SIZE(&arAp->mcastpsq) >= max_psq_depth) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,
("TX Mcast PS queue is full, Depth:%d, Max:%d \n",
A_NETBUF_QUEUE_SIZE(&arAp->mcastpsq), max_psq_depth));
skb_to_drop = A_NETBUF_DEQUEUE(&arAp->mcastpsq);
}
isMcastqEmpty = A_NETBUF_QUEUE_EMPTY(&arAp->mcastpsq);
A_NETBUF_ENQUEUE(&arAp->mcastpsq, skb);
A_MUTEX_UNLOCK(&arAp->mcastpsqLock);
/* Free the SKB outside the lock */
if (skb_to_drop != NULL) {
A_NETBUF_FREE(skb_to_drop);
}
/* If this is the first Mcast pkt getting queued
* indicate to the target to set the BitmapControl LSB
* of the TIM IE.
*/
if (isMcastqEmpty) {
wmi_set_pvb_cmd(arPriv->arWmi, MCAST_AID, 1);
}
return 0;
} else {
/* This transmit is because of Dtim expiry. Determine if
* MoreData bit has to be set.
*/
A_MUTEX_LOCK(&arAp->mcastpsqLock);
if(!A_NETBUF_QUEUE_EMPTY(&arAp->mcastpsq)) {
wmiDataFlags |= WMI_DATA_HDR_FLAGS_MORE;
}
A_MUTEX_UNLOCK(&arAp->mcastpsqLock);
}
}
} else {
conn = ieee80211_find_conn(arPriv, datap->dstMac);
if (conn) {
if (STA_IS_PWR_SLEEP(conn)) {
/* If this transmit is not because of a PsPoll q it*/
if (!(STA_IS_PS_POLLED(conn) || STA_IS_APSD_TRIGGER(conn))) {
A_BOOL trigger = FALSE;
A_UINT32 cur_psq_len = 0;
if (conn->apsd_info) {
A_UINT8 up = 0;
A_UINT8 trafficClass;
if (arPriv->arWmmEnabled) {
A_UINT16 ipType = IP_ETHERTYPE;
A_UINT16 etherType;
A_UINT8 *ipHdr;
etherType = datap->typeOrLen;
if (IS_ETHERTYPE(A_BE2CPU16(etherType))) {
/* packet is in DIX format */
ipHdr = (A_UINT8 *)(datap + 1);
} else {
/* packet is in 802.3 format */
ATH_LLC_SNAP_HDR *llcHdr;
llcHdr = (ATH_LLC_SNAP_HDR *)(datap + 1);
etherType = llcHdr->etherType;
ipHdr = (A_UINT8 *)(llcHdr + 1);
}
if (etherType == A_CPU2BE16(ipType)) {
up = wmi_determine_userPriority (ipHdr, 0);
}
}
trafficClass = convert_userPriority_to_trafficClass(up);
if (conn->apsd_info & (1 << trafficClass)) {
trigger = TRUE;
}
}
if (trigger) {
A_BOOL isApsdqEmpty;
/* Queue the frames if the STA is sleeping */
A_MUTEX_LOCK(&conn->psqLock);
/* If max_psq_depth is 0 then no limit to queue size */
if (max_psq_depth != 0) {
/* APSD queue depth + PS queue depth should
* not be more than MAX PS queue depth
*/
cur_psq_len = A_NETBUF_QUEUE_SIZE(&conn->apsdq) +
A_NETBUF_QUEUE_SIZE(&conn->psq);
/* Check for queue depth, if overflowing then
* dequeue a packet so that there is room for
* new one
*/
if (cur_psq_len >= max_psq_depth) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,
("TX STA PS(APSD) queue is full, Depth:%d, Max:%d \n",
cur_psq_len, max_psq_depth));
skb_to_drop = A_NETBUF_DEQUEUE(&conn->apsdq);
}
}
isApsdqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->apsdq);
A_NETBUF_ENQUEUE(&conn->apsdq, skb);
A_MUTEX_UNLOCK(&conn->psqLock);
/* Free the SKB outside the lock */
if (skb_to_drop != NULL) {
A_NETBUF_FREE(skb_to_drop);
}
/* If this is the first pkt getting queued
* for this STA, update the PVB for this STA
*/
if (isApsdqEmpty) {
wmi_set_apsd_buffered_traffic_cmd(arPriv->arWmi, conn->aid, 1, 0);
}
} else {
A_BOOL isPsqEmpty = FALSE;
/* Queue the frames if the STA is sleeping */
A_MUTEX_LOCK(&conn->psqLock);
/* If max_psq_depth is 0 then no limit to queue size */
if (max_psq_depth != 0) {
/* APSD queue depth + PS queue depth should
* not be more than MAX PS queue depth
*/
cur_psq_len = A_NETBUF_QUEUE_SIZE(&conn->apsdq) +
A_NETBUF_QUEUE_SIZE(&conn->psq);
/* Check for queue depth, if overflowing then
* dequeue a packet so that there is room for
* new one
*/
if (cur_psq_len >= max_psq_depth) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,
("TX STA PS queue is full, Depth:%d, Max:%d \n",
cur_psq_len, max_psq_depth));
skb_to_drop = A_NETBUF_DEQUEUE(&conn->psq);
}
}
/* Free the SKB outside the lock */
if (skb_to_drop != NULL) {
A_NETBUF_FREE(skb_to_drop);
}
isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
A_NETBUF_ENQUEUE(&conn->psq, skb);
A_MUTEX_UNLOCK(&conn->psqLock);
/* If this is the first pkt getting queued
* for this STA, update the PVB for this STA
*/
if (isPsqEmpty) {
wmi_set_pvb_cmd(arPriv->arWmi, conn->aid, 1);
}
}
return 0;
} else {
/*
* This tx is because of a PsPoll or trigger. Determine if
* MoreData bit has to be set
*/
A_MUTEX_LOCK(&conn->psqLock);
if (STA_IS_PS_POLLED(conn)) {
if (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) {
wmiDataFlags |= WMI_DATA_HDR_FLAGS_MORE;
}
} else {
/*
* This tx is because of a uAPSD trigger, determine
* more and EOSP bit. Set EOSP is queue is empty
* or sufficient frames is delivered for this trigger
*/
if (!A_NETBUF_QUEUE_EMPTY(&conn->apsdq)) {
wmiDataFlags |= WMI_DATA_HDR_FLAGS_MORE;
}
if (STA_IS_APSD_EOSP(conn)) {
wmiDataFlags |= WMI_DATA_HDR_FLAGS_EOSP;
}
}
A_MUTEX_UNLOCK(&conn->psqLock);
}
}
} else {
/* non existent STA. drop the frame */
A_NETBUF_FREE(skb);
return 0;
}
}
}
if (arPriv->arWmiEnabled) {
#ifdef CONFIG_CHECKSUM_OFFLOAD
A_UINT8 csumStart=0;
A_UINT8 csumDest=0;
A_UINT8 csum=skb->ip_summed;
if(csumOffload && (csum==CHECKSUM_PARTIAL)){
csumStart=skb->csum_start-(skb->network_header-skb->head)+sizeof(ATH_LLC_SNAP_HDR);
csumDest=skb->csum_offset+csumStart;
}
#endif
if (A_NETBUF_HEADROOM(skb) < dev->hard_header_len - LINUX_HACK_FUDGE_FACTOR) {
struct sk_buff *newbuf;
/*
* We really should have gotten enough headroom but sometimes
* we still get packets with not enough headroom. Copy the packet.
*/
len = A_NETBUF_LEN(skb);
newbuf = A_NETBUF_ALLOC(len);
if (newbuf == NULL) {
break;
}
A_NETBUF_PUT(newbuf, len);
A_MEMCPY(A_NETBUF_DATA(newbuf), A_NETBUF_DATA(skb), len);
A_NETBUF_FREE(skb);
skb = newbuf;
/* fall through and assemble header */
}
if (dot11Hdr) {
if (wmi_dot11_hdr_add(arPriv->arWmi,skb,arPriv->arNetworkType) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx-wmi_dot11_hdr_add failed\n"));
break;
}
} else {
if (wmi_dix_2_dot3(arPriv->arWmi, skb) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_dix_2_dot3 failed\n"));
break;
}
}
#ifdef CONFIG_CHECKSUM_OFFLOAD
if(csumOffload && (csum ==CHECKSUM_PARTIAL)){
WMI_TX_META_V2 metaV2;
metaV2.csumStart =csumStart;
metaV2.csumDest = csumDest;
metaV2.csumFlags = 0x1;/*instruct target to calculate checksum*/
if (wmi_data_hdr_add(arPriv->arWmi, skb, DATA_MSGTYPE, wmiDataFlags, dot11Hdr,
WMI_META_VERSION_2,&metaV2) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n"));
break;
}
}
else
#endif
{
if (wmi_data_hdr_add(arPriv->arWmi, skb, DATA_MSGTYPE, wmiDataFlags, dot11Hdr,0,NULL) != A_OK) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000_data_tx - wmi_data_hdr_add failed\n"));
break;
}
}
if ((arPriv->arNetworkType == ADHOC_NETWORK) &&
arSta->arIbssPsEnable && arPriv->arConnected) {
/* flag to check adhoc mapping once we take the lock below: */
checkAdHocPsMapping = TRUE;
} else {
A_UINT32 layer2Priority = 0;
/* 256->263 are magic values in Linux for passing directly
* 802.1d priority from VLAN tags, etc
*/
if (skb->priority >= 256 && skb->priority <= 263) {
layer2Priority = skb->priority - 256;
}
/* get the stream mapping */
ac = wmi_implicit_create_pstream(arPriv->arWmi, skb, layer2Priority, arPriv->arWmmEnabled);
}
} else {
EPPING_HEADER *eppingHdr;
eppingHdr = A_NETBUF_DATA(skb);
if (IS_EPPING_PACKET(eppingHdr)) {
/* the stream ID is mapped to an access class */
ac = eppingHdr->StreamNo_h;
/* some EPPING packets cannot be dropped no matter what access class it was
* sent on. We can change the packet tag to guarantee it will not get dropped */
if (IS_EPING_PACKET_NO_DROP(eppingHdr)) {
htc_tag = AR6K_CONTROL_PKT_TAG;
}
if (ac == HCI_TRANSPORT_STREAM_NUM) {
/* pass this to HCI */
#ifndef EXPORT_HCI_BRIDGE_INTERFACE
if (A_SUCCESS(hci_test_send(ar,skb))) {
return 0;
}
#endif
/* set AC to discard this skb */
ac = AC_NOT_MAPPED;
} else {
/* a quirk of linux, the payload of the frame is 32-bit aligned and thus the addition
* of the HTC header will mis-align the start of the HTC frame, so we add some
* padding which will be stripped off in the target */
if (EPPING_ALIGNMENT_PAD > 0) {
A_NETBUF_PUSH(skb, EPPING_ALIGNMENT_PAD);
}
}
} else {
/* not a ping packet, drop it */
ac = AC_NOT_MAPPED;
}
}
} while (FALSE);
/* did we succeed ? */
if ((ac == AC_NOT_MAPPED) && !checkAdHocPsMapping) {
/* cleanup and exit */
A_NETBUF_FREE(skb);
AR6000_STAT_INC(arPriv, tx_dropped);
AR6000_STAT_INC(arPriv, tx_aborted_errors);
return 0;
}
cookie = NULL;
/* take the lock to protect driver data */
AR6000_SPIN_LOCK(&ar->arLock, 0);
do {
if (checkAdHocPsMapping) {
eid = ar6000_ibss_map_epid(skb, dev, &mapNo);
}else {
eid = arAc2EndpointID (ar, ac);
}
/* validate that the endpoint is connected */
if (eid == 0 || eid == ENDPOINT_UNUSED ) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" eid %d is NOT mapped!\n", eid));
break;
}
/* allocate resource for this packet */
cookie = ar6000_alloc_cookie(ar);
if (cookie != NULL) {
/* update counts while the lock is held */
ar->arTxPending[eid]++;
ar->arTotalTxDataPending++;
if (htc_tag == AR6K_CONTROL_PKT_TAG) {
/* This cookie allocated for a control packet, update count */
ar->arControlCookieCount++;
}
}
} while (FALSE);
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (cookie != NULL) {
cookie->arc_bp[0] = (A_UINT32)skb;
cookie->arc_bp[1] = mapNo;
SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
cookie,
A_NETBUF_DATA(skb),
A_NETBUF_LEN(skb),
eid,
htc_tag);
#ifdef DEBUG
if (debugdriver >= 3) {
ar6000_dump_skb(skb);
}
#endif
#ifdef HTC_TEST_SEND_PKTS
DoHTCSendPktsTest(ar,mapNo,eid,skb);
#endif
/* HTC interface is asynchronous, if this fails, cleanup will happen in
* the ar6000_tx_complete callback */
HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
} else {
/* no packet to send, cleanup */
A_NETBUF_FREE(skb);
AR6000_STAT_INC(arPriv, tx_dropped);
AR6000_STAT_INC(arPriv, tx_aborted_errors);
}
return 0;
}
int
ar6000_acl_data_tx(struct sk_buff *skb, AR_SOFTC_DEV_T *arPriv)
{
struct ar_cookie *cookie;
AR_SOFTC_T *ar = arPriv->arSoftc;
HTC_ENDPOINT_ID eid = ENDPOINT_UNUSED;
cookie = NULL;
AR6000_SPIN_LOCK(&ar->arLock, 0);
/* For now we send ACL on BE endpoint: We can also have a dedicated EP */
eid = arAc2EndpointID (ar, 0);
/* allocate resource for this packet */
cookie = ar6000_alloc_cookie(ar);
if (cookie != NULL) {
/* update counts while the lock is held */
ar->arTxPending[eid]++;
ar->arTotalTxDataPending++;
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (cookie != NULL) {
cookie->arc_bp[0] = (A_UINT32)skb;
cookie->arc_bp[1] = 0;
SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
cookie,
A_NETBUF_DATA(skb),
A_NETBUF_LEN(skb),
eid,
AR6K_DATA_PKT_TAG);
/* HTC interface is asynchronous, if this fails, cleanup will happen in
* the ar6000_tx_complete callback */
HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
} else {
/* no packet to send, cleanup */
A_NETBUF_FREE(skb);
AR6000_STAT_INC(arPriv, tx_dropped);
AR6000_STAT_INC(arPriv, tx_aborted_errors);
}
return 0;
}
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
static void
tvsub(register struct timeval *out, register struct timeval *in)
{
if((out->tv_usec -= in->tv_usec) < 0) {
out->tv_sec--;
out->tv_usec += 1000000;
}
out->tv_sec -= in->tv_sec;
}
void
applyAPTCHeuristics(AR_SOFTC_DEV_T *arPriv)
{
A_UINT32 duration;
A_UINT32 numbytes;
A_UINT32 throughput;
struct timeval ts;
A_STATUS status;
APTC_TRAFFIC_RECORD *aptcTR;
AR_SOFTC_T *ar = arPriv->arSoftc;
aptcTR = arPriv->aptcTR;
AR6000_SPIN_LOCK(&arPriv->arPrivLock, 0);
if ((enableAPTCHeuristics) && (!aptcTR->timerScheduled)) {
do_gettimeofday(&ts);
tvsub(&ts, &aptcTR->samplingTS);
duration = ts.tv_sec * 1000 + ts.tv_usec / 1000; /* ms */
numbytes = aptcTR->bytesTransmitted + aptcTR->bytesReceived;
if (duration > APTC_TRAFFIC_SAMPLING_INTERVAL) {
/* Initialize the time stamp and byte count */
aptcTR->bytesTransmitted = aptcTR->bytesReceived = 0;
do_gettimeofday(&aptcTR->samplingTS);
/* Calculate and decide based on throughput thresholds */
throughput = ((numbytes * 8) / duration);
if (throughput > APTC_UPPER_THROUGHPUT_THRESHOLD) {
/* Disable Sleep and schedule a timer */
A_ASSERT(ar->arWmiReady == TRUE);
AR6000_SPIN_UNLOCK(&arPriv->ariPrivLock, 0);
status = wmi_powermode_cmd(arPriv->arWmi, MAX_PERF_POWER);
AR6000_SPIN_LOCK(&arPriv->arPrivLock, 0);
A_TIMEOUT_MS(&aptcTimer[arPriv->arDeviceIndex], APTC_TRAFFIC_SAMPLING_INTERVAL, 0);
aptcTR->timerScheduled = TRUE;
}
}
}
AR6000_SPIN_UNLOCK(&arPriv->arLock, 0);
}
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
static HTC_SEND_FULL_ACTION ar6000_tx_queue_full(void *Context, HTC_PACKET *pPacket)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
HTC_SEND_FULL_ACTION action = HTC_SEND_FULL_KEEP;
A_BOOL stopNet = FALSE;
HTC_ENDPOINT_ID Endpoint = HTC_GET_ENDPOINT_FROM_PKT(pPacket);
A_UINT8 i;
AR_SOFTC_DEV_T *arPriv;
A_UINT32 controlCookieThreshold, highPriorityCookieThreshold;
do {
if (bypasswmi) {
int accessClass;
if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
/* don't drop special control packets */
break;
}
accessClass = arEndpoint2Ac(ar,Endpoint);
/* for endpoint ping testing drop Best Effort and Background */
if ((accessClass == WMM_AC_BE) || (accessClass == WMM_AC_BK)) {
action = HTC_SEND_FULL_DROP;
stopNet = FALSE;
} else {
/* keep but stop the netqueues */
stopNet = TRUE;
}
break;
}
if (Endpoint == ar->arControlEp) {
/* under normal WMI if this is getting full, then something is running rampant
* the host should not be exhausting the WMI queue with too many commands
* the only exception to this is during testing using endpointping */
AR6000_SPIN_LOCK(&ar->arLock, 0);
/* set flag to handle subsequent messages */
ar->arWMIControlEpFull = TRUE;
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI Control Endpoint is FULL!!! \n"));
/* no need to stop the network */
stopNet = FALSE;
break;
}
/* if we get here, we are dealing with data endpoints getting full */
AR6000_SPIN_LOCK(&ar->arLock, 0);
controlCookieThreshold = MAX_CONTROL_COOKIE_NUM - ar->arControlCookieCount;
highPriorityCookieThreshold = controlCookieThreshold + MAX_HIGH_PRIORITY_COOKIE_NUM;
if (ar->arCookieCount <= controlCookieThreshold) {
/* the last few cookies are reserved exclusively for sending
* control messages on the 4 data endpoints and the control endpoint. Each of
* the 4 data endpoints could need up to 2 sync messages (if we are using
* SYNC_BOTH_WMIFLAG) so we need to reserve 11 cookies (2*WMM_NUM_AC=2*4=8)
* for the data endpoints and 3 for the control endpoint (one WMI_ADD_CIPHER_CMDID
* command and two WMI_SYNCHRONIZE_CMDID commands). This is why we MUST reserve
* some cookies for control messages; SYNC messages are important and dropping
* these would effectively make the WiFi connection useless because the AP would be
* using a different encryption key. So, we reserve 11 cookies for sending SYNC
* messages, plus one additional (just in case someone happens to issue a wmi command
* during the rekey process)
*/
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
/* don't drop control packets issued on ANY data endpoint */
break;
} else {
/* If cookie count is below controlCookieThreshold and this is NOT a control
* message, stop it from being sent.
*/
action = HTC_SEND_FULL_DROP;
stopNet = FALSE;
break;
}
}
/* the last highPriorityCookieThreshold "batch" of cookies (except for the last
* controlCookieThreshold cookies which are captured by the statement above)
* are reserved for the highest priority active stream */
if (ar->arAcStreamPriMap[arEndpoint2Ac(ar,Endpoint)] < ar->arHiAcStreamActivePri &&
ar->arCookieCount <= highPriorityCookieThreshold) {
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
/* this stream's priority is less than the highest active priority, we
* give preference to the highest priority stream by directing
* HTC to drop the packet that overflowed */
action = HTC_SEND_FULL_DROP;
/* since we are dropping packets, no need to stop the network */
stopNet = FALSE;
break;
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
} while (FALSE);
if (stopNet) {
for(i = 0; i < num_device; i++)
{
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
AR6000_SPIN_LOCK(&arPriv->arPrivLock, 0);
arPriv->arNetQueueStopped = TRUE;
AR6000_SPIN_UNLOCK(&arPriv->arPrivLock, 0);
/* one of the data endpoints queues is getting full..need to stop network stack
* the queue will resume in ar6000_tx_complete() */
netif_stop_queue(ar6000_devices[i]);
}
}
else
{
/* in adhoc mode, we cannot differentiate traffic priorities so there is no need to
* continue, however we should stop the network */
for(i = 0; i < num_device; i++)
{
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
if(arPriv->arNetworkType == ADHOC_NETWORK) {
AR6000_SPIN_LOCK(&arPriv->arPrivLock, 0);
arPriv->arNetQueueStopped = TRUE;
AR6000_SPIN_UNLOCK(&arPriv->arPrivLock, 0);
/* one of the data endpoints queues is getting full..need to stop network stack
* the queue will resume in ar6000_tx_complete() */
netif_stop_queue(ar6000_devices[i]);
}
}
}
return action;
}
static void
ar6000_tx_complete(void *Context, HTC_PACKET_QUEUE *pPacketQueue)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
A_UINT32 mapNo = 0;
A_STATUS status;
struct ar_cookie * ar_cookie;
HTC_ENDPOINT_ID eid;
A_BOOL wakeEvent = FALSE;
struct sk_buff_head skb_queue;
HTC_PACKET *pPacket;
struct sk_buff *pktSkb;
A_BOOL flushing[NUM_DEV];
A_INT8 devid = -1;
AR_SOFTC_DEV_T *arPriv = NULL;
AR_SOFTC_STA_T *arSta;
A_UINT8 i;
skb_queue_head_init(&skb_queue);
/* lock the driver as we update internal state */
AR6000_SPIN_LOCK(&ar->arLock, 0);
/* reap completed packets */
while (!HTC_QUEUE_EMPTY(pPacketQueue)) {
pPacket = HTC_PACKET_DEQUEUE(pPacketQueue);
ar_cookie = (struct ar_cookie *)pPacket->pPktContext;
A_ASSERT(ar_cookie);
status = pPacket->Status;
pktSkb = (struct sk_buff *)ar_cookie->arc_bp[0];
eid = pPacket->Endpoint;
mapNo = ar_cookie->arc_bp[1];
if(pktSkb == NULL || pPacket->pBuffer != A_NETBUF_DATA(pktSkb))
{
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
return;
}
A_ASSERT(pktSkb);
A_ASSERT(pPacket->pBuffer == A_NETBUF_DATA(pktSkb));
/* add this to the list, use faster non-lock API */
__skb_queue_tail(&skb_queue,pktSkb);
if (A_SUCCESS(status)) {
A_ASSERT(pPacket->ActualLength == A_NETBUF_LEN(pktSkb));
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar6000_tx_complete skb=0x%x data=0x%x len=0x%x eid=%d ",
(A_UINT32)pktSkb, (A_UINT32)pPacket->pBuffer,
pPacket->ActualLength,
eid));
ar->arTxPending[eid]--;
if(!bypasswmi)
{
if (eid != ar->arControlEp) {
WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(pktSkb);
ar->arTotalTxDataPending--;
devid = WMI_DATA_HDR_GET_DEVID(dhdr);
arPriv = ar->arDev[devid];
}
if (eid == ar->arControlEp)
{
WMI_CMD_HDR *cmhdr = (WMI_CMD_HDR*)A_NETBUF_DATA(pktSkb);
if (ar->arWMIControlEpFull) {
/* since this packet completed, the WMI EP is no longer full */
ar->arWMIControlEpFull = FALSE;
#ifdef ANDROID_ENV
android_epfull_cnt = 0;
#endif
}
if (ar->arTxPending[eid] == 0) {
wakeEvent = TRUE;
}
devid = WMI_CMD_HDR_GET_DEVID(cmhdr);
arPriv = ar->arDev[devid];
}
}
else
{
devid = 0;
arPriv = ar->arDev[devid];
}
if (A_FAILED(status)) {
if (status == A_ECANCELED || status == A_ECOMM ) {
/* a packet was flushed */
flushing[devid] = TRUE;
}
AR6000_STAT_INC(arPriv, tx_errors);
if (status != A_NO_RESOURCE && status != A_ECOMM ) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s() -TX ERROR, status: 0x%x\n", __func__,
status));
}
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("OK\n"));
flushing[devid] = FALSE;
AR6000_STAT_INC(arPriv, tx_packets);
arPriv->arNetStats.tx_bytes += A_NETBUF_LEN(pktSkb);
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
arPriv->aptcTR.bytesTransmitted += a_netbuf_to_len(pktSkb);
applyAPTCHeuristics(arPriv);
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
}
// TODO this needs to be looked at
if (arPriv->arNetworkType == ADHOC_NETWORK)
{
arSta = &arPriv->arSta;
if((arSta->arIbssPsEnable && (eid != ar->arControlEp) && mapNo))
{
mapNo --;
arSta->arNodeMap[mapNo].txPending --;
if (!arSta->arNodeMap[mapNo].txPending && (mapNo == (arSta->arNodeNum - 1))) {
A_UINT32 i;
for (i = arSta->arNodeNum; i > 0; i --) {
if (!arSta->arNodeMap[i - 1].txPending) {
A_MEMZERO(&arSta->arNodeMap[i - 1], sizeof(struct ar_node_mapping));
arSta->arNodeNum --;
} else {
break;
}
}
}
}
}
ar6000_free_cookie(ar, ar_cookie);
if (HTC_GET_TAG_FROM_PKT(pPacket) == AR6K_CONTROL_PKT_TAG) {
/* If we just freed a control packet, update the count */
ar->arControlCookieCount--;
}
if (arPriv->arNetQueueStopped) {
arPriv->arNetQueueStopped = FALSE;
}
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
/* lock is released, we can freely call other kernel APIs */
/* free all skbs in our local list */
while (!skb_queue_empty(&skb_queue)) {
/* use non-lock version */
pktSkb = __skb_dequeue(&skb_queue);
A_NETBUF_FREE(pktSkb);
}
for(i = 0; i < num_device; i++) {
arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
if (((arPriv->arNetworkType == INFRA_NETWORK ) && (arPriv->arConnected == TRUE))
|| (bypasswmi)) {
if (!flushing[i]) {
/* don't wake the queue if we are flushing, other wise it will just
* keep queueing packets, which will keep failing */
netif_wake_queue(arPriv->arNetDev);
}
}
if (wakeEvent) {
wake_up(&arPriv->arEvent);
}
}
}
conn_t *
ieee80211_find_conn(AR_SOFTC_DEV_T *arPriv, A_UINT8 *node_addr)
{
conn_t *conn = NULL;
A_UINT8 i;
AR_SOFTC_T *ar = arPriv->arSoftc;
if (IS_MAC_NULL(node_addr)) {
return NULL;
}
for (i = 0; i < NUM_CONN; i++) {
if (IEEE80211_ADDR_EQ(node_addr, ar->connTbl[i].mac)) {
conn = &ar->connTbl[i];
break;
}
}
return conn;
}
conn_t *ieee80211_find_conn_for_aid(AR_SOFTC_DEV_T *arPriv, A_UINT8 aid)
{
conn_t *conn = NULL;
AR_SOFTC_T *ar = arPriv->arSoftc;
if (arPriv->arNetworkType != AP_NETWORK) {
conn = NULL;
} else if( (aid > 0) && (aid < NUM_CONN) ) {
if (ar->connTbl[aid-1].aid == aid) {
conn = &ar->connTbl[aid-1];
}
}
return conn;
}
void *get_aggr_ctx(AR_SOFTC_DEV_T *arPriv, conn_t *conn)
{
if (arPriv->arNetworkType != AP_NETWORK) {
return (arPriv->conn_aggr);
} else {
return (conn->conn_aggr);
}
}
/*
* Receive event handler. This is called by HTC when a packet is received
*/
int pktcount;
static void
ar6000_rx(void *Context, HTC_PACKET *pPacket)
{
AR_SOFTC_T *ar = NULL;
struct sk_buff *skb = NULL;
int minHdrLen;
A_UINT8 containsDot11Hdr = 0;
A_STATUS status;
HTC_ENDPOINT_ID ept;
conn_t *conn = NULL;
AR_SOFTC_DEV_T *arPriv = NULL;
A_UINT8 devid ;
ATH_MAC_HDR *multicastcheck_datap = NULL;
if(Context == NULL || pPacket == NULL) {
AR_DEBUG_PRINTF(ATH_DEBUG_ANY, ("AR6K: Context is null or pPacket is null\n"));
goto rx_done;
}
ar = (AR_SOFTC_T *)Context;
skb = (struct sk_buff *)pPacket->pPktContext;
status = pPacket->Status;
ept = pPacket->Endpoint;
A_ASSERT((status != A_OK) ||
(pPacket->pBuffer == (A_NETBUF_DATA(skb) + HTC_HEADER_LEN)));
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx ar=0x%x eid=%d, skb=0x%x, data=0x%x, len=0x%x status:%d",
(A_UINT32)ar, ept, (A_UINT32)skb, (A_UINT32)pPacket->pBuffer,
pPacket->ActualLength, status));
if (status != A_OK) {
if (status != A_ECANCELED) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("RX ERR (%d) \n",status));
}
A_NETBUF_FREE(skb);
goto rx_done;
}
/* take lock to protect buffer counts
* and adaptive power throughput state */
AR6000_SPIN_LOCK(&ar->arLock, 0);
A_NETBUF_PUT(skb, pPacket->ActualLength + HTC_HEADER_LEN);
A_NETBUF_PULL(skb, HTC_HEADER_LEN);
if(!bypasswmi)
{
if(ept == ar->arControlEp) {
WMI_CMD_HDR *cmhdr = (WMI_CMD_HDR*)A_NETBUF_DATA(skb);
devid = WMI_CMD_HDR_GET_DEVID(cmhdr);
arPriv = ar->arDev[devid];
}
else {
WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb);
devid = WMI_DATA_HDR_GET_DEVID(dhdr);
arPriv = ar->arDev[devid];
}
}
else
{
devid = 0;
arPriv = ar->arDev[devid];
}
if (A_SUCCESS(status)) {
AR6000_STAT_INC(arPriv, rx_packets);
arPriv->arNetStats.rx_bytes += pPacket->ActualLength;
#ifdef ADAPTIVE_POWER_THROUGHPUT_CONTROL
arPriv->aptcTR.bytesReceived += pPacket->ActualLength;
applyAPTCHeuristics(arPriv);
#endif /* ADAPTIVE_POWER_THROUGHPUT_CONTROL */
#ifdef DEBUG
if (debugdriver >= 2) {
ar6000_dump_skb(skb);
}
#endif /* DEBUG */
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
skb->dev = arPriv->arNetDev;
if (status != A_OK) {
AR6000_STAT_INC(arPriv, rx_errors);
A_NETBUF_FREE(skb);
} else if (arPriv->arWmiEnabled == TRUE) {
if (ept == ar->arControlEp) {
/*
* this is a wmi control msg
*/
#ifdef CONFIG_PM
ar6000_check_wow_status(ar, skb, TRUE);
#endif /* CONFIG_PM */
wmi_control_rx(arPriv->arWmi, skb);
} else {
WMI_DATA_HDR *dhdr = (WMI_DATA_HDR *)A_NETBUF_DATA(skb);
A_UINT8 is_amsdu, tid, is_acl_data_frame;
is_acl_data_frame = WMI_DATA_HDR_GET_DATA_TYPE(dhdr) == WMI_DATA_HDR_DATA_TYPE_ACL;
#ifdef CONFIG_PM
ar6000_check_wow_status(ar, NULL, FALSE);
#endif /* CONFIG_PM */
/*
* this is a wmi data packet
*/
// NWF
if (processDot11Hdr) {
minHdrLen = sizeof(WMI_DATA_HDR) + sizeof(struct ieee80211_frame) + sizeof(ATH_LLC_SNAP_HDR);
} else {
minHdrLen = sizeof (WMI_DATA_HDR) + sizeof(ATH_MAC_HDR) +
sizeof(ATH_LLC_SNAP_HDR);
}
/* In the case of AP mode we may receive NULL data frames
* that do not have LLC hdr. They are 16 bytes in size.
* Allow these frames in the AP mode.
* ACL data frames don't follow ethernet frame bounds for
* min length
*/
if (arPriv->arNetworkType != AP_NETWORK && !is_acl_data_frame &&
((pPacket->ActualLength < minHdrLen) ||
(pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)))
{
/*
* packet is too short or too long
*/
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("TOO SHORT or TOO LONG\n"));
AR6000_STAT_INC(arPriv, rx_errors);
AR6000_STAT_INC(arPriv, rx_length_errors);
A_NETBUF_FREE(skb);
} else {
A_UINT16 seq_no;
A_UINT8 meta_type;
#if 0
/* Access RSSI values here */
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("RSSI %d\n",
((WMI_DATA_HDR *) A_NETBUF_DATA(skb))->rssi));
#endif
/* Get the Power save state of the STA */
if (arPriv->arNetworkType == AP_NETWORK) {
A_UINT8 psState=0,prevPsState;
ATH_MAC_HDR *datap=NULL;
A_UINT16 offset;
A_UINT8 triggerState;
meta_type = WMI_DATA_HDR_GET_META(dhdr);
psState = (((WMI_DATA_HDR *)A_NETBUF_DATA(skb))->info
>> WMI_DATA_HDR_PS_SHIFT) & WMI_DATA_HDR_PS_MASK;
triggerState = WMI_DATA_HDR_IS_TRIGGER(dhdr);
offset = sizeof(WMI_DATA_HDR);
switch (meta_type) {
case 0:
break;
case WMI_META_VERSION_1:
offset += sizeof(WMI_RX_META_V1);
break;
#ifdef CONFIG_CHECKSUM_OFFLOAD
case WMI_META_VERSION_2:
offset += sizeof(WMI_RX_META_V2);
break;
#endif
default:
break;
}
#ifdef DIX_RX_OFFLOAD
#define SKIP_LLC_LEN 8
/*DIX to ETHERNET hdr conversion is offloaded to firmware */
/*Empty LLC header is moved to get ethernet header*/
A_UINT32 datalen = (A_UINT32)A_NETBUF_LEN(skb)-offset;
is_amsdu = WMI_DATA_HDR_IS_AMSDU(dhdr);
containsDot11Hdr = WMI_DATA_HDR_GET_DOT11(dhdr);
if(!containsDot11Hdr && !is_amsdu && !is_acl_data_frame
&& datalen >= (sizeof(ATH_MAC_HDR) + sizeof(ATH_LLC_SNAP_HDR))) {
datap = (ATH_MAC_HDR *)((A_INT8*)A_NETBUF_DATA(skb)+offset+SKIP_LLC_LEN);
}
else {
datap = (ATH_MAC_HDR *)((A_INT8*)A_NETBUF_DATA(skb)+offset);
}
#else
datap = (ATH_MAC_HDR *)(A_NETBUF_DATA(skb)+offset);
#endif
conn = ieee80211_find_conn(arPriv, datap->srcMac);
if (conn) {
/* if there is a change in PS state of the STA,
* take appropriate steps.
* 1. If Sleep-->Awake, flush the psq for the STA
* Clear the PVB for the STA.
* 2. If Awake-->Sleep, Starting queueing frames
* the STA.
*/
prevPsState = STA_IS_PWR_SLEEP(conn);
if (psState) {
STA_SET_PWR_SLEEP(conn);
} else {
STA_CLR_PWR_SLEEP(conn);
}
if (STA_IS_PWR_SLEEP(conn)) {
/* Accept trigger only when the station is in sleep */
if (triggerState) {
ar6000_uapsd_trigger_frame_rx(arPriv, conn);
}
}
if (prevPsState ^ STA_IS_PWR_SLEEP(conn)) {
A_BOOL isApsdqEmptyAtStart;
if (!STA_IS_PWR_SLEEP(conn)) {
A_MUTEX_LOCK(&conn->psqLock);
while (!A_NETBUF_QUEUE_EMPTY(&conn->psq)) {
struct sk_buff *skb=NULL;
skb = A_NETBUF_DEQUEUE(&conn->psq);
A_MUTEX_UNLOCK(&conn->psqLock);
ar6000_data_tx(skb,arPriv->arNetDev);
A_MUTEX_LOCK(&conn->psqLock);
}
isApsdqEmptyAtStart = A_NETBUF_QUEUE_EMPTY(&conn->apsdq);
while (!A_NETBUF_QUEUE_EMPTY(&conn->apsdq)) {
struct sk_buff *skb=NULL;
skb = A_NETBUF_DEQUEUE(&conn->apsdq);
A_MUTEX_UNLOCK(&conn->psqLock);
ar6000_data_tx(skb,arPriv->arNetDev);
A_MUTEX_LOCK(&conn->psqLock);
}
A_MUTEX_UNLOCK(&conn->psqLock);
/* Clear the APSD buffered bitmap for this STA */
if (!isApsdqEmptyAtStart) {
wmi_set_apsd_buffered_traffic_cmd(arPriv->arWmi, conn->aid, 0, 0);
}
/* Clear the PVB for this STA */
wmi_set_pvb_cmd(arPriv->arWmi, conn->aid, 0);
}
}
} else {
/* This frame is from a STA that is not associated*/
A_NETBUF_FREE(skb);
goto rx_done;
}
/* Drop NULL data frames here */
if((pPacket->ActualLength < minHdrLen) ||
(pPacket->ActualLength > AR6000_MAX_RX_MESSAGE_SIZE)) {
A_NETBUF_FREE(skb);
goto rx_done;
}
}
is_amsdu = WMI_DATA_HDR_IS_AMSDU(dhdr);
tid = WMI_DATA_HDR_GET_UP(dhdr);
seq_no = WMI_DATA_HDR_GET_SEQNO(dhdr);
meta_type = WMI_DATA_HDR_GET_META(dhdr);
containsDot11Hdr = WMI_DATA_HDR_GET_DOT11(dhdr);
wmi_data_hdr_remove(arPriv->arWmi, skb);
switch (meta_type) {
case WMI_META_VERSION_1:
{
WMI_RX_META_V1 *pMeta = (WMI_RX_META_V1 *)A_NETBUF_DATA(skb);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("META %d %d %d %d %x\n", pMeta->status, pMeta->rix, pMeta->rssi, pMeta->channel, pMeta->flags));
A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V1));
break;
}
#ifdef CONFIG_CHECKSUM_OFFLOAD
case WMI_META_VERSION_2:
{
WMI_RX_META_V2 *pMeta = (WMI_RX_META_V2 *)A_NETBUF_DATA(skb);
if(pMeta->csumFlags & 0x1){
skb->ip_summed=CHECKSUM_COMPLETE;
skb->csum=(pMeta->csum);
}
A_NETBUF_PULL((void*)skb, sizeof(WMI_RX_META_V2));
break;
}
#endif
default:
break;
}
A_ASSERT(status == A_OK);
/* NWF: print the 802.11 hdr bytes */
if(containsDot11Hdr) {
status = wmi_dot11_hdr_remove(arPriv->arWmi,skb);
} else if(!is_amsdu && !is_acl_data_frame) {
#ifdef DIX_RX_OFFLOAD
/*Skip the conversion its offloaded to firmware*/
if(A_NETBUF_PULL(skb, sizeof(ATH_LLC_SNAP_HDR)) != A_OK) {
status = A_NO_MEMORY;
}
else {
status = A_OK;
}
#else
status = wmi_dot3_2_dix(skb);
#endif
}
if (status != A_OK) {
/* Drop frames that could not be processed (lack of memory, etc.) */
A_NETBUF_FREE(skb);
goto rx_done;
}
if (is_acl_data_frame) {
A_NETBUF_PUSH(skb, sizeof(int));
*((short *)A_NETBUF_DATA(skb)) = WMI_ACL_DATA_EVENTID;
/* send the data packet to PAL driver */
if(ar6k_pal_config_g.fpar6k_pal_recv_pkt) {
if((*ar6k_pal_config_g.fpar6k_pal_recv_pkt)(arPriv->hcipal_info, skb) == TRUE)
goto rx_done;
}
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
/*
* extra push and memcpy, for eth_type_trans() of 2.4 kernel
* will pull out hard_header_len bytes of the skb.
*/
A_NETBUF_PUSH(skb, sizeof(WMI_DATA_HDR) + sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN);
A_MEMCPY(A_NETBUF_DATA(skb), A_NETBUF_DATA(skb) + sizeof(WMI_DATA_HDR) +
sizeof(ATH_LLC_SNAP_HDR) + HTC_HEADER_LEN, sizeof(ATH_MAC_HDR));
#endif
#ifdef ATH_AR6K_11N_SUPPORT
multicastcheck_datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
/*
* Do not pass multicast/bcast data packets to aggregation module
* incase of STA mode
*/
if (!(((IEEE80211_IS_MULTICAST(multicastcheck_datap->dstMac))) && (arPriv->arNetworkType == INFRA_NETWORK))){
aggr_process_recv_frm(get_aggr_ctx(arPriv, conn), tid, seq_no, is_amsdu, (void **)&skb);
}
#endif
ar6000_deliver_frames_to_nw_stack((void *) arPriv->arNetDev, (void *)skb);
}
}
} else {
if (EPPING_ALIGNMENT_PAD > 0) {
A_NETBUF_PULL(skb, EPPING_ALIGNMENT_PAD);
}
ar6000_deliver_frames_to_nw_stack((void *)arPriv->arNetDev, (void *)skb);
}
rx_done:
return;
}
static void
ar6000_deliver_frames_to_nw_stack(void *dev, void *osbuf)
{
struct sk_buff *skb = (struct sk_buff *)osbuf;
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
AR_SOFTC_T *ar = arPriv->arSoftc;
if(skb) {
skb->dev = dev;
if ((skb->dev->flags & IFF_UP) == IFF_UP) {
if (arPriv->arNetworkType == AP_NETWORK) {
struct sk_buff *skb1 = NULL;
ATH_MAC_HDR *datap;
struct net_device *net_dev = arPriv->arNetDev;
#ifdef CONFIG_PM
ar6000_check_wow_status(ar, skb, FALSE);
#endif /* CONFIG_PM */
datap = (ATH_MAC_HDR *)A_NETBUF_DATA(skb);
if (IEEE80211_IS_MULTICAST(datap->dstMac)) {
/* Bcast/Mcast frames should be sent to the OS
* stack as well as on the air.
*/
skb1 = skb_copy(skb,GFP_ATOMIC);
} else {
/* Search for a connected STA with dstMac as
* the Mac address. If found send the frame to
* it on the air else send the frame up the stack
*/
AR_SOFTC_DEV_T *to_arPriv = NULL;
A_UINT8 is_forward = 0;
conn_t *to_conn = NULL;
to_conn = ieee80211_find_conn(arPriv, datap->dstMac);
if (to_conn) {
to_arPriv = (AR_SOFTC_DEV_T *)to_conn->arPriv;
/* Forward data within BSS */
if(arPriv == to_arPriv) {
is_forward = arPriv->arAp.intra_bss;
} else {
/* Forward data within mBSS */
is_forward = ar->inter_bss;
net_dev = to_arPriv->arNetDev;
}
if(is_forward && net_dev) {
skb1 = skb;
skb = NULL;
} else {
A_NETBUF_FREE(skb);
skb = NULL;
return;
}
}
}
if (skb1) {
ar6000_data_tx(skb1, net_dev);
if (!skb)
return;
}
}
#ifdef CONFIG_PM
ar6000_check_wow_status(ar, skb, FALSE);
#endif /* CONFIG_PM */
skb->protocol = eth_type_trans(skb, skb->dev);
/*
* If this routine is called on a ISR (Hard IRQ) or DSR (Soft IRQ)
* or tasklet use the netif_rx to deliver the packet to the stack
* netif_rx will queue the packet onto the receive queue and mark
* the softirq thread has a pending action to complete. Kernel will
* schedule the softIrq kernel thread after processing the DSR.
*
* If this routine is called on a process context, use netif_rx_ni
* which will schedle the softIrq kernel thread after queuing the packet.
*/
if (in_interrupt()) {
A_NETIF_RX(skb);
} else {
A_NETIF_RX_NI(skb);
}
} else {
A_NETBUF_FREE(skb);
}
}
}
#if 0
static void
ar6000_deliver_frames_to_bt_stack(void *dev, void *osbuf)
{
struct sk_buff *skb = (struct sk_buff *)osbuf;
if(skb) {
skb->dev = dev;
if ((skb->dev->flags & IFF_UP) == IFF_UP) {
skb->protocol = htons(ETH_P_CONTROL);
netif_rx(skb);
} else {
A_NETBUF_FREE(skb);
}
}
}
#endif
static void
ar6000_rx_refill(void *Context, HTC_ENDPOINT_ID Endpoint)
{
AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
void *osBuf;
int RxBuffers;
int buffersToRefill;
HTC_PACKET *pPacket;
HTC_PACKET_QUEUE queue;
buffersToRefill = (int)AR6000_MAX_RX_BUFFERS -
HTCGetNumRecvBuffers(ar->arHtcTarget, Endpoint);
if (buffersToRefill <= 0) {
/* fast return, nothing to fill */
return;
}
INIT_HTC_PACKET_QUEUE(&queue);
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_rx_refill: providing htc with %d buffers at eid=%d\n",
buffersToRefill, Endpoint));
for (RxBuffers = 0; RxBuffers < buffersToRefill; RxBuffers++) {
osBuf = A_NETBUF_ALLOC(AR6000_BUFFER_SIZE);
if (NULL == osBuf) {
break;
}
/* the HTC packet wrapper is at the head of the reserved area
* in the skb */
pPacket = (HTC_PACKET *)(A_NETBUF_HEAD(osBuf));
/* set re-fill info */
SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_BUFFER_SIZE,Endpoint);
/* add to queue */
HTC_PACKET_ENQUEUE(&queue,pPacket);
}
if (!HTC_QUEUE_EMPTY(&queue)) {
/* add packets */
HTCAddReceivePktMultiple(ar->arHtcTarget, &queue);
}
}
/* clean up our amsdu buffer list */
static void ar6000_cleanup_amsdu_rxbufs(AR_SOFTC_T *ar)
{
HTC_PACKET *pPacket;
void *osBuf;
/* empty AMSDU buffer queue and free OS bufs */
while (TRUE) {
AR6000_SPIN_LOCK(&ar->arLock, 0);
pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue);
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (NULL == pPacket) {
break;
}
osBuf = pPacket->pPktContext;
if (NULL == osBuf) {
A_ASSERT(FALSE);
break;
}
A_NETBUF_FREE(osBuf);
}
}
/* refill the amsdu buffer list */
static void ar6000_refill_amsdu_rxbufs(AR_SOFTC_T *ar, int Count)
{
HTC_PACKET *pPacket;
void *osBuf;
while (Count > 0) {
osBuf = A_NETBUF_ALLOC(AR6000_AMSDU_BUFFER_SIZE);
if (NULL == osBuf) {
break;
}
/* the HTC packet wrapper is at the head of the reserved area
* in the skb */
pPacket = (HTC_PACKET *)(A_NETBUF_HEAD(osBuf));
/* set re-fill info */
SET_HTC_PACKET_INFO_RX_REFILL(pPacket,osBuf,A_NETBUF_DATA(osBuf),AR6000_AMSDU_BUFFER_SIZE,0);
AR6000_SPIN_LOCK(&ar->arLock, 0);
/* put it in the list */
HTC_PACKET_ENQUEUE(&ar->amsdu_rx_buffer_queue,pPacket);
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
Count--;
}
}
/* callback to allocate a large receive buffer for a pending packet. This function is called when
* an HTC packet arrives whose length exceeds a threshold value
*
* We use a pre-allocated list of buffers of maximum AMSDU size (4K). Under linux it is more optimal to
* keep the allocation size the same to optimize cached-slab allocations.
*
* */
static HTC_PACKET *ar6000_alloc_amsdu_rxbuf(void *Context, HTC_ENDPOINT_ID Endpoint, int Length)
{
HTC_PACKET *pPacket = NULL;
AR_SOFTC_T *ar = (AR_SOFTC_T *)Context;
int refillCount = 0;
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_RX,("ar6000_alloc_amsdu_rxbuf: eid=%d, Length:%d\n",Endpoint,Length));
do {
if (Length <= AR6000_BUFFER_SIZE) {
/* shouldn't be getting called on normal sized packets */
A_ASSERT(FALSE);
break;
}
if (Length > AR6000_AMSDU_BUFFER_SIZE) {
A_ASSERT(FALSE);
break;
}
AR6000_SPIN_LOCK(&ar->arLock, 0);
/* allocate a packet from the list */
pPacket = HTC_PACKET_DEQUEUE(&ar->amsdu_rx_buffer_queue);
/* see if we need to refill again */
refillCount = AR6000_MAX_AMSDU_RX_BUFFERS - HTC_PACKET_QUEUE_DEPTH(&ar->amsdu_rx_buffer_queue);
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (NULL == pPacket) {
break;
}
/* set actual endpoint ID */
pPacket->Endpoint = Endpoint;
} while (FALSE);
if (refillCount >= AR6000_AMSDU_REFILL_THRESHOLD) {
ar6000_refill_amsdu_rxbufs(ar,refillCount);
}
return pPacket;
}
static void
ar6000_set_multicast_list(struct net_device *dev)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 35)
int mc_count = dev->mc_count;
struct dev_mc_list *mc;
int j;
#else
int mc_count = netdev_mc_count(dev);
struct netdev_hw_addr *ha;
#endif
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
AR_SOFTC_T *ar = arPriv->arSoftc;
int i;
A_BOOL enableAll, disableAll;
enum {
IGNORE = 0,
MATCH = 1,
ADD = 2,
DELETE = 3
} action[MAC_MAX_FILTERS_PER_LIST];
A_BOOL mcValid;
A_UINT8 *mac;
A_UINT8 *filter;
A_BOOL filterValid;
if (ar->arWmiReady == FALSE || ar->arWlanState == WLAN_DISABLED)
return;
enableAll = FALSE;
disableAll = FALSE;
/*
* Enable receive all multicast, if
* 1. promiscous mode,
* 2. Allow all multicast
* 3. H/W supported filters is less than application requested filter
*/
if ((dev->flags & IFF_PROMISC) ||
(dev->flags & IFF_ALLMULTI) ||
(mc_count > MAC_MAX_FILTERS_PER_LIST))
{
enableAll = TRUE;
} else {
/* Disable all multicast if interface has multicast disable or list is empty */
if ((!(dev->flags & IFF_MULTICAST)) || (!mc_count)) {
disableAll = TRUE;
}
}
/*
* Firmware behaviour
* enableAll - set filter to enable and delete valid filters
* disableAll - set filter to disable and delete valid filers
* filter - set valid filters
*/
/*
* Pass 1: Mark all the valid filters to delete
*/
for (i=0; i<MAC_MAX_FILTERS_PER_LIST; i++) {
filter = arPriv->mcast_filters[i];
filterValid = (filter[1] || filter[2]);
if (filterValid) {
action[i] = DELETE;
} else {
action[i] = IGNORE;
}
}
if ((!enableAll) && (!disableAll)) {
/*
* Pass 2: Mark all filters which match the previous ones
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 34)
for (j = 0, mc = dev->mc_list; mc && (j < dev->mc_count);
j++, mc = mc->next) {
mac = mc->dmi_addr;
#else
netdev_for_each_mc_addr(ha, dev) {
mac = ha->addr;
#endif
mcValid = (mac[2] || mac[3] || mac[4] || mac[5]);
if (mcValid) {
for (i=0; i<MAC_MAX_FILTERS_PER_LIST; i++) {
filter = arPriv->mcast_filters[i];
if ((A_MEMCMP(filter, &mac[0], AR_MCAST_FILTER_MAC_ADDR_SIZE)) == 0) {
action[i] = MATCH;
break;
}
}
}
}
/*
* Delete old entries and free-up space for new additions
*/
for (i = 0; i < MAC_MAX_FILTERS_PER_LIST; i++) {
filter = arPriv->mcast_filters[i];
if (action[i] == DELETE) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Delete Filter %d = %02x:%02x:%02x:%02x:%02x:%02x\n",
i, filter[0], filter[1], filter[2], filter[3], filter[4], filter[5]));
wmi_del_mcast_filter_cmd(arPriv->arWmi, filter);
A_MEMZERO(filter, AR_MCAST_FILTER_MAC_ADDR_SIZE);
/* Make this available for further additions */
action[i] = IGNORE;
}
}
/*
* Pass 3: Add new filters to empty slots
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 34)
for (j = 0, mc = dev->mc_list; mc && (j < dev->mc_count);
j++, mc = mc->next) {
#else
netdev_for_each_mc_addr(ha, dev) {
#endif
A_BOOL match;
A_INT32 free;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 34)
mac = mc->dmi_addr;
#else
mac = ha->addr;
#endif
mcValid = (mac[2] || mac[3] || mac[4] || mac[5]);
if (mcValid) {
match = FALSE;
free = -1;
for (i=0; i<MAC_MAX_FILTERS_PER_LIST; i++) {
A_UINT8 *filter = arPriv->mcast_filters[i];
if ((A_MEMCMP(filter, &mac[0], AR_MCAST_FILTER_MAC_ADDR_SIZE)) == 0) {
match = TRUE;
break;
} else if (action[i] != MATCH && action[i] != ADD) {
if (free == -1) {
free = i; // Mark the first free index
}
}
}
if ((!match) && (free != -1)) {
filter = arPriv->mcast_filters[free];
A_MEMCPY(filter, &mac[0], AR_MCAST_FILTER_MAC_ADDR_SIZE);
action[free] = ADD;
}
}
}
}
for (i=0; i<MAC_MAX_FILTERS_PER_LIST; i++) {
filter = arPriv->mcast_filters[i];
if (action[i] == DELETE) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Delete Filter %d = %02x:%02x:%02x:%02x:%02x:%02x\n",
i, filter[0], filter[1], filter[2], filter[3], filter[4], filter[5]));
wmi_del_mcast_filter_cmd(arPriv->arWmi, filter);
A_MEMZERO(filter, AR_MCAST_FILTER_MAC_ADDR_SIZE);
} else if (action[i] == ADD) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Add Filter %d = %02x:%02x:%02x:%02x:%02x:%02x\n",
i, filter[0], filter[1], filter[2], filter[3],filter[4],filter[5]));
wmi_set_mcast_filter_cmd(arPriv->arWmi, filter);
} else if (action[i] == MATCH) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Keep Filter %d = %02x:%02x:%02x:%02x:%02x:%02x\n",
i, filter[0], filter[1], filter[2], filter[3],filter[4],filter[5]));
}
}
if (enableAll) {
/* target allow all multicast packets if fitler enable and fitler list is zero */
wmi_mcast_filter_cmd(arPriv->arWmi, TRUE);
} else if (disableAll) {
/* target drop multicast packets if fitler disable and fitler list is zero */
wmi_mcast_filter_cmd(arPriv->arWmi, FALSE);
}
}
static struct net_device_stats *
ar6000_get_stats(struct net_device *dev)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
return &arPriv->arNetStats;
}
static struct iw_statistics *
ar6000_get_iwstats(struct net_device * dev)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)ar6k_priv(dev);
AR_SOFTC_T *ar = arPriv->arSoftc;
TARGET_STATS *pStats = &arPriv->arTargetStats;
struct iw_statistics * pIwStats = &arPriv->arIwStats;
#ifdef CONFIG_HOST_TCMD_SUPPORT
if (ar->bIsDestroyProgress || ar->arWmiReady == FALSE || ar->arWlanState == WLAN_DISABLED || testmode)
#else
if (ar->bIsDestroyProgress || ar->arWmiReady == FALSE || ar->arWlanState == WLAN_DISABLED)
#endif
{
pIwStats->status = 0;
pIwStats->qual.qual = 0;
pIwStats->qual.level =0;
pIwStats->qual.noise = 0;
pIwStats->discard.code =0;
pIwStats->discard.retries=0;
pIwStats->miss.beacon =0;
return pIwStats;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
/*
* The in_atomic function is used to determine if the scheduling is
* allowed in the current context or not. This was introduced in 2.6
* From what I have read on the differences between 2.4 and 2.6, the
* 2.4 kernel did not support preemption and so this check might not
* be required for 2.4 kernels.
*/
if (in_atomic())
{
if (wmi_get_stats_cmd(arPriv->arWmi) == A_OK) {
}
pIwStats->status = 1 ;
pIwStats->qual.qual = pStats->cs_aveBeacon_rssi - 161;
pIwStats->qual.level =pStats->cs_aveBeacon_rssi; /* noise is -95 dBm */
pIwStats->qual.noise = pStats->noise_floor_calibation;
pIwStats->discard.code = pStats->rx_decrypt_err;
pIwStats->discard.retries = pStats->tx_retry_cnt;
pIwStats->miss.beacon = pStats->cs_bmiss_cnt;
return pIwStats;
}
#endif /* LINUX_VERSION_CODE */
dev_hold(dev);
pIwStats->status = 0;
if (down_interruptible(&ar->arSem)) {
goto err_exit;
}
do {
if (ar->bIsDestroyProgress || ar->arWlanState == WLAN_DISABLED) {
break;
}
arPriv->statsUpdatePending = TRUE;
if(wmi_get_stats_cmd(arPriv->arWmi) != A_OK) {
break;
}
wait_event_interruptible_timeout(arPriv->arEvent, arPriv->statsUpdatePending == FALSE, wmitimeout * HZ);
if (signal_pending(current)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("ar6000 : WMI get stats timeout \n"));
break;
}
pIwStats->status = 1 ;
pIwStats->qual.qual = pStats->cs_aveBeacon_rssi - 161;
pIwStats->qual.level =pStats->cs_aveBeacon_rssi; /* noise is -95 dBm */
pIwStats->qual.noise = pStats->noise_floor_calibation;
pIwStats->discard.code = pStats->rx_decrypt_err;
pIwStats->discard.retries = pStats->tx_retry_cnt;
pIwStats->miss.beacon = pStats->cs_bmiss_cnt;
} while (0);
up(&ar->arSem);
err_exit:
dev_put(dev);
return pIwStats;
}
void
ar6000_ready_event(void *devt, A_UINT8 *datap, A_UINT8 phyCap, A_UINT32 sw_ver, A_UINT32 abi_ver)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
struct net_device *dev;
AR_SOFTC_T *ar = arPriv->arSoftc;
A_UINT8 i, j, k;
AR_SOFTC_STA_T *arSta;
ar->arWmiReady = TRUE;
ar->arVersion.wlan_ver = sw_ver;
ar->arVersion.abi_ver = abi_ver;
wake_up(&arPriv->arEvent);
for(i = 0; i < num_device ; i++) {
dev = ar6000_devices[i];
arPriv = ar->arDev[i];
arPriv->arPhyCapability = phyCap;
if (arPriv->arPhyCapability == WMI_11NAG_CAPABILITY){
arPriv->phymode = DEF_AP_WMODE_AG;
} else {
arPriv->phymode = DEF_AP_WMODE_G;
}
A_MEMCPY(dev->dev_addr, datap, AR6000_ETH_ADDR_LEN);
if (i > 0) {
if(mac_addr_method) {
k = dev->dev_addr[5];
dev->dev_addr[5] += i;
for(j=5; j>3; j--) {
if(dev->dev_addr[j] > k) {
break;
}
k = dev->dev_addr[j-1];
dev->dev_addr[j-1]++;
}
} else {
dev->dev_addr[0] = (((dev->dev_addr[0]) ^ (1 << i))) | 0x02;
}
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("DEV%d mac address = %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
i, dev->dev_addr[0], dev->dev_addr[1],
dev->dev_addr[2], dev->dev_addr[3],
dev->dev_addr[4], dev->dev_addr[5]));
#ifdef AR6K_ENABLE_HCI_PAL
ar6k_hci_pal_info_t *pHciPalInfo = (ar6k_hci_pal_info_t *)ar->hcipal_info;
pHciPalInfo->hdev->bdaddr.b[0]=dev->dev_addr[5];
pHciPalInfo->hdev->bdaddr.b[1]=dev->dev_addr[4];
pHciPalInfo->hdev->bdaddr.b[2]=dev->dev_addr[3];
pHciPalInfo->hdev->bdaddr.b[3]=dev->dev_addr[2];
pHciPalInfo->hdev->bdaddr.b[4]=dev->dev_addr[1];
pHciPalInfo->hdev->bdaddr.b[5]=dev->dev_addr[0];
#endif
#if (WLAN_CONFIG_PSPOLL_NUM) || (WLAN_CONFIG_DTIM_POLICY) || \
(WLAN_CONFIG_IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN)
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,
("AR6K: %s: PSPOLL_NUM = %d, DTIM_POLICY = %d, PS_FAIL_EVENT_POLICY = %d\n",
__FUNCTION__, WLAN_CONFIG_PSPOLL_NUM, WLAN_CONFIG_DTIM_POLICY,
WLAN_CONFIG_IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN));
wmi_pmparams_cmd(arPriv->arWmi,
0, /* idlePeriod */
WLAN_CONFIG_PSPOLL_NUM, /* psPollNum */
WLAN_CONFIG_DTIM_POLICY, /* dtimPolicy */
0, /* tx_wakeup_policy */
1, /* num_tx_to_wakeup */
WLAN_CONFIG_IGNORE_POWER_SAVE_FAIL_EVENT_DURING_SCAN /* ps_fail_event_policy */ );
#endif
#if WLAN_CONFIG_DONOT_IGNORE_BARKER_IN_ERP
wmi_set_lpreamble_cmd(arPriv->arWmi, 0, WMI_DONOT_IGNORE_BARKER_IN_ERP);
#endif
wmi_set_keepalive_cmd(arPriv->arWmi, WLAN_CONFIG_KEEP_ALIVE_INTERVAL);
#ifdef BMISS_ENHANCEMENT
/* This code has been added to enable the new algorithm to prevent BMISS
* Enabling this right now only for single dev opertaing mode */
if (num_device == 1) {
wmi_sta_bmiss_enhance_cmd(arPriv->arWmi, 1);
}
#endif
/* BG scan should be enabled for p2p operation */
A_PRINTF("AR6K: targetconf_ver : %d\n", ar->arVersion.targetconf_ver);
if (ar->arVersion.targetconf_ver == AR6003_SUBVER_DEFAULT) {
WMI_SET_ROAM_CTRL_CMD roamCtrl;
if (arPriv->arNetworkType != AP_NETWORK) {
arSta = &arPriv->arSta;
/* if psm_info is 0, disable background scan for OTA */
if (!psm_info) {
arSta->scParams.bg_period = 65535;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6K: bg scan interval = %d, active dwell time = %d passive dwell time = %d\n",
arSta->scParams.bg_period, arSta->scParams.maxact_chdwell_time,
arSta->scParams.pas_chdwell_time));
wmi_scanparams_cmd(arPriv->arWmi,
arSta->scParams.fg_start_period,
arSta->scParams.fg_end_period,
arSta->scParams.bg_period,
arSta->scParams.minact_chdwell_time,
arSta->scParams.maxact_chdwell_time,
arSta->scParams.pas_chdwell_time,
arSta->scParams.shortScanRatio,
arSta->scParams.scanCtrlFlags,
arSta->scParams.max_dfsch_act_time,
arSta->scParams.maxact_scan_per_ssid);
}
A_MEMZERO(&roamCtrl, sizeof(roamCtrl));
roamCtrl.roamCtrlType = WMI_SET_LOWRSSI_SCAN_PARAMS;
roamCtrl.info.lrScanParams.lowrssi_scan_period = 65535; //low rssi scanning disabled
wmi_set_roam_ctrl_cmd(arPriv->arWmi, &roamCtrl, sizeof(roamCtrl));
}
#if WLAN_CONFIG_DISABLE_11N
{
WMI_SET_HT_CAP_CMD htCap;
A_MEMZERO(&htCap, sizeof(WMI_SET_HT_CAP_CMD));
htCap.band = 0;
wmi_set_ht_cap_cmd(arPriv->arWmi, &htCap);
htCap.band = 1;
wmi_set_ht_cap_cmd(arPriv->arWmi, &htCap);
}
#endif /* WLAN_CONFIG_DISABLE_11N */
#ifdef ATH6K_CONFIG_OTA_MODE
wmi_powermode_cmd(arPriv->arWmi, MAX_PERF_POWER);
#else
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6K: %s: psm.info is %d (0: MAX_PERF_POWER, 1:REC_POWER)\n", __FUNCTION__, psm_info));
wmi_powermode_cmd_w_psminfo(arPriv->arWmi, psm_info, 0);
#endif
wmi_disctimeout_cmd(arPriv->arWmi, WLAN_CONFIG_DISCONNECT_TIMEOUT);
}
}
A_STATUS
ar6000_ap_mode_probe_rx(AR_SOFTC_DEV_T *arPriv, A_UINT8 *datap, int len)
{
struct sk_buff *skb;
WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap;
A_UINT8 *buf = NULL;
if((arPriv->arNetworkType != AP_NETWORK) ||
(arPriv->arNetworkSubType != SUBTYPE_NONE)) {
return A_ERROR;
}
buf = datap + sizeof(WMI_BSS_INFO_HDR);
len -= sizeof(WMI_BSS_INFO_HDR);
len += 6; /* For adding MAC addr */
if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) {
A_NETBUF_PUT(skb, len);
A_MEMCPY(A_NETBUF_DATA(skb), bih->bssid, 6);
A_MEMCPY(A_NETBUF_DATA(skb)+6, buf, len-6);
skb->dev = arPriv->arNetDev;
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_NONE;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = __constant_htons(0x0019);
A_NETIF_RX(skb);
}
return A_OK;
}
#ifdef P2P
A_UINT8 get_connected_sta_cnt(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
A_UINT8 i, cnt=0;
for(i=0;i<NUM_CONN;i++) {
if(ar->connTbl[i].arPriv == arPriv) {
cnt++;
}
}
return cnt;
}
#endif
void
add_new_sta(AR_SOFTC_DEV_T *arPriv, A_UINT8 *mac, A_UINT16 aid, A_UINT8 *wpaie,
A_UINT8 ielen, A_UINT8 keymgmt, A_UINT8 ucipher, A_UINT8 auth, A_UINT8 wmode, A_UINT8 apsd_info,
A_UINT8 HT_present)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
AR_SOFTC_AP_T *arAp = &arPriv->arAp;
A_UINT8 free_slot=aid-1;
A_MEMCPY(ar->connTbl[free_slot].mac, mac, ATH_MAC_LEN);
A_MEMCPY(ar->connTbl[free_slot].wpa_ie, wpaie, ielen);
ar->connTbl[free_slot].arPriv = arPriv;
ar->connTbl[free_slot].aid = aid;
ar->connTbl[free_slot].keymgmt = keymgmt;
ar->connTbl[free_slot].ucipher = ucipher;
ar->connTbl[free_slot].auth = auth;
ar->connTbl[free_slot].wmode = wmode;
ar->connTbl[free_slot].apsd_info= apsd_info;
ar->connTbl[free_slot].HT_present = HT_present;
ar->connTbl[free_slot].flags = 0;
ar->arAPStats[free_slot].aid = aid;
arAp->sta_list_index = arAp->sta_list_index | (1 << free_slot);
aggr_reset_state(ar->connTbl[free_slot].conn_aggr, (void *) arPriv->arNetDev);
#ifdef P2P
if((arPriv->arNetworkSubType == SUBTYPE_P2PGO) && (arPriv->num_sta == get_connected_sta_cnt(arPriv))) {
p2p_set_group_capability(A_WMI_GET_P2P_CTX(arPriv), P2P_GROUP_CAPAB_GROUP_LIMIT,1);
}
#endif
}
void
ar6000_connect_event(AR_SOFTC_DEV_T *arPriv, WMI_CONNECT_EVENT *pEvt)
{
union iwreq_data wrqu;
int i, beacon_ie_pos, assoc_resp_ie_pos, assoc_req_ie_pos;
static const char *tag1 = "ASSOCINFO(ReqIEs=";
static const char *tag2 = "ASSOCRESPIE=";
static const char *beaconIetag = "BEACONIE=";
char buf[WMI_CONTROL_MSG_MAX_LEN * 2 + strlen(tag1) + 1];
char *pos;
A_UINT8 key_op_ctrl;
unsigned long flags;
struct ieee80211req_key *ik;
CRYPTO_TYPE keyType = NONE_CRYPT;
AR_SOFTC_STA_T *arSta;
struct ieee80211_frame *wh;
A_UINT8 *frm, *efrm, *ssid, *rates, *xrates, *wpaie, wpaLen=0;
A_UINT16 subtype;
A_UINT8 beaconIeLen;
A_UINT8 assocReqLen;
A_UINT8 assocRespLen;
A_UINT8 *assocInfo;
A_UINT8 *bssid;
A_INT8 rate_idx;
A_UINT8 HT_present = 0;
beaconIeLen = pEvt->beaconIeLen;
assocReqLen = pEvt->assocReqLen;
assocRespLen = pEvt->assocRespLen;
assocInfo = pEvt->assocInfo;
/* BSSID and MAC_ADDR is in the same location for all modes */
bssid = pEvt->u.infra_ibss_bss.bssid;
if(arPriv->arNetworkType & AP_NETWORK) {
struct net_device *dev = arPriv->arNetDev;
AR_SOFTC_AP_T *arAp = &arPriv->arAp;
A_UINT8 aid, wmode, keymgmt, auth_alg;
if(A_MEMCMP(dev->dev_addr, bssid, ATH_MAC_LEN)==0) {
ik = &arAp->ap_mode_bkey;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AP%d: [UP] SSID %s MAC %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
arPriv->arDeviceIndex, arPriv->arSsid,
bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]));
arPriv->arChannelHint = pEvt->u.ap_bss.channel;
arPriv->arBssChannel = arPriv->arChannelHint;
arPriv->arConnected = TRUE;
A_MEMCPY(arPriv->arAp.ap_country_code, pEvt->u.ap_sta.unused,
sizeof(arPriv->arAp.ap_country_code));
/* Concurrency: Process the pending connect of the other virtual device(s) */
ar6000_check_hold_conn_status(arPriv, TRUE);
#ifdef P2P
if(arPriv->arNetworkSubType == SUBTYPE_P2PDEV) {
arPriv->arNetworkSubType = SUBTYPE_P2PGO;
p2p_update_capability(A_WMI_GET_P2P_CTX(arPriv),arPriv->arNetworkSubType,num_device);
p2p_set_group_capability(A_WMI_GET_P2P_CTX(arPriv), P2P_GROUP_CAPAB_GROUP_LIMIT,0);
}
#endif
#ifdef WAPI_ENABLE
if( (arPriv->arAuthMode == WMI_NONE_AUTH) &&
(arPriv->arPairwiseCrypto == WAPI_CRYPT) ) {
ap_set_wapi_key(arPriv, ik);
}
#endif
if(arPriv->arAuthMode &
(WMI_WPA_PSK_AUTH|WMI_WPA2_PSK_AUTH|WMI_WPA_AUTH|WMI_WPA2_AUTH))
{
switch (ik->ik_type) {
case IEEE80211_CIPHER_TKIP:
keyType = TKIP_CRYPT;
break;
case IEEE80211_CIPHER_AES_CCM:
keyType = AES_CRYPT;
break;
default:
goto skip_key;
}
wmi_addKey_cmd(arPriv->arWmi, ik->ik_keyix, keyType, GROUP_USAGE,
ik->ik_keylen, (A_UINT8 *)&ik->ik_keyrsc,
ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr,
SYNC_BOTH_WMIFLAG);
}
skip_key:
wmi_bssfilter_cmd(arPriv->arWmi, NONE_BSS_FILTER, 0);
arPriv->arConnected = TRUE;
return;
}
wh = (struct ieee80211_frame *) (assocInfo + beaconIeLen);
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
frm = (A_UINT8 *)&wh[1];
efrm = assocInfo + beaconIeLen + assocReqLen;
/* capability information */
frm += 2;
/* listen int */
frm += 2;
/* Reassoc will have current AP addr field */
if(subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
frm += 6;
}
ssid = rates = xrates = wpaie = NULL;
while (frm < efrm) {
switch (*frm) {
/* currently unused */
/*
case IEEE80211_ELEMID_SSID:
ssid = frm;
break;
case IEEE80211_ELEMID_RATES:
rates = frm;
break;
case IEEE80211_ELEMID_XRATES:
xrates = frm;
break;
*/
case IEEE80211_ELEMID_VENDOR:
if( (frm[1] > 3) && (frm[2] == 0x00) && (frm[3] == 0x50) &&
(frm[4] == 0xF2) && ((frm[5] == 0x01) || (frm[5] == 0x04)) )
{
wpaie = frm;
wpaLen = wpaie[1]+2;
}
break;
case IEEE80211_ELEMID_RSN:
wpaie = frm;
wpaLen = wpaie[1]+2;
break;
#ifdef WAPI_ENABLE
case IEEE80211_ELEMID_WAPI:
wpaie = frm;
wpaLen = wpaie[1]+2;
break;
#endif
case IEEE80211_ELEMID_HTCAP_ANA:
HT_present = 1;
break;
}
frm += frm[1] + 2;
}
aid = pEvt->u.ap_sta.aid;
wmode = pEvt->u.ap_sta.phymode;
keymgmt = pEvt->u.ap_sta.keymgmt;
auth_alg = pEvt->u.ap_sta.auth;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("NEW STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x \n "
" AID=%d AUTH=%d WMODE=%d KEYMGMT=%d CIPHER=%d APSD=%x\n",
pEvt->u.ap_sta.mac_addr[0], pEvt->u.ap_sta.mac_addr[1], pEvt->u.ap_sta.mac_addr[2],
pEvt->u.ap_sta.mac_addr[3], pEvt->u.ap_sta.mac_addr[4], pEvt->u.ap_sta.mac_addr[5],
aid, auth_alg, wmode, keymgmt, pEvt->u.ap_sta.cipher, pEvt->u.ap_sta.apsd_info));
add_new_sta(arPriv, pEvt->u.ap_sta.mac_addr, aid, wpaie, wpaLen, keymgmt,
pEvt->u.ap_sta.cipher, auth_alg, wmode, pEvt->u.ap_sta.apsd_info,HT_present);
/* Send event to application */
A_MEMZERO(&wrqu, sizeof(wrqu));
A_MEMCPY(wrqu.addr.sa_data, pEvt->u.ap_sta.mac_addr, ATH_MAC_LEN);
wireless_send_event(arPriv->arNetDev, IWEVREGISTERED, &wrqu, NULL);
/* In case the queue is stopped when we switch modes, this will
* wake it up
*/
netif_wake_queue(arPriv->arNetDev);
return;
}
#ifdef ATH6K_CONFIG_CFG80211
ar6k_cfg80211_connect_event(arPriv, pEvt->u.infra_ibss_bss.channel, bssid,
pEvt->u.infra_ibss_bss.listenInterval, pEvt->u.infra_ibss_bss.beaconInterval,
pEvt->u.infra_ibss_bss.networkType, beaconIeLen,
assocReqLen, assocRespLen,
assocInfo);
#endif /* ATH6K_CONFIG_CFG80211 */
arPriv->arChannelHint = pEvt->u.infra_ibss_bss.channel;
arPriv->arBssChannel = arPriv->arChannelHint;
arPriv->arConnected = TRUE;
arSta = &arPriv->arSta;
arSta->arConnectPending = FALSE;
/* Concurrency: Process the pending connect of the other virtual device(s) */
ar6000_check_hold_conn_status(arPriv, TRUE);
A_MEMCPY(arPriv->arBssid, bssid, sizeof(arPriv->arBssid));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 connected event on freq %d ", pEvt->u.infra_ibss_bss.channel));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("with bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
" listenInterval=%d, beaconInterval = %d, beaconIeLen = %d assocReqLen=%d"
" assocRespLen =%d\n",
bssid[0], bssid[1], bssid[2],
bssid[3], bssid[4], bssid[5],
pEvt->u.infra_ibss_bss.listenInterval, pEvt->u.infra_ibss_bss.beaconInterval,
beaconIeLen, assocReqLen, assocRespLen));
if (pEvt->u.infra_ibss_bss.networkType & ADHOC_NETWORK) {
/* Disable BG Scan for ADHOC NETWORK */
wmi_scanparams_cmd(arPriv->arWmi, 0, 0,
0xFFFF, 0, 0, 0, WMI_SHORTSCANRATIO_DEFAULT,DEFAULT_SCAN_CTRL_FLAGS, 0, 0);
if (pEvt->u.infra_ibss_bss.networkType & ADHOC_CREATOR) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Network: Adhoc (Creator)\n"));
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Network: Adhoc (Joiner)\n"));
}
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Network: Infrastructure\n"));
}
if ((arPriv->arNetworkType == INFRA_NETWORK)) {
if (arSta->arConnectPending) {
wmi_listeninterval_cmd(arPriv->arWmi, arSta->arListenIntervalT, arSta->arListenIntervalB);
}
if (arPriv->arBitRate != -1) {
if ((wmi_validate_bitrate(arPriv->arWmi, arPriv->arBitRate, &rate_idx)) != A_OK){
printk("User set rate cannot be used\n");
arPriv->arBitRate = -1;
}
}
}
#ifdef P2P
if(arPriv->arNetworkSubType == SUBTYPE_P2PDEV) {
arPriv->arNetworkSubType = SUBTYPE_P2PCLIENT;
p2p_update_capability(A_WMI_GET_P2P_CTX(arPriv),arPriv->arNetworkSubType,num_device);
}
#endif
if (beaconIeLen && (sizeof(buf) > (9 + beaconIeLen * 2))) {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nBeaconIEs= "));
beacon_ie_pos = 0;
A_MEMZERO(buf, sizeof(buf));
sprintf(buf, "%s", beaconIetag);
pos = buf + 9;
for (i = beacon_ie_pos; i < beacon_ie_pos + beaconIeLen; i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
sprintf(pos, "%2.2x", assocInfo[i]);
pos += 2;
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = strlen(buf);
if (wrqu.data.length <= IW_CUSTOM_MAX) {
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
} else {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Fail to send BeaconIEs to upper layer\n"));
}
}
if (assocRespLen && (sizeof(buf) > (12 + (assocRespLen * 2))))
{
assoc_resp_ie_pos = beaconIeLen + assocReqLen +
sizeof(A_UINT16) + /* capinfo*/
sizeof(A_UINT16) + /* status Code */
sizeof(A_UINT16) ; /* associd */
A_MEMZERO(buf, sizeof(buf));
sprintf(buf, "%s", tag2);
pos = buf + 12;
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocRespIEs= "));
/*
* The Association Response Frame w.o. the WLAN header is delivered to
* the host, so skip over to the IEs
*/
for (i = assoc_resp_ie_pos; i < assoc_resp_ie_pos + assocRespLen - 6; i++)
{
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
sprintf(pos, "%2.2x", assocInfo[i]);
pos += 2;
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = strlen(buf);
if (wrqu.data.length <= IW_CUSTOM_MAX) {
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
} else {
#if (WIRELESS_EXT >= 18)
wrqu.data.length = (assocRespLen - 6);
wireless_send_event(arPriv->arNetDev, IWEVASSOCRESPIE, &wrqu, &assocInfo[assoc_resp_ie_pos]);
#else
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Fail to send Association Response to upper layer\n"));
#endif
}
}
if (assocReqLen && (sizeof(buf) > (17 + (assocReqLen * 2)))) {
/*
* assoc Request includes capability and listen interval. Skip these.
*/
assoc_req_ie_pos = beaconIeLen +
sizeof(A_UINT16) + /* capinfo*/
sizeof(A_UINT16); /* listen interval */
A_MEMZERO(buf, sizeof(buf));
sprintf(buf, "%s", tag1);
pos = buf + 17;
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("AssocReqIEs= "));
for (i = assoc_req_ie_pos; i < assoc_req_ie_pos + assocReqLen - 4; i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
sprintf(pos, "%2.2x", assocInfo[i]);
pos += 2;;
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = strlen(buf);
if (wrqu.data.length <= IW_CUSTOM_MAX) {
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
} else {
#if (WIRELESS_EXT >= 18)
wrqu.data.length = (assocReqLen - 4);
wireless_send_event(arPriv->arNetDev, IWEVASSOCREQIE, &wrqu, &assocInfo[assoc_req_ie_pos]);
#else
AR_DEBUG_PRINTF(ATH_DEBUG_ERR, ("Fail to send Association Request to upper layer\n"));
#endif
}
}
#ifdef USER_KEYS
if (arSta->user_savedkeys_stat == USER_SAVEDKEYS_STAT_RUN &&
arSta->user_saved_keys.keyOk == TRUE)
{
key_op_ctrl = KEY_OP_VALID_MASK & ~KEY_OP_INIT_TSC;
if (arSta->user_key_ctrl & AR6000_USER_SETKEYS_RSC_UNCHANGED) {
key_op_ctrl &= ~KEY_OP_INIT_RSC;
} else {
key_op_ctrl |= KEY_OP_INIT_RSC;
}
ar6000_reinstall_keys(arPriv, key_op_ctrl);
}
#endif /* USER_KEYS */
netif_wake_queue(arPriv->arNetDev);
/* For CFG80211 the key configuration and the default key comes in after connect so no point in plumbing invalid keys */
#ifndef ATH6K_CONFIG_CFG80211
if ((pEvt->u.infra_ibss_bss.networkType & ADHOC_NETWORK) &&
(OPEN_AUTH == arPriv->arDot11AuthMode) &&
(WMI_NONE_AUTH == arPriv->arAuthMode) &&
(WEP_CRYPT == arPriv->arPairwiseCrypto))
{
if (!arPriv->arConnected) {
wmi_addKey_cmd(arPriv->arWmi,
arPriv->arDefTxKeyIndex,
WEP_CRYPT,
GROUP_USAGE | TX_USAGE,
arPriv->arWepKeyList[arPriv->arDefTxKeyIndex].arKeyLen,
NULL,
arPriv->arWepKeyList[arPriv->arDefTxKeyIndex].arKey, KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
}
}
#endif /* ATH6K_CONFIG_CFG80211 */
/* Update connect & link status atomically */
spin_lock_irqsave(&arPriv->arPrivLock, flags);
netif_carrier_on(arPriv->arNetDev);
spin_unlock_irqrestore(&arPriv->arPrivLock, flags);
/* reset the rx aggr state */
aggr_reset_state(arPriv->conn_aggr, (void *) arPriv->arNetDev);
reconnect_flag = 0;
A_MEMZERO(&wrqu, sizeof(wrqu));
A_MEMCPY(wrqu.addr.sa_data, bssid, IEEE80211_ADDR_LEN);
wrqu.addr.sa_family = ARPHRD_ETHER;
wireless_send_event(arPriv->arNetDev, SIOCGIWAP, &wrqu, NULL);
if ((arPriv->arNetworkType == ADHOC_NETWORK) && arSta->arIbssPsEnable) {
A_MEMZERO(arSta->arNodeMap, sizeof(arSta->arNodeMap));
arSta->arNodeNum = 0;
arSta->arNexEpId = ENDPOINT_2;
}
if (!arSta->arUserBssFilter) {
wmi_bssfilter_cmd(arPriv->arWmi, NONE_BSS_FILTER, 0);
}
}
void ar6000_set_numdataendpts(AR_SOFTC_DEV_T *arPriv, A_UINT32 num)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
A_ASSERT(num <= (HTC_MAILBOX_NUM_MAX - 1));
ar->arNumDataEndPts = num;
}
void
sta_cleanup(AR_SOFTC_DEV_T *arPriv, A_UINT8 i)
{
struct sk_buff *skb;
AR_SOFTC_T *ar = arPriv->arSoftc;
AR_SOFTC_AP_T *arAp = &arPriv->arAp;
/* empty the queued pkts in the PS queue if any */
A_MUTEX_LOCK(&ar->connTbl[i].psqLock);
while (!A_NETBUF_QUEUE_EMPTY(&ar->connTbl[i].psq)) {
skb = A_NETBUF_DEQUEUE(&ar->connTbl[i].psq);
A_NETBUF_FREE(skb);
}
while (!A_NETBUF_QUEUE_EMPTY(&ar->connTbl[i].apsdq)) {
skb = A_NETBUF_DEQUEUE(&ar->connTbl[i].apsdq);
A_NETBUF_FREE(skb);
}
A_MUTEX_UNLOCK(&ar->connTbl[i].psqLock);
#ifdef P2P
if((arPriv->arNetworkSubType == SUBTYPE_P2PGO) && (arPriv->num_sta <= get_connected_sta_cnt(arPriv))) {
p2p_set_group_capability(A_WMI_GET_P2P_CTX(arPriv), P2P_GROUP_CAPAB_GROUP_LIMIT,0);
}
#endif
/* Zero out the state fields */
A_MEMZERO(&ar->arAPStats[i], sizeof(WMI_PER_STA_STAT));
A_MEMZERO(&ar->connTbl[i].mac, ATH_MAC_LEN);
A_MEMZERO(&ar->connTbl[i].wpa_ie, IEEE80211_MAX_IE);
ar->connTbl[i].aid = 0;
ar->connTbl[i].flags = 0;
ar->connTbl[i].arPriv = NULL;
ar->connTbl[i].HT_present = 0;
arAp->sta_list_index =arAp->sta_list_index & ~(1 << i);
aggr_reset_state(ar->connTbl[i].conn_aggr, NULL);
}
void
ar6000_ap_cleanup(AR_SOFTC_DEV_T *arPriv)
{
A_UINT8 ctr;
struct sk_buff *skb;
AR_SOFTC_T *ar = arPriv->arSoftc;
AR_SOFTC_AP_T *arAp = &arPriv->arAp;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("DEL ALL STA\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AP%d: [DOWN] SSID %s\n", arPriv->arDeviceIndex, arPriv->arSsid));
// AP + BTCOEX State variables resetted here.
ar->IsdelbaTimerInitialized = FALSE;
A_UNTIMEOUT(&ar->delbaTimer);
ar->delbaState = REASON_DELBA_INIT;
for (ctr=0; ctr < NUM_CONN; ctr++) {
if(ar->connTbl[ctr].arPriv == arPriv) {
remove_sta(arPriv, ar->connTbl[ctr].mac, 0);
}
}
A_MUTEX_LOCK(&arAp->mcastpsqLock);
while (!A_NETBUF_QUEUE_EMPTY(&arAp->mcastpsq)) {
skb = A_NETBUF_DEQUEUE(&arAp->mcastpsq);
A_NETBUF_FREE(skb);
}
A_MUTEX_UNLOCK(&arAp->mcastpsqLock);
arPriv->arConnected = FALSE;
arPriv->arTxPwr = 0;
arPriv->arTxPwrSet = FALSE;
}
A_UINT8
remove_sta(AR_SOFTC_DEV_T *arPriv, A_UINT8 *mac, A_UINT16 reason)
{
A_UINT8 i, removed=0;
AR_SOFTC_T *ar = arPriv->arSoftc;
union iwreq_data wrqu;
struct sk_buff *skb;
if(IS_MAC_NULL(mac)) {
return removed;
}
if(reason == AP_DISCONNECT_MAX_STA) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("MAX STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n", mac[0],
mac[1], mac[2], mac[3], mac[4], mac[5]));
return removed;
} else if(reason == AP_DISCONNECT_ACL) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ACL STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n", mac[0],
mac[1], mac[2], mac[3], mac[4], mac[5]));
return removed;
}
for(i=0; i < NUM_CONN; i++) {
if(A_MEMCMP(ar->connTbl[i].mac, mac, ATH_MAC_LEN)==0) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("DEL STA %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x "
" aid=%d REASON=%d\n", mac[0], mac[1], mac[2],
mac[3], mac[4], mac[5], ar->connTbl[i].aid, reason));
sta_cleanup(arPriv, i);
removed = 1;
/* Send event to application */
A_MEMZERO(&wrqu, sizeof(wrqu));
A_MEMCPY(wrqu.addr.sa_data, mac, ATH_MAC_LEN);
wireless_send_event(arPriv->arNetDev, IWEVEXPIRED, &wrqu, NULL);
break;
}
}
/* If there are no more associated STAs, empty the mcast PS q */
if (arPriv->arAp.sta_list_index == 0) {
A_MUTEX_LOCK(&arPriv->arAp.mcastpsqLock);
while (!A_NETBUF_QUEUE_EMPTY(&arPriv->arAp.mcastpsq)) {
skb = A_NETBUF_DEQUEUE(&arPriv->arAp.mcastpsq);
A_NETBUF_FREE(skb);
}
A_MUTEX_UNLOCK(&arPriv->arAp.mcastpsqLock);
/* Clear the LSB of the BitMapCtl field of the TIM IE */
if (ar->arWmiReady) {
wmi_set_pvb_cmd(arPriv->arWmi, MCAST_AID, 0);
}
}
return removed;
}
void
ar6000_disconnect_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 reason, A_UINT8 *bssid,
A_UINT8 assocRespLen, A_UINT8 *assocInfo, A_UINT16 protocolReasonStatus)
{
A_UINT8 i;
unsigned long flags;
union iwreq_data wrqu;
AR_SOFTC_T *ar = arPriv->arSoftc;
A_BOOL bt30Devfound = FALSE;
#ifdef P2P
if((arPriv->arNetworkSubType == SUBTYPE_P2PCLIENT) || (arPriv->arNetworkSubType == SUBTYPE_P2PGO)
|| (arPriv->arNetworkSubType == SUBTYPE_P2PDEV)){
if(!(IS_MAC_BCAST(bssid)))
p2p_clear_group_peer(arPriv->p2p_ctx);
}
#endif
if(arPriv->arNetworkType & AP_NETWORK) {
if(IS_MAC_BCAST(bssid)) {
A_UINT32 tmp_regCode;
tmp_regCode = arPriv->arRegCode;
if(protocolReasonStatus != AP_DISCONNECT_STA_ROAM) {
arPriv->arBssChannel = 0;
arPriv->arChannelHint = 0;
} else {
arPriv->is_sta_roaming = TRUE;
}
ar6000_ap_cleanup(arPriv);
arPriv->arRegCode = tmp_regCode;
/* Concurrency: Process the pending connect of the other virtual device(s) */
ar6000_check_hold_conn_status(arPriv, FALSE);
if ((protocolReasonStatus == AP_DISCONNECT_STA_ROAM) || (protocolReasonStatus == AP_DISCONNECT_DFS_CHANNEL)) {
ar->arHoldConnection |= (1<<arPriv->arDeviceIndex);
arPriv->ap_profile_flag = TRUE;
}
#ifdef P2P
if(arPriv->arNetworkSubType == SUBTYPE_P2PGO) {
arPriv->arNextMode = INFRA_NETWORK;
ar6000_init_mode_info(arPriv);
arPriv->arNetworkType = INFRA_NETWORK;
arPriv->arNetworkSubType = SUBTYPE_P2PDEV;
p2p_update_capability(A_WMI_GET_P2P_CTX(arPriv),arPriv->arNetworkSubType,num_device);
}
#endif
} else {
remove_sta(arPriv, bssid, protocolReasonStatus);
}
return;
}
#ifdef ATH6K_CONFIG_CFG80211
ar6k_cfg80211_disconnect_event(arPriv, reason, bssid,
assocRespLen, assocInfo,
protocolReasonStatus);
#endif /* ATH6K_CONFIG_CFG80211 */
/*Skip DISCONNECT event for host intaitated Diconnect cmd*/
if((!arPriv->arSta.arHostDisconnect) || (protocolReasonStatus != 0)) {
/* Send disconnect event to supplicant */
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.addr.sa_family = ARPHRD_ETHER;
wireless_send_event(arPriv->arNetDev, SIOCGIWAP, &wrqu, NULL);
}
/* it is necessary to clear the host-side rx aggregation state */
aggr_reset_state(arPriv->conn_aggr, NULL);
A_UNTIMEOUT(&arPriv->arSta.disconnect_timer);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 disconnected"));
if (bssid[0] || bssid[1] || bssid[2] || bssid[3] || bssid[4] || bssid[5]) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" from %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]));
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Disconnect Reason is %d, Status Code is %d", reason, protocolReasonStatus));
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nDisconnect Reason is %d", reason));
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nProtocol Reason/Status Code is %d", protocolReasonStatus));
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\nAssocResp Frame = %s",
assocRespLen ? " " : "NULL"));
for (i = 0; i < assocRespLen; i++) {
if (!(i % 0x10)) {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("%2.2x ", assocInfo[i]));
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("\n"));
/*
* If the event is due to disconnect cmd from the host, only they the target
* would stop trying to connect. Under any other condition, target would
* keep trying to connect.
*
*/
if( reason == DISCONNECT_CMD)
{
if ((!arPriv->arSta.arUserBssFilter) && (ar->arWmiReady) && (ar->arWlanState != WLAN_DISABLED)) {
wmi_bssfilter_cmd(arPriv->arWmi, NONE_BSS_FILTER, 0);
}
} else {
arPriv->arSta.arConnectPending = TRUE;
if (((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x11)) ||
((reason == ASSOC_FAILED) && (protocolReasonStatus == 0x0) && (reconnect_flag == 1))) {
arPriv->arConnected = TRUE;
return;
}
}
/* In the case of p2p-client, if we get a NO_NETWORK_AVAIL or LOST_LINK reason from the
* firmware, issue a wmi_disconnect_cmd to the firmware to reset the firmware back to p2p-dev
* state.
*/
#ifdef P2P
if ((arPriv->arNetworkSubType == SUBTYPE_P2PCLIENT) &&
(reason == NO_NETWORK_AVAIL || reason == LOST_LINK) ) {
ar6000_disconnect(arPriv);
}
#endif /* P2P */
if (((reason == NO_NETWORK_AVAIL) || (reason == LOST_LINK)) && (ar->arWmiReady))
{
bss_t *pWmiSsidnode = NULL;
wmi_scan_report_lock(arPriv->arWmi);
/* remove the current associated bssid node */
wmi_free_node (arPriv->arWmi, bssid);
/*
* In case any other same SSID nodes are present
* remove it, since those nodes also not available now
*/
do
{
/*
* Find the nodes based on SSID and remove it
* NOTE :: This case will not work out for Hidden-SSID
*/
pWmiSsidnode = wmi_find_Ssidnode (arPriv->arWmi, arPriv->arSsid, arPriv->arSsidLen, FALSE, TRUE);
if (pWmiSsidnode)
{
wmi_free_node (arPriv->arWmi, pWmiSsidnode->ni_macaddr);
}
}while (pWmiSsidnode);
wmi_scan_report_unlock(arPriv->arWmi);
ar6000_init_profile_info(arPriv);
wmi_disconnect_cmd(arPriv->arWmi);
}
/* Update connect & link status atomically */
spin_lock_irqsave(&arPriv->arPrivLock, flags);
netif_carrier_off(arPriv->arNetDev);
spin_unlock_irqrestore(&arPriv->arPrivLock, flags);
#ifdef P2P
if(arPriv->arNetworkSubType == SUBTYPE_P2PCLIENT) {
arPriv->arNextMode = INFRA_NETWORK;
ar6000_init_mode_info(arPriv);
arPriv->arNetworkType = INFRA_NETWORK;
arPriv->arNetworkSubType = SUBTYPE_P2PDEV;
p2p_update_capability(A_WMI_GET_P2P_CTX(arPriv),arPriv->arNetworkSubType,num_device);
}
#endif
if( (reason != CSERV_DISCONNECT) || (reconnect_flag != 1) ) {
reconnect_flag = 0;
}
#ifdef USER_KEYS
if (reason != CSERV_DISCONNECT)
{
arPriv->arSta.user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
arPriv->arSta.user_key_ctrl = 0;
}
#endif /* USER_KEYS */
netif_stop_queue(arPriv->arNetDev);
A_MEMZERO(arPriv->arBssid, sizeof(arPriv->arBssid));
arPriv->arBssChannel = 0;
arPriv->arSta.arBeaconInterval = 0;
arPriv->arConnected = FALSE;
arPriv->arChannelHint = 0;
arPriv->arTxPwr = 0;
arPriv->arTxPwrSet = FALSE;
/* Concurrency: Process the pending connect of the other virtual device(s) */
ar6000_check_hold_conn_status(arPriv, FALSE);
for (i=0; i < num_device; i++) {
AR_SOFTC_DEV_T *temparPriv;
temparPriv = ar->arDev[i];
if (temparPriv->isBt30amp == TRUE) {
bt30Devfound = TRUE;
}
}
if (bt30Devfound == FALSE) {
ar6000_TxDataCleanup(ar);
}
if (arPriv->arNetworkType == ADHOC_NETWORK){
/* Reset Scan params to default */
wmi_scanparams_cmd(arPriv->arWmi, 0, 0,
60, 0, 0, 0, WMI_SHORTSCANRATIO_DEFAULT,DEFAULT_SCAN_CTRL_FLAGS, 0, 0);
}
}
void
ar6000_regDomain_event(AR_SOFTC_DEV_T *arPriv, A_UINT32 regCode)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 Reg Code = 0x%x\n", regCode));
arPriv->arRegCode = regCode;
}
#ifdef ATH_AR6K_11N_SUPPORT
#define BA_EVT_GET_CONNID(a) ((a)>>4)
#define BA_EVT_GET_TID(b) ((b)&0xF)
void
ar6000_aggr_rcv_addba_req_evt(AR_SOFTC_DEV_T *arPriv, WMI_ADDBA_REQ_EVENT *evt)
{
A_UINT8 connid = BA_EVT_GET_CONNID(evt->tid);
A_UINT8 tid = BA_EVT_GET_TID(evt->tid);
conn_t *conn = ieee80211_find_conn_for_aid(arPriv, connid);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ADDBA REQ: tid=%d, connid=%d, status=%d, win_sz=%d\n", tid, connid, evt->status, evt->win_sz));
if(((arPriv->arNetworkType == INFRA_NETWORK) || (conn != NULL)) && evt->status == 0) {
aggr_recv_addba_req_evt(get_aggr_ctx(arPriv, conn), tid, evt->st_seq_no, evt->win_sz);
}
}
void
ar6000_aggr_rcv_addba_resp_evt(AR_SOFTC_DEV_T *arPriv, WMI_ADDBA_RESP_EVENT *evt)
{
A_UINT8 connid = BA_EVT_GET_CONNID(evt->tid);
A_UINT8 tid = BA_EVT_GET_TID(evt->tid);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ADDBA RSP: tid=%d, connid=%d, status=%d, sz=%d\n", tid, connid, evt->status, evt->amsdu_sz));
if(evt->status == 0) {
}
}
void
ar6000_aggr_rcv_delba_req_evt(AR_SOFTC_DEV_T *arPriv, WMI_DELBA_EVENT *evt)
{
A_UINT8 connid = BA_EVT_GET_CONNID(evt->tid);
A_UINT8 tid = BA_EVT_GET_TID(evt->tid);
conn_t *conn = ieee80211_find_conn_for_aid(arPriv, connid);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("DELBA REQ: tid=%d, connid=%d\n", tid, connid));
if(((arPriv->arNetworkType == INFRA_NETWORK) || (conn != NULL)) && (!evt->is_peer_initiator)) {
aggr_recv_delba_req_evt(get_aggr_ctx(arPriv, conn), tid);
}
}
#endif
void register_pal_cb(ar6k_pal_config_t *palConfig_p)
{
ar6k_pal_config_g = *palConfig_p;
}
void
ar6000_hci_event_rcv_evt(AR_SOFTC_DEV_T *arPriv, WMI_HCI_EVENT *cmd)
{
void *osbuf = NULL;
A_INT8 i;
A_UINT8 size, *buf;
A_STATUS ret = A_OK;
size = cmd->evt_buf_sz + 4;
osbuf = A_NETBUF_ALLOC(size);
if (osbuf == NULL) {
ret = A_NO_MEMORY;
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Error in allocating netbuf \n"));
return;
}
A_NETBUF_PUT(osbuf, size);
buf = (A_UINT8 *)A_NETBUF_DATA(osbuf);
/* First 2-bytes carry HCI event/ACL data type
* the next 2 are free
*/
*((short *)buf) = WMI_HCI_EVENT_EVENTID;
buf += sizeof(int);
A_MEMCPY(buf, cmd->buf, cmd->evt_buf_sz);
if(ar6k_pal_config_g.fpar6k_pal_recv_pkt)
{
/* pass the cmd packet to PAL driver */
if((*ar6k_pal_config_g.fpar6k_pal_recv_pkt)(arPriv->hcipal_info, osbuf) == TRUE)
return;
}
ar6000_deliver_frames_to_nw_stack(arPriv->arNetDev, osbuf);
if(loghci) {
A_PRINTF_LOG("HCI Event From PAL <-- \n");
for(i = 0; i < cmd->evt_buf_sz; i++) {
A_PRINTF_LOG("0x%02x ", cmd->buf[i]);
if((i % 10) == 0) {
A_PRINTF_LOG("\n");
}
}
A_PRINTF_LOG("\n");
A_PRINTF_LOG("==================================\n");
}
}
void
ar6000_neighborReport_event(AR_SOFTC_DEV_T *arPriv, int numAps, WMI_NEIGHBOR_INFO *info)
{
#if WIRELESS_EXT >= 18
struct iw_pmkid_cand *pmkcand;
#else /* WIRELESS_EXT >= 18 */
static const char *tag = "PRE-AUTH";
char buf[128];
#endif /* WIRELESS_EXT >= 18 */
union iwreq_data wrqu;
int i;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 Neighbor Report Event\n"));
for (i=0; i < numAps; info++, i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",
info->bssid[0], info->bssid[1], info->bssid[2],
info->bssid[3], info->bssid[4], info->bssid[5]));
if (info->bssFlags & WMI_PREAUTH_CAPABLE_BSS) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("preauth-cap"));
}
if (info->bssFlags & WMI_PMKID_VALID_BSS) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" pmkid-valid\n"));
continue; /* we skip bss if the pmkid is already valid */
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\n"));
A_MEMZERO(&wrqu, sizeof(wrqu));
#if WIRELESS_EXT >= 18
pmkcand = A_MALLOC_NOWAIT(sizeof(struct iw_pmkid_cand));
A_MEMZERO(pmkcand, sizeof(struct iw_pmkid_cand));
pmkcand->index = i;
pmkcand->flags = info->bssFlags;
A_MEMCPY(pmkcand->bssid.sa_data, info->bssid, ATH_MAC_LEN);
wrqu.data.length = sizeof(struct iw_pmkid_cand);
wireless_send_event(arPriv->arNetDev, IWEVPMKIDCAND, &wrqu, (char *)pmkcand);
A_FREE(pmkcand);
#else /* WIRELESS_EXT >= 18 */
snprintf(buf, sizeof(buf), "%s%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x",
tag,
info->bssid[0], info->bssid[1], info->bssid[2],
info->bssid[3], info->bssid[4], info->bssid[5],
i, info->bssFlags);
wrqu.data.length = strlen(buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
#endif /* WIRELESS_EXT >= 18 */
}
}
void
ar6000_indicate_proberesp(AR_SOFTC_DEV_T *arPriv , A_UINT8* pData , A_UINT16 len ,A_UINT8* bssid)
{
}
void
ar6000_indicate_beacon(AR_SOFTC_DEV_T *arPriv, A_UINT8* pData , A_UINT16 len ,A_UINT8* bssid)
{
}
void
ar6000_assoc_req_report_event (void *context, A_UINT8 status, A_UINT8 rspType, A_UINT8* pData, int len)
{
}
#ifdef ATH_SUPPORT_DFS
void ar6000_dfs_attach_event(AR_SOFTC_DEV_T *arPriv, WMI_DFS_HOST_ATTACH_EVENT *capinfo)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
arAp->pDfs = dfs_attach_host(arPriv, NULL, capinfo);
if(arAp->pDfs)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\nDFS host attached\n"));
}
else
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\nDFS host ptr NULL\n"));
}
}
void ar6000_dfs_init_event(AR_SOFTC_DEV_T *arPriv, WMI_DFS_HOST_INIT_EVENT *info)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_init_radar_filters_host(arAp->pDfs, info);
}
void ar6000_dfs_phyerr_event(AR_SOFTC_DEV_T *arPriv, WMI_DFS_PHYERR_EVENT *info)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_process_phyerr_host(arAp->pDfs, info);
}
void ar6000_dfs_reset_delaylines_event(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_reset_alldelaylines(arAp->pDfs);
}
void ar6000_dfs_reset_radarq_event(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_reset_radarq(arAp->pDfs);
}
void ar6000_dfs_reset_ar_event(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_reset_ar(arAp->pDfs);
}
void ar6000_dfs_reset_arq_event(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_reset_arq(arAp->pDfs);
}
void ar6000_dfs_set_dur_multiplier_event(AR_SOFTC_DEV_T *arPriv, A_UINT32 value)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_set_dur_multiplier(arAp->pDfs, value);
}
void ar6000_dfs_set_bangradar_event(AR_SOFTC_DEV_T *arPriv, A_UINT32 value)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_bangradar_enable(arAp->pDfs, value);
}
void ar6000_dfs_set_debuglevel_event(AR_SOFTC_DEV_T *arPriv, A_UINT32 value)
{
AR_SOFTC_AP_T *arAp=&arPriv->arAp;
dfs_set_debug_level_host(arAp->pDfs, value);
}
A_STATUS ar6000_dfs_set_maxpulsedur_cmd(AR_SOFTC_DEV_T *arPriv, A_UINT32 value)
{
return wmi_set_dfs_maxpulsedur_cmd(arPriv->arWmi, value);
}
A_STATUS ar6000_dfs_radar_detected_cmd(AR_SOFTC_DEV_T *arPriv, A_INT16 chan_index, A_INT8 bang_radar)
{
return wmi_radarDetected_cmd(arPriv->arWmi, chan_index, bang_radar);
}
A_STATUS ar6000_dfs_set_minrssithresh_cmd(AR_SOFTC_DEV_T *arPriv, A_INT32 rssi)
{
return wmi_set_dfs_minrssithresh_cmd(arPriv->arWmi, rssi);
}
#endif /* ATH_SUPPORT_DFS */
void
ar6000_tkip_micerr_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 keyid, A_BOOL ismcast)
{
static const char *tag = "MLME-MICHAELMICFAILURE.indication";
char buf[128];
union iwreq_data wrqu;
/*
* For AP case, keyid will have aid of STA which sent pkt with
* MIC error. Use this aid to get MAC & send it to hostapd.
*/
if (arPriv->arNetworkType == AP_NETWORK) {
conn_t *s = ieee80211_find_conn_for_aid(arPriv, (keyid >> 2));
if(!s){
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AP TKIP MIC error received from Invalid aid / STA not found =%d\n", keyid));
return;
}
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AP TKIP MIC error received from aid=%d\n", keyid));
snprintf(buf,sizeof(buf), "%s addr=%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x",
tag, s->mac[0],s->mac[1],s->mac[2],s->mac[3],s->mac[4],s->mac[5]);
} else {
#ifdef ATH6K_CONFIG_CFG80211
ar6k_cfg80211_tkip_micerr_event(arPriv, keyid, ismcast);
#endif /* ATH6K_CONFIG_CFG80211 */
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6000 TKIP MIC error received for keyid %d %scast\n",
keyid & 0x3, ismcast ? "multi": "uni"));
snprintf(buf, sizeof(buf), "%s(keyid=%d %sicast)", tag, keyid & 0x3,
ismcast ? "mult" : "un");
}
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void
ar6000_scanComplete_event(AR_SOFTC_DEV_T *arPriv, A_STATUS status)
{
#ifdef ATH6K_CONFIG_CFG80211
ar6k_cfg80211_scanComplete_event(arPriv, status);
#endif /* ATH6K_CONFIG_CFG80211 */
if ((arPriv->arSoftc->arWmiReady) && (arPriv->arWmiEnabled) && (arPriv->arSoftc->arWlanState==WLAN_ENABLED)) {
if (!arPriv->arSta.arUserBssFilter) {
wmi_bssfilter_cmd(arPriv->arWmi, NONE_BSS_FILTER, 0);
}
}
if (arPriv->arSta.scan_triggered) {
union iwreq_data wrqu;
A_MEMZERO(&wrqu, sizeof(wrqu));
wireless_send_event(arPriv->arNetDev, SIOCGIWSCAN, &wrqu, NULL);
arPriv->arSta.scan_triggered = 0;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,( "AR6000 scan complete: %d\n", status));
wake_up_interruptible(&scan_complete);
}
void
ar6000_targetStats_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *ptr, A_UINT32 len)
{
A_UINT8 ac, i;
if(arPriv->arNetworkType == AP_NETWORK) {
WMI_AP_MODE_STAT *p = (WMI_AP_MODE_STAT *)ptr;
WMI_PER_STA_STAT *ap = arPriv->arSoftc->arAPStats;
if (len < sizeof(*p)) {
return;
}
for(ac=0;ac<AP_MAX_NUM_STA;ac++) {
if(p->sta[ac].aid == 0) {
continue;
}
i = p->sta[ac].aid-1;
ap[i].tx_bytes += p->sta[ac].tx_bytes;
ap[i].tx_pkts += p->sta[ac].tx_pkts;
ap[i].tx_error += p->sta[ac].tx_error;
ap[i].tx_discard += p->sta[ac].tx_discard;
ap[i].rx_bytes += p->sta[ac].rx_bytes;
ap[i].rx_pkts += p->sta[ac].rx_pkts;
ap[i].rx_error += p->sta[ac].rx_error;
ap[i].rx_discard += p->sta[ac].rx_discard;
}
} else {
WMI_TARGET_STATS *pTarget = (WMI_TARGET_STATS *)ptr;
TARGET_STATS *pStats = &arPriv->arTargetStats;
if (len < sizeof(*pTarget)) {
return;
}
// Update the RSSI of the connected bss.
if (arPriv->arConnected) {
bss_t *pConnBss = NULL;
wmi_scan_report_lock(arPriv->arWmi);
pConnBss = wmi_find_node(arPriv->arWmi,arPriv->arBssid);
if (pConnBss)
{
pConnBss->ni_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
pConnBss->ni_snr = pTarget->cservStats.cs_aveBeacon_snr;
wmi_node_return(arPriv->arWmi, pConnBss);
}
wmi_scan_report_unlock(arPriv->arWmi);
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 updating target stats\n"));
pStats->tx_packets += pTarget->txrxStats.tx_stats.tx_packets;
pStats->tx_bytes += pTarget->txrxStats.tx_stats.tx_bytes;
pStats->tx_unicast_pkts += pTarget->txrxStats.tx_stats.tx_unicast_pkts;
pStats->tx_unicast_bytes += pTarget->txrxStats.tx_stats.tx_unicast_bytes;
pStats->tx_multicast_pkts += pTarget->txrxStats.tx_stats.tx_multicast_pkts;
pStats->tx_multicast_bytes += pTarget->txrxStats.tx_stats.tx_multicast_bytes;
pStats->tx_broadcast_pkts += pTarget->txrxStats.tx_stats.tx_broadcast_pkts;
pStats->tx_broadcast_bytes += pTarget->txrxStats.tx_stats.tx_broadcast_bytes;
pStats->tx_rts_success_cnt += pTarget->txrxStats.tx_stats.tx_rts_success_cnt;
for(ac = 0; ac < WMM_NUM_AC; ac++)
pStats->tx_packet_per_ac[ac] += pTarget->txrxStats.tx_stats.tx_packet_per_ac[ac];
pStats->tx_errors += pTarget->txrxStats.tx_stats.tx_errors;
pStats->tx_failed_cnt += pTarget->txrxStats.tx_stats.tx_failed_cnt;
pStats->tx_retry_cnt += pTarget->txrxStats.tx_stats.tx_retry_cnt;
pStats->tx_mult_retry_cnt += pTarget->txrxStats.tx_stats.tx_mult_retry_cnt;
pStats->tx_rts_fail_cnt += pTarget->txrxStats.tx_stats.tx_rts_fail_cnt;
pStats->tx_unicast_rate = wmi_get_rate(pTarget->txrxStats.tx_stats.tx_unicast_rate);
pStats->rx_packets += pTarget->txrxStats.rx_stats.rx_packets;
pStats->rx_bytes += pTarget->txrxStats.rx_stats.rx_bytes;
pStats->rx_unicast_pkts += pTarget->txrxStats.rx_stats.rx_unicast_pkts;
pStats->rx_unicast_bytes += pTarget->txrxStats.rx_stats.rx_unicast_bytes;
pStats->rx_multicast_pkts += pTarget->txrxStats.rx_stats.rx_multicast_pkts;
pStats->rx_multicast_bytes += pTarget->txrxStats.rx_stats.rx_multicast_bytes;
pStats->rx_broadcast_pkts += pTarget->txrxStats.rx_stats.rx_broadcast_pkts;
pStats->rx_broadcast_bytes += pTarget->txrxStats.rx_stats.rx_broadcast_bytes;
pStats->rx_fragment_pkt += pTarget->txrxStats.rx_stats.rx_fragment_pkt;
pStats->rx_errors += pTarget->txrxStats.rx_stats.rx_errors;
pStats->rx_crcerr += pTarget->txrxStats.rx_stats.rx_crcerr;
pStats->rx_key_cache_miss += pTarget->txrxStats.rx_stats.rx_key_cache_miss;
pStats->rx_decrypt_err += pTarget->txrxStats.rx_stats.rx_decrypt_err;
pStats->rx_duplicate_frames += pTarget->txrxStats.rx_stats.rx_duplicate_frames;
pStats->rx_unicast_rate = wmi_get_rate(pTarget->txrxStats.rx_stats.rx_unicast_rate);
pStats->tkip_local_mic_failure
+= pTarget->txrxStats.tkipCcmpStats.tkip_local_mic_failure;
pStats->tkip_counter_measures_invoked
+= pTarget->txrxStats.tkipCcmpStats.tkip_counter_measures_invoked;
pStats->tkip_replays += pTarget->txrxStats.tkipCcmpStats.tkip_replays;
pStats->tkip_format_errors += pTarget->txrxStats.tkipCcmpStats.tkip_format_errors;
pStats->ccmp_format_errors += pTarget->txrxStats.tkipCcmpStats.ccmp_format_errors;
pStats->ccmp_replays += pTarget->txrxStats.tkipCcmpStats.ccmp_replays;
pStats->power_save_failure_cnt += pTarget->pmStats.power_save_failure_cnt;
pStats->noise_floor_calibation = pTarget->noise_floor_calibation;
pStats->cs_bmiss_cnt += pTarget->cservStats.cs_bmiss_cnt;
pStats->cs_lowRssi_cnt += pTarget->cservStats.cs_lowRssi_cnt;
pStats->cs_connect_cnt += pTarget->cservStats.cs_connect_cnt;
pStats->cs_disconnect_cnt += pTarget->cservStats.cs_disconnect_cnt;
pStats->cs_aveBeacon_snr = pTarget->cservStats.cs_aveBeacon_snr;
pStats->cs_aveBeacon_rssi = pTarget->cservStats.cs_aveBeacon_rssi;
if (enablerssicompensation) {
pStats->cs_aveBeacon_rssi =
rssi_compensation_calc(arPriv, pStats->cs_aveBeacon_rssi);
}
pStats->cs_lastRoam_msec = pTarget->cservStats.cs_lastRoam_msec;
pStats->cs_snr = pTarget->cservStats.cs_snr;
pStats->cs_rssi = pTarget->cservStats.cs_rssi;
pStats->lq_val = pTarget->lqVal;
pStats->wow_num_pkts_dropped += pTarget->wowStats.wow_num_pkts_dropped;
pStats->wow_num_host_pkt_wakeups += pTarget->wowStats.wow_num_host_pkt_wakeups;
pStats->wow_num_host_event_wakeups += pTarget->wowStats.wow_num_host_event_wakeups;
pStats->wow_num_events_discarded += pTarget->wowStats.wow_num_events_discarded;
pStats->arp_received += pTarget->arpStats.arp_received;
pStats->arp_matched += pTarget->arpStats.arp_matched;
pStats->arp_replied += pTarget->arpStats.arp_replied;
if (arPriv->statsUpdatePending) {
arPriv->statsUpdatePending = FALSE;
wake_up(&arPriv->arEvent);
}
}
}
void
ar6000_rssiThreshold_event(AR_SOFTC_DEV_T *arPriv, WMI_RSSI_THRESHOLD_VAL newThreshold, A_INT16 rssi)
{
USER_RSSI_THOLD userRssiThold;
rssi = rssi + SIGNAL_QUALITY_NOISE_FLOOR;
if (enablerssicompensation) {
rssi = rssi_compensation_calc(arPriv, rssi);
}
/* Send an event to the app */
userRssiThold.tag = arPriv->arSta.rssi_map[newThreshold].tag;
userRssiThold.rssi = rssi;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("rssi Threshold range = %d tag = %d rssi = %d\n", newThreshold,
userRssiThold.tag, userRssiThold.rssi));
ar6000_send_event_to_app(arPriv, WMI_RSSI_THRESHOLD_EVENTID,(A_UINT8 *)&userRssiThold, sizeof(USER_RSSI_THOLD));
}
void
ar6000_hbChallengeResp_event(AR_SOFTC_DEV_T *arPriv, A_UINT32 cookie, A_UINT32 source)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
if (source == APP_HB_CHALLENGE) {
/* Report it to the app in case it wants a positive acknowledgement */
ar6000_send_event_to_app(arPriv, WMIX_HB_CHALLENGE_RESP_EVENTID,
(A_UINT8 *)&cookie, sizeof(cookie));
} else {
/* This would ignore the replys that come in after their due time */
if (cookie == ar->arHBChallengeResp.seqNum) {
ar->arHBChallengeResp.outstanding = FALSE;
}
}
}
void
ar6000_reportError_event(AR_SOFTC_DEV_T *arPriv, WMI_TARGET_ERROR_VAL errorVal)
{
char *errString[] = {
[WMI_TARGET_PM_ERR_FAIL] "WMI_TARGET_PM_ERR_FAIL",
[WMI_TARGET_KEY_NOT_FOUND] "WMI_TARGET_KEY_NOT_FOUND",
[WMI_TARGET_DECRYPTION_ERR] "WMI_TARGET_DECRYPTION_ERR",
[WMI_TARGET_BMISS] "WMI_TARGET_BMISS",
[WMI_PSDISABLE_NODE_JOIN] "WMI_PSDISABLE_NODE_JOIN"
};
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6000 Error on Target. Error = 0x%x\n", errorVal));
/* One error is reported at a time, and errorval is a bitmask */
if(errorVal & (errorVal - 1))
return;
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("AR6000 Error type = "));
switch(errorVal)
{
case WMI_TARGET_PM_ERR_FAIL:
case WMI_TARGET_KEY_NOT_FOUND:
case WMI_TARGET_DECRYPTION_ERR:
case WMI_TARGET_BMISS:
case WMI_PSDISABLE_NODE_JOIN:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s\n", errString[errorVal]));
break;
default:
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("INVALID\n"));
break;
}
}
void
ar6000_cac_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 ac, A_UINT8 cacIndication,
A_UINT8 statusCode, A_UINT8 *tspecSuggestion)
{
WMM_TSPEC_IE *tspecIe;
/*
* This is the TSPEC IE suggestion from AP.
* Suggestion provided by AP under some error
* cases, could be helpful for the host app.
* Check documentation.
*/
tspecIe = (WMM_TSPEC_IE *)tspecSuggestion;
/*
* What do we do, if we get TSPEC rejection? One thought
* that comes to mind is implictly delete the pstream...
*/
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 CAC notification. "
"AC = %d, cacIndication = 0x%x, statusCode = 0x%x\n",
ac, cacIndication, statusCode));
}
void
ar6000_channel_change_event(AR_SOFTC_DEV_T *arPriv, A_UINT16 oldChannel,
A_UINT16 newChannel)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Channel Change notification\nOld Channel: %d, New Channel: %d\n",
oldChannel, newChannel));
}
#define AR6000_PRINT_BSSID(_pBss) do { \
A_PRINTF("%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ",\
(_pBss)[0],(_pBss)[1],(_pBss)[2],(_pBss)[3],\
(_pBss)[4],(_pBss)[5]); \
} while(0)
void
ar6000_roam_tbl_event(AR_SOFTC_DEV_T *arPriv, WMI_TARGET_ROAM_TBL *pTbl)
{
A_UINT8 i;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("ROAM TABLE NO OF ENTRIES is %d ROAM MODE is %d\n",
pTbl->numEntries, pTbl->roamMode));
for (i= 0; i < pTbl->numEntries; i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("[%d]bssid %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x ", i,
pTbl->bssRoamInfo[i].bssid[0], pTbl->bssRoamInfo[i].bssid[1],
pTbl->bssRoamInfo[i].bssid[2],
pTbl->bssRoamInfo[i].bssid[3],
pTbl->bssRoamInfo[i].bssid[4],
pTbl->bssRoamInfo[i].bssid[5]));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("RSSI %d RSSIDT %d LAST RSSI %d UTIL %d ROAM_UTIL %d"
" BIAS %d\n",
pTbl->bssRoamInfo[i].rssi,
pTbl->bssRoamInfo[i].rssidt,
pTbl->bssRoamInfo[i].last_rssi,
pTbl->bssRoamInfo[i].util,
pTbl->bssRoamInfo[i].roam_util,
pTbl->bssRoamInfo[i].bias));
}
}
void
ar6000_wow_list_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 num_filters, WMI_GET_WOW_LIST_REPLY *wow_reply)
{
A_UINT8 i,j;
/*Each event now contains exactly one filter, see bug 26613*/
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("WOW pattern %d of %d patterns\n", wow_reply->this_filter_num, wow_reply->num_filters));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("wow mode = %s host mode = %s\n",
(wow_reply->wow_mode == 0? "disabled":"enabled"),
(wow_reply->host_mode == 1 ? "awake":"asleep")));
/*If there are no patterns, the reply will only contain generic
WoW information. Pattern information will exist only if there are
patterns present. Bug 26716*/
/* If this event contains pattern information, display it*/
if (wow_reply->this_filter_num) {
i=0;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("id=%d size=%d offset=%d\n",
wow_reply->wow_filters[i].wow_filter_id,
wow_reply->wow_filters[i].wow_filter_size,
wow_reply->wow_filters[i].wow_filter_offset));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("wow pattern = "));
for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%2.2x",wow_reply->wow_filters[i].wow_filter_pattern[j]));
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\nwow mask = "));
for (j=0; j< wow_reply->wow_filters[i].wow_filter_size; j++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%2.2x",wow_reply->wow_filters[i].wow_filter_mask[j]));
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\n"));
}
}
/*
* Report the Roaming related data collected on the target
*/
void
ar6000_display_roam_time(WMI_TARGET_ROAM_TIME *p)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Disconnect Data : BSSID: "));
AR6000_PRINT_BSSID(p->disassoc_bssid);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" RSSI %d DISASSOC Time %d NO_TXRX_TIME %d\n",
p->disassoc_bss_rssi,p->disassoc_time,
p->no_txrx_time));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Connect Data: BSSID: "));
AR6000_PRINT_BSSID(p->assoc_bssid);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,(" RSSI %d ASSOC Time %d TXRX_TIME %d\n",
p->assoc_bss_rssi,p->assoc_time,
p->allow_txrx_time));
}
void
ar6000_roam_data_event(AR_SOFTC_DEV_T *arPriv, WMI_TARGET_ROAM_DATA *p)
{
switch (p->roamDataType) {
case ROAM_DATA_TIME:
ar6000_display_roam_time(&p->u.roamTime);
break;
default:
break;
}
}
void
ar6000_bssInfo_event_rx(AR_SOFTC_DEV_T *arPriv, A_UINT8 *datap, int len)
{
struct sk_buff *skb;
WMI_BSS_INFO_HDR *bih = (WMI_BSS_INFO_HDR *)datap;
if (!arPriv->arSta.arMgmtFilter) {
return;
}
if (((arPriv->arSta.arMgmtFilter & IEEE80211_FILTER_TYPE_BEACON) &&
(bih->frameType != BEACON_FTYPE)) ||
((arPriv->arSta.arMgmtFilter & IEEE80211_FILTER_TYPE_PROBE_RESP) &&
(bih->frameType != PROBERESP_FTYPE)))
{
return;
}
if ((skb = A_NETBUF_ALLOC_RAW(len)) != NULL) {
A_NETBUF_PUT(skb, len);
A_MEMCPY(A_NETBUF_DATA(skb), datap, len);
skb->dev = arPriv->arNetDev;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
A_MEMCPY(skb_mac_header(skb), A_NETBUF_DATA(skb), 6);
#else
skb->mac.raw = A_NETBUF_DATA(skb);
#endif
skb->ip_summed = CHECKSUM_NONE;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = __constant_htons(0x0019);
A_NETIF_RX(skb);
}
}
A_UINT32 wmiSendCmdNum;
A_STATUS
ar6000_control_tx(void *devt, void *osbuf, HTC_ENDPOINT_ID eid)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
AR_SOFTC_T *ar = arPriv->arSoftc;
A_STATUS status = A_OK;
struct ar_cookie *cookie = NULL;
int i;
#ifdef CONFIG_PM
if (ar->arWowState == WLAN_WOW_STATE_SUSPENDED) {
return A_EACCES;
}
#endif /* CONFIG_PM */
/* take lock to protect ar6000_alloc_cookie() */
AR6000_SPIN_LOCK(&ar->arLock, 0);
do {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_TX,("ar_contrstatus = ol_tx: skb=0x%x, len=0x%x eid =%d\n",
(A_UINT32)osbuf, A_NETBUF_LEN(osbuf), eid));
if (ar->arWMIControlEpFull && (eid == ar->arControlEp)) {
/* control endpoint is full, don't allocate resources, we
* are just going to drop this packet */
cookie = NULL;
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,(" WMI Control EP full, dropping packet : 0x%X, len:%d \n",
(A_UINT32)osbuf, A_NETBUF_LEN(osbuf)));
#ifdef ANDROID_ENV
if (++android_epfull_cnt > ANDROID_RELOAD_THRESHOLD_FOR_EP_FULL) {
android_send_reload_event(arPriv);
android_epfull_cnt = 0;
}
#endif
} else {
cookie = ar6000_alloc_cookie(ar);
}
if (cookie == NULL) {
status = A_NO_MEMORY;
break;
}
if(logWmiRawMsgs) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("WMI cmd send, msgNo %d :", wmiSendCmdNum));
for(i = 0; i < a_netbuf_to_len(osbuf); i++)
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%x ", ((A_UINT8 *)a_netbuf_to_data(osbuf))[i]));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\n"));
}
wmiSendCmdNum++;
} while (FALSE);
if (cookie != NULL) {
/* got a structure to send it out on */
ar->arTxPending[eid]++;
if (eid != ar->arControlEp) {
ar->arTotalTxDataPending++;
}
/* Increment number of cookies allocated for control packets */
ar->arControlCookieCount++;
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (cookie != NULL) {
cookie->arc_bp[0] = (A_UINT32)osbuf;
cookie->arc_bp[1] = 0;
SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
cookie,
A_NETBUF_DATA(osbuf),
A_NETBUF_LEN(osbuf),
eid,
AR6K_CONTROL_PKT_TAG);
/* this interface is asynchronous, if there is an error, cleanup will happen in the
* TX completion callback */
HTCSendPkt(ar->arHtcTarget, &cookie->HtcPkt);
status = A_OK;
}
return status;
}
/* indicate tx activity or inactivity on a WMI stream */
void ar6000_indicate_tx_activity(void *devt, A_UINT8 TrafficClass, A_BOOL Active)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
AR_SOFTC_T *ar = arPriv->arSoftc;
HTC_ENDPOINT_ID eid ;
int i;
if (ar->arWmiReady) {
eid = arAc2EndpointID(ar, TrafficClass);
AR6000_SPIN_LOCK(&ar->arLock, 0);
ar->arAcStreamActive[TrafficClass] = Active;
if (Active) {
/* when a stream goes active, keep track of the active stream with the highest priority */
if (ar->arAcStreamPriMap[TrafficClass] > ar->arHiAcStreamActivePri) {
/* set the new highest active priority */
ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[TrafficClass];
}
} else {
/* when a stream goes inactive, we may have to search for the next active stream
* that is the highest priority */
if (ar->arHiAcStreamActivePri == ar->arAcStreamPriMap[TrafficClass]) {
/* the highest priority stream just went inactive */
/* reset and search for the "next" highest "active" priority stream */
ar->arHiAcStreamActivePri = 0;
for (i = 0; i < WMM_NUM_AC; i++) {
if (ar->arAcStreamActive[i]) {
if (ar->arAcStreamPriMap[i] > ar->arHiAcStreamActivePri) {
/* set the new highest active priority */
ar->arHiAcStreamActivePri = ar->arAcStreamPriMap[i];
}
}
}
}
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
} else {
/* for mbox ping testing, the traffic class is mapped directly as a stream ID,
* see handling of AR6000_XIOCTL_TRAFFIC_ACTIVITY_CHANGE in ioctl.c
* convert the stream ID to a endpoint */
eid = arAc2EndpointID(ar, TrafficClass);
}
/* notify HTC, this may cause credit distribution changes */
HTCIndicateActivityChange(ar->arHtcTarget,
eid,
Active);
}
void
ar6000_btcoex_config_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *ptr, A_UINT32 len)
{
WMI_BTCOEX_CONFIG_EVENT *pBtcoexConfig = (WMI_BTCOEX_CONFIG_EVENT *)ptr;
WMI_BTCOEX_CONFIG_EVENT *pArbtcoexConfig =&arPriv->arBtcoexConfig;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("received config event\n"));
pArbtcoexConfig->btProfileType = pBtcoexConfig->btProfileType;
pArbtcoexConfig->linkId = pBtcoexConfig->linkId;
switch (pBtcoexConfig->btProfileType) {
case WMI_BTCOEX_BT_PROFILE_SCO:
A_MEMCPY(&pArbtcoexConfig->info.scoConfigCmd, &pBtcoexConfig->info.scoConfigCmd,
sizeof(WMI_SET_BTCOEX_SCO_CONFIG_CMD));
break;
case WMI_BTCOEX_BT_PROFILE_A2DP:
A_MEMCPY(&pArbtcoexConfig->info.a2dpConfigCmd, &pBtcoexConfig->info.a2dpConfigCmd,
sizeof(WMI_SET_BTCOEX_A2DP_CONFIG_CMD));
break;
case WMI_BTCOEX_BT_PROFILE_ACLCOEX:
A_MEMCPY(&pArbtcoexConfig->info.aclcoexConfig, &pBtcoexConfig->info.aclcoexConfig,
sizeof(WMI_SET_BTCOEX_ACLCOEX_CONFIG_CMD));
break;
case WMI_BTCOEX_BT_PROFILE_INQUIRY_PAGE:
A_MEMCPY(&pArbtcoexConfig->info.btinquiryPageConfigCmd, &pBtcoexConfig->info.btinquiryPageConfigCmd,
sizeof(WMI_SET_BTCOEX_BTINQUIRY_PAGE_CONFIG_CMD));
break;
}
if (arPriv->statsUpdatePending) {
arPriv->statsUpdatePending = FALSE;
wake_up(&arPriv->arEvent);
}
}
void
ar6000_btcoex_stats_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *ptr, A_UINT32 len)
{
WMI_BTCOEX_STATS_EVENT *pBtcoexStats = (WMI_BTCOEX_STATS_EVENT *)ptr;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("AR6000 BTCOEX CONFIG EVENT \n"));
A_MEMCPY(&arPriv->arBtcoexStats, pBtcoexStats, sizeof(WMI_BTCOEX_STATS_EVENT));
if (arPriv->statsUpdatePending) {
arPriv->statsUpdatePending = FALSE;
wake_up(&arPriv->arEvent);
}
}
void
ar6000_wacinfo_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *ptr, A_UINT32 len)
{
#ifdef WAC
WMI_GET_WAC_INFO *pWacInfo = (WMI_GET_WAC_INFO *)ptr;
A_MEMCPY(&arPriv->wacInfo, pWacInfo, sizeof(WMI_GET_WAC_INFO));
if (arPriv->statsUpdatePending) {
arPriv->statsUpdatePending = FALSE;
wake_up(&arPriv->arEvent);
}
#endif
}
static int __init
__ar6000_init_module(void)
{
int status = 0;
status = ar6000_init_module();
#ifdef CONFIG_PLAT_AMBARELLA
if (!status) {
ambarella_detect_sd_slot(ambarella_board_generic.wifi_sd_bus,
ambarella_board_generic.wifi_sd_slot, 1);
}
#endif
return status;
}
static void __exit
__ar6000_cleanup_module(void)
{
ar6000_cleanup_module();
#ifdef CONFIG_PLAT_AMBARELLA
ambarella_detect_sd_slot(ambarella_board_generic.wifi_sd_bus,
ambarella_board_generic.wifi_sd_slot, 0);
#endif
}
module_init(__ar6000_init_module);
module_exit(__ar6000_cleanup_module);
/* Init cookie queue */
static void
ar6000_cookie_init(AR_SOFTC_T *ar)
{
A_UINT32 i;
ar->arCookieList = NULL;
ar->arCookieCount = 0;
A_MEMZERO(s_ar_cookie_mem, sizeof(s_ar_cookie_mem));
for (i = 0; i < MAX_COOKIE_NUM; i++) {
ar6000_free_cookie(ar, &s_ar_cookie_mem[i]);
}
}
/* cleanup cookie queue */
static void
ar6000_cookie_cleanup(AR_SOFTC_T *ar)
{
/* It is gone .... */
ar->arCookieList = NULL;
ar->arCookieCount = 0;
ar->arControlCookieCount = 0;
}
/* Init cookie queue */
static void
ar6000_free_cookie(AR_SOFTC_T *ar, struct ar_cookie * cookie)
{
/* Insert first */
A_ASSERT(ar != NULL);
A_ASSERT(cookie != NULL);
cookie->arc_list_next = ar->arCookieList;
ar->arCookieList = cookie;
ar->arCookieCount++;
}
/* cleanup cookie queue */
static struct ar_cookie *
ar6000_alloc_cookie(AR_SOFTC_T *ar)
{
struct ar_cookie *cookie;
cookie = ar->arCookieList;
if(cookie != NULL)
{
ar->arCookieList = cookie->arc_list_next;
ar->arCookieCount--;
}
return cookie;
}
#ifdef SEND_EVENT_TO_APP
/*
* This function is used to send event which come from taget to
* the application. The buf which send to application is include
* the event ID and event content.
*/
#define EVENT_ID_LEN 2
void ar6000_send_event_to_app(AR_SOFTC_DEV_T *arPriv, A_UINT16 eventId,
A_UINT8 *datap, int len)
{
#if (WIRELESS_EXT >= 15)
/* note: IWEVCUSTOM only exists in wireless extensions after version 15 */
char *buf;
A_UINT16 size;
union iwreq_data wrqu;
size = len + EVENT_ID_LEN;
if (size > IW_CUSTOM_MAX) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI event ID : 0x%4.4X, len = %d too big for IWEVCUSTOM (max=%d) \n",
eventId, size, IW_CUSTOM_MAX));
return;
}
/*Dont send DISCONNECT event to APP for host drv intiated Disconnect cmd*/
if((eventId == WMI_DISCONNECT_EVENTID) && arPriv->arSta.arHostDisconnect ) {
arPriv->arSta.arHostDisconnect = 0;
}
buf = A_MALLOC_NOWAIT(size);
if (NULL == buf){
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: failed to allocate %d bytes\n", __func__, size));
return;
}
A_MEMZERO(buf, size);
A_MEMCPY(buf, &eventId, EVENT_ID_LEN);
A_MEMCPY(buf+EVENT_ID_LEN, datap, len);
//AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("event ID = %d,len = %d\n",*(A_UINT16*)buf, size));
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = size;
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
A_FREE(buf);
#ifdef ANDROID_ENV
if (eventId == WMI_ERROR_REPORT_EVENTID) {
android_send_reload_event(arPriv);
}
#endif /* ANDROID_ENV */
#endif
}
/*
* This function is used to send events larger than 256 bytes
* to the application. The buf which is sent to application
* includes the event ID and event content.
*/
void ar6000_send_generic_event_to_app(AR_SOFTC_DEV_T *arPriv, A_UINT16 eventId,
A_UINT8 *datap, int len)
{
#if (WIRELESS_EXT >= 18)
/* IWEVGENIE exists in wireless extensions version 18 onwards */
char *buf;
A_UINT16 size;
union iwreq_data wrqu;
size = len + EVENT_ID_LEN;
if (size > IW_GENERIC_IE_MAX) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("WMI event ID : 0x%4.4X, len = %d too big for IWEVGENIE (max=%d) \n",
eventId, size, IW_GENERIC_IE_MAX));
return;
}
buf = A_MALLOC_NOWAIT(size);
if (NULL == buf){
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("%s: failed to allocate %d bytes\n", __func__, size));
return;
}
A_MEMZERO(buf, size);
A_MEMCPY(buf, &eventId, EVENT_ID_LEN);
A_MEMCPY(buf+EVENT_ID_LEN, datap, len);
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = size;
wireless_send_event(arPriv->arNetDev, IWEVGENIE, &wrqu, buf);
A_FREE(buf);
#endif /* (WIRELESS_EXT >= 18) */
}
#endif /* SEND_EVENT_TO_APP */
void
ar6000_tx_retry_err_event(void *devt)
{
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Tx retries reach maximum!\n"));
}
void
ar6000_snrThresholdEvent_rx(void *devt, WMI_SNR_THRESHOLD_VAL newThreshold, A_UINT8 snr)
{
WMI_SNR_THRESHOLD_EVENT event;
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
event.range = newThreshold;
event.snr = snr;
ar6000_send_event_to_app(arPriv, WMI_SNR_THRESHOLD_EVENTID, (A_UINT8 *)&event,
sizeof(WMI_SNR_THRESHOLD_EVENT));
}
void
ar6000_lqThresholdEvent_rx(void *devt, WMI_LQ_THRESHOLD_VAL newThreshold, A_UINT8 lq)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("lq threshold range %d, lq %d\n", newThreshold, lq));
}
A_UINT32
a_copy_to_user(void *to, const void *from, A_UINT32 n)
{
return(copy_to_user(to, from, n));
}
A_UINT32
a_copy_from_user(void *to, const void *from, A_UINT32 n)
{
return(copy_from_user(to, from, n));
}
A_STATUS
ar6000_get_driver_cfg(struct net_device *dev,
A_UINT16 cfgParam,
void *result)
{
A_STATUS ret = A_OK;
switch(cfgParam)
{
case AR6000_DRIVER_CFG_GET_WLANNODECACHING:
*((A_UINT32 *)result) = wlanNodeCaching;
break;
case AR6000_DRIVER_CFG_LOG_RAW_WMI_MSGS:
*((A_UINT32 *)result) = logWmiRawMsgs;
break;
default:
ret = A_EINVAL;
break;
}
return ret;
}
void
ar6000_keepalive_rx(void *devt, A_UINT8 configured)
{
AR_SOFTC_DEV_T *arPriv = (AR_SOFTC_DEV_T *)devt;
arPriv->arSta.arKeepaliveConfigured = configured;
wake_up(&arPriv->arEvent);
}
void
ar6000_pmkid_list_event(void *devt, A_UINT8 numPMKID, WMI_PMKID *pmkidList,
A_UINT8 *bssidList)
{
A_UINT8 i, j;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Number of Cached PMKIDs is %d\n", numPMKID));
for (i = 0; i < numPMKID; i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\nBSSID %d ", i));
for (j = 0; j < ATH_MAC_LEN; j++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%2.2x", bssidList[j]));
}
bssidList += (ATH_MAC_LEN + WMI_PMKID_LEN);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("\nPMKID %d ", i));
for (j = 0; j < WMI_PMKID_LEN; j++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("%2.2x", pmkidList->pmkid[j]));
}
pmkidList = (WMI_PMKID *)((A_UINT8 *)pmkidList + ATH_MAC_LEN +
WMI_PMKID_LEN);
}
}
void ar6000_pspoll_event(AR_SOFTC_DEV_T *arPriv,A_UINT8 aid)
{
conn_t *conn=NULL;
A_BOOL isPsqEmpty = FALSE;
conn = ieee80211_find_conn_for_aid(arPriv, aid);
if(!conn) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("PS-POLL from invalid STA\n"));
return;
}
/* If the PS q for this STA is not empty, dequeue and send a pkt from
* the head of the q. Also update the More data bit in the WMI_DATA_HDR
* if there are more pkts for this STA in the PS q. If there are no more
* pkts for this STA, update the PVB for this STA.
*/
A_MUTEX_LOCK(&conn->psqLock);
isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
A_MUTEX_UNLOCK(&conn->psqLock);
if (isPsqEmpty) {
/* TODO:No buffered pkts for this STA. Send out a NULL data frame */
} else {
struct sk_buff *skb = NULL;
A_MUTEX_LOCK(&conn->psqLock);
skb = A_NETBUF_DEQUEUE(&conn->psq);
A_MUTEX_UNLOCK(&conn->psqLock);
/* Set the STA flag to PSPolled, so that the frame will go out */
STA_SET_PS_POLLED(conn);
ar6000_data_tx(skb, arPriv->arNetDev);
STA_CLR_PS_POLLED(conn);
A_MUTEX_LOCK(&conn->psqLock);
isPsqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->psq);
A_MUTEX_UNLOCK(&conn->psqLock);
}
/* Clear the PVB for this STA if the queue has become empty */
if (isPsqEmpty) {
wmi_set_pvb_cmd(arPriv->arWmi, conn->aid, 0);
}
}
void ar6000_dtimexpiry_event(AR_SOFTC_DEV_T *arPriv)
{
A_BOOL isMcastQueued = FALSE;
struct sk_buff *skb = NULL;
AR_SOFTC_AP_T *arAp = &arPriv->arAp;
/* If there are no associated STAs, ignore the DTIM expiry event.
* There can be potential race conditions where the last associated
* STA may disconnect & before the host could clear the 'Indicate DTIM'
* request to the firmware, the firmware would have just indicated a DTIM
* expiry event. The race is between 'clear DTIM expiry cmd' going
* from the host to the firmware & the DTIM expiry event happening from
* the firmware to the host.
*/
if (arAp->sta_list_index == 0) {
return;
}
A_MUTEX_LOCK(&arAp->mcastpsqLock);
isMcastQueued = A_NETBUF_QUEUE_EMPTY(&arAp->mcastpsq);
A_MUTEX_UNLOCK(&arAp->mcastpsqLock);
if(isMcastQueued == TRUE) {
return;
}
/* Flush the mcast psq to the target */
/* Set the STA flag to DTIMExpired, so that the frame will go out */
arAp->DTIMExpired = TRUE;
A_MUTEX_LOCK(&arAp->mcastpsqLock);
while (!A_NETBUF_QUEUE_EMPTY(&arAp->mcastpsq)) {
skb = A_NETBUF_DEQUEUE(&arAp->mcastpsq);
A_MUTEX_UNLOCK(&arAp->mcastpsqLock);
ar6000_data_tx(skb, arPriv->arNetDev);
A_MUTEX_LOCK(&arAp->mcastpsqLock);
}
A_MUTEX_UNLOCK(&arAp->mcastpsqLock);
/* Reset the DTIMExpired flag back to 0 */
arAp->DTIMExpired = FALSE;
/* Clear the LSB of the BitMapCtl field of the TIM IE */
wmi_set_pvb_cmd(arPriv->arWmi, MCAST_AID, 0);
}
static void ar6000_uapsd_trigger_frame_rx(AR_SOFTC_DEV_T *arPriv, conn_t *conn)
{
A_BOOL isApsdqEmpty;
A_BOOL isApsdqEmptyAtStart;
A_UINT32 numFramesToDeliver;
/* If the APSD q for this STA is not empty, dequeue and send a pkt from
* the head of the q. Also update the More data bit in the WMI_DATA_HDR
* if there are more pkts for this STA in the APSD q. If there are no more
* pkts for this STA, update the APSD bitmap for this STA.
*/
numFramesToDeliver = (conn->apsd_info >> 4) & 0xF;
/* Number of frames to send in a service period is indicated by the station
* in the QOS_INFO of the association request
* If it is zero, send all frames
*/
if (!numFramesToDeliver) {
numFramesToDeliver = 0xFFFF;
}
A_MUTEX_LOCK(&conn->psqLock);
isApsdqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->apsdq);
A_MUTEX_UNLOCK(&conn->psqLock);
isApsdqEmptyAtStart = isApsdqEmpty;
while ((!isApsdqEmpty) && (numFramesToDeliver)) {
struct sk_buff *skb = NULL;
A_MUTEX_LOCK(&conn->psqLock);
skb = A_NETBUF_DEQUEUE(&conn->apsdq);
isApsdqEmpty = A_NETBUF_QUEUE_EMPTY(&conn->apsdq);
A_MUTEX_UNLOCK(&conn->psqLock);
/* Set the STA flag to Trigger delivery, so that the frame will go out */
STA_SET_APSD_TRIGGER(conn);
numFramesToDeliver--;
/* Last frame in the service period, set EOSP or queue empty */
if ((isApsdqEmpty) || (!numFramesToDeliver)) {
STA_SET_APSD_EOSP(conn);
}
ar6000_data_tx(skb, arPriv->arNetDev);
STA_CLR_APSD_TRIGGER(conn);
STA_CLR_APSD_EOSP(conn);
}
if (isApsdqEmpty) {
if (isApsdqEmptyAtStart) {
wmi_set_apsd_buffered_traffic_cmd(arPriv->arWmi, conn->aid, 0,
WMI_AP_APSD_NO_DELIVERY_FRAMES_FOR_THIS_TRIGGER);
} else {
wmi_set_apsd_buffered_traffic_cmd(arPriv->arWmi, conn->aid, 0, 0);
}
}
return;
}
void
read_rssi_compensation_param(AR_SOFTC_T *ar)
{
A_UINT8 *cust_data_ptr;
USER_RSSI_CPENSATION *rssi_compensation_param;
//#define RSSICOMPENSATION_PRINT
#ifdef RSSICOMPENSATION_PRINT
A_INT16 i;
cust_data_ptr = ar6000_get_cust_data_buffer(ar->arTargetType);
for (i=0; i<16; i++) {
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("cust_data_%d = %x \n", i, *(A_UINT8 *)cust_data_ptr));
cust_data_ptr += 1;
}
#endif
rssi_compensation_param = &ar->rssi_compensation_param;
cust_data_ptr = ar6000_get_cust_data_buffer(ar->arTargetType);
rssi_compensation_param->customerID = *(A_UINT16 *)cust_data_ptr & 0xffff;
rssi_compensation_param->enable = *(A_UINT16 *)(cust_data_ptr+2) & 0xffff;
rssi_compensation_param->bg_param_a = *(A_UINT16 *)(cust_data_ptr+4) & 0xffff;
rssi_compensation_param->bg_param_b = *(A_UINT16 *)(cust_data_ptr+6) & 0xffff;
rssi_compensation_param->a_param_a = *(A_UINT16 *)(cust_data_ptr+8) & 0xffff;
rssi_compensation_param->a_param_b = *(A_UINT16 *)(cust_data_ptr+10) &0xffff;
rssi_compensation_param->reserved = *(A_UINT32 *)(cust_data_ptr+12);
#ifdef RSSICOMPENSATION_PRINT
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("customerID = 0x%x \n", rssi_compensation_param->customerID));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("enable = 0x%x \n", rssi_compensation_param->enable));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("bg_param_a = 0x%x and %d \n", rssi_compensation_param->bg_param_a, rssi_compensation_param->bg_param_a));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("bg_param_b = 0x%x and %d \n", rssi_compensation_param->bg_param_b, rssi_compensation_param->bg_param_b));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("a_param_a = 0x%x and %d \n", rssi_compensation_param->a_param_a, rssi_compensation_param->a_param_a));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("a_param_b = 0x%x and %d \n", rssi_compensation_param->a_param_b, rssi_compensation_param->a_param_b));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("Last 4 bytes = 0x%x \n", rssi_compensation_param->reserved));
#endif
if (rssi_compensation_param->enable != 0x1) {
rssi_compensation_param->enable = 0;
}
return;
}
A_INT32
rssi_compensation_calc_tcmd(AR_SOFTC_T *ar, A_UINT32 freq, A_INT32 rssi, A_UINT32 totalPkt)
{
USER_RSSI_CPENSATION *rssi_compensation_param;
rssi_compensation_param = &ar->rssi_compensation_param;
if (freq > 5000)
{
if (rssi_compensation_param->enable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt));
rssi = rssi * rssi_compensation_param->a_param_a + totalPkt * rssi_compensation_param->a_param_b;
rssi = (rssi-50) /100;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
}
}
else
{
if (rssi_compensation_param->enable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d, totalPkt = %d\n", rssi,totalPkt));
rssi = rssi * rssi_compensation_param->bg_param_a + totalPkt * rssi_compensation_param->bg_param_b;
rssi = (rssi-50) /100;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
}
}
return rssi;
}
A_INT16
rssi_compensation_calc(AR_SOFTC_DEV_T *arPriv, A_INT16 rssi)
{
USER_RSSI_CPENSATION *rssi_compensation_param;
AR_SOFTC_T *ar = arPriv->arSoftc;
rssi_compensation_param = &ar->rssi_compensation_param;
if (arPriv->arBssChannel > 5000)
{
if (rssi_compensation_param->enable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi));
rssi = rssi * rssi_compensation_param->a_param_a + rssi_compensation_param->a_param_b;
rssi = (rssi-50) /100;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
}
}
else
{
if (rssi_compensation_param->enable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before compensation = %d\n", rssi));
rssi = rssi * rssi_compensation_param->bg_param_a + rssi_compensation_param->bg_param_b;
rssi = (rssi-50) /100;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after compensation = %d\n", rssi));
}
}
return rssi;
}
A_INT16
rssi_compensation_reverse_calc(AR_SOFTC_DEV_T *arPriv, A_INT16 rssi, A_BOOL Above)
{
A_INT16 i;
USER_RSSI_CPENSATION *rssi_compensation_param;
AR_SOFTC_T *ar = arPriv->arSoftc;
rssi_compensation_param = &ar->rssi_compensation_param;
if (arPriv->arBssChannel > 5000)
{
if (rssi_compensation_param->enable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11a\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi));
rssi = rssi * 100;
rssi = (rssi - rssi_compensation_param->a_param_b) / rssi_compensation_param->a_param_a;
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi));
}
}
else
{
if (rssi_compensation_param->enable)
{
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, (">>> 11bg\n"));
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi before rev compensation = %d\n", rssi));
if (Above) {
for (i=95; i>=0; i--) {
if (rssi <= rssi_compensation_table[arPriv->arDeviceIndex][i]) {
rssi = 0 - i;
break;
}
}
} else {
for (i=0; i<=95; i++) {
if (rssi >= rssi_compensation_table[arPriv->arDeviceIndex][i]) {
rssi = 0 - i;
break;
}
}
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO, ("rssi after rev compensation = %d\n", rssi));
}
}
return rssi;
}
#ifdef WAPI_ENABLE
void ap_wapi_rekey_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 type, A_UINT8 *mac)
{
union iwreq_data wrqu;
A_CHAR buf[20];
A_MEMZERO(buf, sizeof(buf));
strcpy(buf, "WAPI_REKEY");
buf[10] = type;
A_MEMCPY(&buf[11], mac, ATH_MAC_LEN);
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = 10+1+ATH_MAC_LEN;
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("WAPI REKEY - %d - %02x:%02x\n", type, mac[4], mac[5]));
}
#endif
#ifdef P2P
void *get_p2p_ctx(AR_SOFTC_DEV_T *arPriv)
{
return (arPriv->p2p_ctx);
}
void *get_wmi_ctx(AR_SOFTC_DEV_T *arPriv)
{
return (arPriv->arWmi);
}
NETWORK_SUBTYPE get_network_subtype(AR_SOFTC_DEV_T *arPriv)
{
return (arPriv->arNetworkSubType);
}
#endif /* P2P */
#ifdef USER_KEYS
static A_STATUS
ar6000_reinstall_keys(AR_SOFTC_DEV_T *arPriv, A_UINT8 key_op_ctrl)
{
A_STATUS status = A_OK;
struct ieee80211req_key *uik = &arPriv->arSta.user_saved_keys.ucast_ik;
struct ieee80211req_key *bik = &arPriv->arSta.user_saved_keys.bcast_ik;
CRYPTO_TYPE keyType = arPriv->arSta.user_saved_keys.keyType;
if (IEEE80211_CIPHER_CCKM_KRK != uik->ik_type) {
if (NONE_CRYPT == keyType) {
goto _reinstall_keys_out;
}
if (uik->ik_keylen) {
status = wmi_addKey_cmd(arPriv->arWmi, uik->ik_keyix,
keyType, PAIRWISE_USAGE,
uik->ik_keylen, (A_UINT8 *)&uik->ik_keyrsc,
uik->ik_keydata, key_op_ctrl, uik->ik_macaddr, SYNC_BEFORE_WMIFLAG);
}
} else {
status = wmi_add_krk_cmd(arPriv->arWmi, uik->ik_keydata);
}
if (IEEE80211_CIPHER_CCKM_KRK != bik->ik_type) {
if (NONE_CRYPT == keyType) {
goto _reinstall_keys_out;
}
if (bik->ik_keylen) {
status = wmi_addKey_cmd(arPriv->arWmi, bik->ik_keyix,
keyType, GROUP_USAGE,
bik->ik_keylen, (A_UINT8 *)&bik->ik_keyrsc,
bik->ik_keydata, key_op_ctrl, bik->ik_macaddr, NO_SYNC_WMIFLAG);
}
} else {
status = wmi_add_krk_cmd(arPriv->arWmi, bik->ik_keydata);
}
_reinstall_keys_out:
arPriv->arSta.user_savedkeys_stat = USER_SAVEDKEYS_STAT_INIT;
arPriv->arSta.user_key_ctrl = 0;
return status;
}
#endif /* USER_KEYS */
void
ar6000_dset_open_req(
void *context,
A_UINT32 id,
A_UINT32 targHandle,
A_UINT32 targReplyFn,
A_UINT32 targReplyArg)
{
}
void
ar6000_dset_close(
void *context,
A_UINT32 access_cookie)
{
return;
}
void
ar6000_dset_data_req(
void *context,
A_UINT32 accessCookie,
A_UINT32 offset,
A_UINT32 length,
A_UINT32 targBuf,
A_UINT32 targReplyFn,
A_UINT32 targReplyArg)
{
}
void
ar6000_init_mode_info(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
arPriv->arDot11AuthMode = OPEN_AUTH;
arPriv->arAuthMode = WMI_NONE_AUTH;
arPriv->arPairwiseCrypto = NONE_CRYPT;
arPriv->arPairwiseCryptoLen = 0;
arPriv->arGroupCrypto = NONE_CRYPT;
arPriv->arGroupCryptoLen = 0;
arPriv->arChannelHint = 0;
arPriv->arDefTxKeyIndex = 0;
A_MEMZERO(arPriv->arBssid, sizeof(arPriv->arBssid));
A_MEMZERO(arPriv->arSsid, sizeof(arPriv->arSsid));
A_MEMZERO(arPriv->arWepKeyList, sizeof(arPriv->arWepKeyList));
arPriv->arSsidLen = 0;
arPriv->arTxPwr = 0;
arPriv->arTxPwrSet = FALSE;
arPriv->arBitRate = -1;
arPriv->arMaxRetries = 0;
arPriv->arWmmEnabled = TRUE;
arPriv->ap_profile_flag = 0;
arPriv->num_sta = 0xFF;
ar->gNumSta = AP_MAX_NUM_STA;
if(arPriv->arNextMode == AP_NETWORK) {
AR_SOFTC_AP_T *arAp;
if(arPriv->arNetworkType != AP_NETWORK) {
A_MEMZERO(&arPriv->arSta,sizeof(AR_SOFTC_STA_T));
}
arAp = &arPriv->arAp;
arAp->intra_bss = 1;
ar->inter_bss = 1;
/* init the Mutexes */
A_NETBUF_QUEUE_INIT(&arAp->mcastpsq);
A_MUTEX_INIT(&arAp->mcastpsqLock);
A_MEMCPY(arAp->ap_country_code, DEF_AP_COUNTRY_CODE, 3);
if (arPriv->arPhyCapability == WMI_11NAG_CAPABILITY){
arPriv->phymode = DEF_AP_WMODE_AG;
} else {
arPriv->phymode = DEF_AP_WMODE_G;
}
arAp->ap_dtim_period = DEF_AP_DTIM;
arAp->ap_beacon_interval = DEF_BEACON_INTERVAL;
A_INIT_TIMER(&ar->ap_reconnect_timer,ap_reconnect_timer_handler, ar);
} else {
/*Station Mode intialisation*/
AR_SOFTC_STA_T *arSta;
if(arPriv->arNetworkType == AP_NETWORK) {
A_MEMZERO(&arPriv->arAp,sizeof(AR_SOFTC_AP_T));
}
arSta = &arPriv->arSta;
arSta->arListenIntervalT = A_DEFAULT_LISTEN_INTERVAL;
arSta->arListenIntervalB = 0;
arSta->arBmissTimeT = A_DEFAULT_BMISS_TIME;
arSta->arBmissTimeB = 0;
arSta->arRssi = 0;
arSta->arSkipScan = 0;
arSta->arBeaconInterval = 0;
arSta->scan_triggered = 0;
arSta->arConnectPending = FALSE;
A_MEMZERO(&arSta->scParams, sizeof(arSta->scParams));
arSta->scParams.shortScanRatio = WMI_SHORTSCANRATIO_DEFAULT;
arSta->scParams.scanCtrlFlags = DEFAULT_SCAN_CTRL_FLAGS;
A_MEMZERO(arSta->arReqBssid, sizeof(arSta->arReqBssid));
if (!arSta->disconnect_timer_inited) {
A_INIT_TIMER(&arSta->disconnect_timer, disconnect_timer_handler, arPriv->arNetDev);
arSta->disconnect_timer_inited = 1;
}
else
{
A_UNTIMEOUT(&arSta->disconnect_timer);
}
}
}
int
ar6000_ap_set_num_sta(AR_SOFTC_T *ar, AR_SOFTC_DEV_T *arPriv, A_UINT8 num_sta)
{
int ret = A_OK;
A_UINT8 i, total_num_sta;
AR_SOFTC_DEV_T *tpriv = NULL;
if(num_sta & 0x80) {
total_num_sta = (num_sta & (~0x80));
for(i=0; i<num_device; i++) {
tpriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
tpriv->num_sta = 0xFF;
}
} else {
total_num_sta = num_sta;
arPriv->num_sta = num_sta;
ar->gNumSta = 0xFF;
for(i=0; i<num_device; i++) {
tpriv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
if((tpriv != arPriv) && (tpriv->num_sta !=0xFF) &&
(tpriv->arNetworkType == AP_NETWORK)) {
total_num_sta += tpriv->num_sta;
}
}
}
if(total_num_sta > AP_MAX_NUM_STA) {
ret = -EINVAL;
} else {
if(num_sta & 0x80) {
ar->gNumSta = (num_sta & (~0x80));
} else {
arPriv->num_sta = num_sta;
}
wmi_ap_set_num_sta(arPriv->arWmi, num_sta);
}
return ret;
}
int
ar6000_ap_handle_lte_freq(AR_SOFTC_T *ar, AR_SOFTC_DEV_T *arPriv, A_UINT16 lteFreq)
{
A_UINT8 i = 0, prev_acs = 0;
AR_SOFTC_DEV_T *arTempPriv = NULL;
for(i = 0;i < ar->arConfNumDev;i++) {
arTempPriv = ar->arDev[i];
if ((arTempPriv->arNetworkType == INFRA_NETWORK)) {
A_PRINTF("WLAN: Ignore LTE freq in STA mode\n");
return 0;
}
}
A_PRINTF("WLAN: LTE_FREQ: %d\n", lteFreq);
ar->lteFreq = lteFreq;
prev_acs = ar->arAcsPolicy;
/*
* Current algorithm to convert LTE freq to WLAN freq
*
* if 2496 <= f <= 2690
* bad_channel_set_to_be_avoided = [10, 11, 12, 13, 14];
* elseif 2300 <= f < 2350
* bad_channel_set_to_be_avoided = [1, 2, 3, 4];
* elseif 2350 <= f < 2370
* bad_channel_set_to_be_avoided = [1,2,3,4,5,6];
* elseif 2370 <= f <=2400
* bad_channel_set_to_be_avoided = [1,2,3,4,5,6,7,8,9];
* else
* bad_channel_set_to_be_avoided = []; end
*/
/* Decide ACS policy based on LTE freq */
if(ar->lteFreq >= 2496 && ar->lteFreq <= 2690) {
ar->arAcsPolicy = AP_ACS_DISABLE_CH11;
} else if(ar->lteFreq >= 2300 && ar->lteFreq < 2350) {
ar->arAcsPolicy = AP_ACS_DISABLE_CH1;
} else if(ar->lteFreq >= 2350 && ar->lteFreq < 2370) {
ar->arAcsPolicy = AP_ACS_DISABLE_CH1_6;
} else if(ar->lteFreq >= 2370 && ar->lteFreq <= 2400) {
ar->arAcsPolicy = AP_ACS_DISABLE_CH1_6;
} else if (ar->lteFreq) {
A_PRINTF("WLAN: LTE_FREQ Out of range\n");
ar->lteFreq = 0;
} else {
ar->arAcsPolicy = 0;
A_PRINTF("WLAN: LTE_FREQ Disabled\n");
}
if (ar->arAcsPolicy && (ar->arAcsPolicy != prev_acs)) {
/* Stop all running APs and switch them to ACS */
for(i=0;i<ar->arConfNumDev;i++) {
arTempPriv = ar->arDev[i];
if(arTempPriv->arConnected) {
ar6000_disconnect(arTempPriv);
arTempPriv->arConnected = FALSE;
arTempPriv->arChannelHint = 0;
arTempPriv->ap_profile_flag = 1;
arTempPriv->arBssChannel = 0;
ar->arHoldConnection |= (1<<arTempPriv->arDeviceIndex);
}
}
}
return 0;
}
/*
* Check hold status of other concurrent devices during
* connect or disconnect of every virtual device
*/
static int
ar6000_check_hold_conn_status(AR_SOFTC_DEV_T *arPriv, A_UINT8 conn_status)
{
AR_SOFTC_DEV_T *arTempPriv = NULL;
AR_SOFTC_T *ar = arPriv->arSoftc;
A_STATUS status = A_OK;
/* Concurrency: Process the pending connect of the other virtual device(s) */
if (ar->arHoldConnection) {
A_UINT8 connect_flag = 0, cnt = 0;
for(cnt=0;cnt<ar->arConfNumDev;cnt++) {
arTempPriv = ar->arDev[cnt];
//if(arTempPriv == arPriv) continue;
if(ar->arHoldConnection & (1<<arTempPriv->arDeviceIndex)) {
A_STATUS status = A_OK;
/* validate channel-hint vs home-channel */
status = ar6000_check_connect_request(ar->arDev[cnt], FALSE);
if(A_OK == status) {
connect_flag = TRUE;
break;
} else if(A_ERROR == status) {
ar->arHoldConnection &= ~(1<<ar->arDev[cnt]->arDeviceIndex);
}
}
if(conn_status) arTempPriv->arChannelHint = 0;
}
if(connect_flag) {
/* Profile commit happens at time-out */
A_TIMEOUT_MS(&ar->ap_reconnect_timer, 1*1000, 0);
}
status = A_OK;
} else {
status = A_ERROR;
}
return status;
}
/*
* (1) Check the status of other devices' connection
* (2) If there is atleast one device up already, validate the channelHint
* (3) If check_pending_status is set, check whether the current device conn
* needs to be kept on hold. Otherwise, do only channel validation
* return : A_ERROR - one of the above failed
* A_OK - success
* A_PENDING - if called during connect, the connect is kep on hold
* (assumed as success)
*/
A_STATUS
ar6000_check_connect_request(AR_SOFTC_DEV_T *arPriv, A_UINT8 check_pending_status)
{
A_UINT8 i;
A_STATUS ret_val = A_OK;
AR_SOFTC_DEV_T *temp_priv = NULL;
AR_SOFTC_STA_T *arSta = NULL;
AR_SOFTC_T *ar = arPriv->arSoftc;
for(i=0; i<num_device; i++) {
temp_priv = (AR_SOFTC_DEV_T *)ar6k_priv(ar6000_devices[i]);
arSta = &temp_priv->arSta;
if(arPriv == temp_priv) continue;
if(arPriv->arNetworkType == AP_NETWORK && temp_priv->arConnected) {
if(temp_priv->arNetworkType == AP_NETWORK) {
if(((temp_priv->phymode == WMI_11A_MODE) && (arPriv->phymode != WMI_11A_MODE) && (arPriv->phymode != WMI_11AG_MODE)) ||
((temp_priv->phymode != WMI_11A_MODE) && (arPriv->phymode == WMI_11A_MODE ))) {
A_PRINTF("ar6000_check_connect_request: One or more concurrent devices"
" conneted in different phy mode\n");
ret_val = A_ERROR;
break;
}
}
}
if( check_pending_status ) {
if( arPriv->arNextMode == AP_NETWORK )
{
/* If connecting device is AP and pending device is STA or AP, make
the connecting device's state as HOLD */
if( ((temp_priv->arNextMode == AP_NETWORK) &&
(temp_priv->arConnected) &&
(!temp_priv->arBssChannel)) ||
((temp_priv->arNextMode == INFRA_NETWORK) &&
(arSta->arConnectPending == TRUE))) {
ar->arHoldConnection |= (1<<arPriv->arDeviceIndex);
A_PRINTF("ar6000_check_connect_request: dev %d on hold\n", arPriv->arDeviceIndex);
/* break & return sucess. Process it later */
ret_val = A_PENDING;
break;
}
} else if( arPriv->arNextMode == INFRA_NETWORK ) {
/* If the connecting device is STA and pending device is AP,
disconnect the pending device and put it in HOLD. Process it's
connect during STA connect */
if((temp_priv->arNextMode == AP_NETWORK) &&
(temp_priv->arConnected) &&
(!temp_priv->arBssChannel)) {
A_PRINTF("ar6000_check_connect_request : disconnecting AP dev %d",temp_priv->arDeviceIndex);
ar6000_disconnect(temp_priv);
temp_priv->ap_profile_flag = 1;
if(!(ar->arHoldConnection & (1<<temp_priv->arDeviceIndex))) {
ar->arHoldConnection |= (1<<temp_priv->arDeviceIndex);
}
continue;
} else if((temp_priv->arNextMode == INFRA_NETWORK) &&
(arSta->arConnectPending == TRUE)) {
/* STA-STA conc - not handled */
}
}
}
/* validate 'channel-hint v home-channel' */
if((temp_priv->arConnected) &&
(arPriv->arNextMode == AP_NETWORK)) {
A_UINT8 prev_phy_mode = arPriv->phymode;
if(arPriv->is_sta_roaming) {
arPriv->arChannelHint = 0;
arPriv->is_sta_roaming = FALSE;
}
if (!(((arPriv->arChannelHint >= 5180) && (temp_priv->arBssChannel >= 5180)) ||
((arPriv->arChannelHint < 5180) && (temp_priv->arBssChannel < 5180))) ||
(arPriv->arChannelHint == 0)) {
if(prev_phy_mode && (temp_priv->arNetworkType == AP_NETWORK) &&
(arPriv->arNetworkType == AP_NETWORK)) {
arPriv->phymode = prev_phy_mode;
} else if (arPriv->arPhyCapability == WMI_11NAG_CAPABILITY){
arPriv->phymode = DEF_AP_WMODE_AG;
} else {
arPriv->phymode = DEF_AP_WMODE_G;
}
}
/* Copy station's regDomain to softAP interface */
if (temp_priv->arRegCode != arPriv->arRegCode) {
A_MEMCPY(arPriv->arAp.ap_country_code,
(A_UINT8 *)&temp_priv->arRegCode, 2);
arPriv->arAp.ap_country_code[2]=COUNTRY_CODE_PRESENT;
wmi_set_country(arPriv->arWmi,
arPriv->arAp.ap_country_code);
}
/* User has set the channel for this interface */
if(arPriv->arChannelHint) {
if(temp_priv->arBssChannel != arPriv->arChannelHint) {
A_PRINTF("ar6000_check_connect_request: Error: Channel should be %d"
"MHz. but it is %d\n", temp_priv->arBssChannel,
arPriv->arChannelHint);
arPriv->arChannelHint = 0;
/* channel mismatch is an error - say so */
ret_val = A_ERROR;
arPriv->phymode = prev_phy_mode;
break;
}
} else {
/* ACS is enabled for this interface */
if(temp_priv->arBssChannel) {
arPriv->arChannelHint = temp_priv->arBssChannel;
A_PRINTF("ar6000_check_connect_request:Selected Channel %d of dev %d\n",
temp_priv->arBssChannel,
temp_priv->arDeviceIndex);
/* go ahead with the connect on the other device's channel*/
ret_val = A_OK;
break;
}
}
}
}
return ret_val;
}
int
ar6000_ap_mode_profile_commit(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
WMI_CONNECT_CMD p;
unsigned long flags;
if (ar->isHostAsleep != 0) {
A_PRINTF("Cannot commit while host is in sleep mode!!!\n");
return -EOPNOTSUPP;
}
/* No change in AP's profile configuration */
if(arPriv->ap_profile_flag==0) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("COMMIT: No change in profile!!!\n"));
return -ENODATA;
}
if(!arPriv->arSsidLen) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("SSID not set!!!\n"));
return -ECHRNG;
}
if(arPriv->arAuthMode == WMI_NONE_AUTH) {
if((arPriv->arPairwiseCrypto != NONE_CRYPT) &&
#ifdef WAPI_ENABLE
(arPriv->arPairwiseCrypto != WAPI_CRYPT) &&
#endif
(arPriv->arPairwiseCrypto != WEP_CRYPT)) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Cipher not supported in AP mode Open auth\n"));
return -EOPNOTSUPP;
}
} else if(!(arPriv->arAuthMode &
(WMI_WPA_PSK_AUTH|WMI_WPA2_PSK_AUTH|WMI_WPA_AUTH|WMI_WPA2_AUTH))) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Key mgmt type not supported in AP mode\n"));
return -EOPNOTSUPP;
}
if ((arPriv->arAuthMode == WMI_NONE_AUTH) &&
(arPriv->arPairwiseCrypto == WEP_CRYPT))
{
ar6000_install_static_wep_keys(arPriv);
}
/* Update the arNetworkType */
arPriv->arNetworkType = arPriv->arNextMode;
arPriv->arBssChannel = 0;
A_MEMZERO(&p,sizeof(p));
p.ssidLength = arPriv->arSsidLen;
A_MEMCPY(p.ssid,arPriv->arSsid,p.ssidLength);
/*
* p.channel == 0 [Do ACS and choose 1, 6, or 11]
* p.channel == 1 [Do ACS and choose 1, or 6]
* p.channel == xxxx [No ACS, use xxxx freq]
*/
if (((arPriv->phymode != WMI_11AG_MODE && arPriv->phymode != WMI_11A_MODE) && (IS_5G_CHANNEL(arPriv->arChannelHint))) ||
((arPriv->phymode == WMI_11A_MODE) && !(IS_5G_CHANNEL(arPriv->arChannelHint)) && arPriv->arChannelHint)) {
A_PRINTF("ar6000_ap_mode_profile_commit: Channel hint not matching with phymode\n");
arPriv->arChannelHint = 0;
return -EINVAL;
}
if ((arPriv->arChannelHint == 0) && (ar->arAcsPolicy)) {
p.channel = ar->arAcsPolicy;
} else {
p.channel = arPriv->arChannelHint;
if ((arPriv->arChannelHint >= 5180) && (arPriv->arChannelHint <= 5825)) {
if (!(wmi_set_channelParams_cmd(arPriv->arWmi, 0, WMI_11A_MODE, 0, NULL))) {
arPriv->phymode = WMI_11A_MODE;
}
} else if ((arPriv->phymode == WMI_11AG_MODE)) {
if (!(wmi_set_channelParams_cmd(arPriv->arWmi, 0, WMI_11G_MODE, 0, NULL))) {
arPriv->phymode = WMI_11G_MODE;
}
}
}
p.networkType = arPriv->arNetworkType;
p.dot11AuthMode = arPriv->arDot11AuthMode;
p.authMode = arPriv->arAuthMode;
p.pairwiseCryptoType = arPriv->arPairwiseCrypto;
p.pairwiseCryptoLen = arPriv->arPairwiseCryptoLen;
p.groupCryptoType = arPriv->arGroupCrypto;
p.groupCryptoLen = arPriv->arGroupCryptoLen;
p.ctrl_flags = arPriv->arSta.arConnectCtrlFlags;
#if WLAN_CONFIG_NO_DISASSOC_UPON_DEAUTH
p.ctrl_flags |= AP_NO_DISASSOC_UPON_DEAUTH;
#endif
wmi_ap_profile_commit(arPriv->arWmi, &p);
spin_lock_irqsave(&arPriv->arPrivLock, flags);
arPriv->arConnected = TRUE;
netif_carrier_on(arPriv->arNetDev);
spin_unlock_irqrestore(&arPriv->arPrivLock, flags);
arPriv->ap_profile_flag = 0;
return 0;
}
A_STATUS
ar6000_connect_to_ap(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
AR_SOFTC_STA_T *arSta = &arPriv->arSta;
/* The ssid length check prevents second "essid off" from the user,
to be treated as a connect cmd. The second "essid off" is ignored.
*/
if((ar->arWmiReady == TRUE) && (arPriv->arSsidLen > 0) && arPriv->arNetworkType!=AP_NETWORK)
{
A_STATUS status;
if((ADHOC_NETWORK != arPriv->arNetworkType) &&
(WMI_NONE_AUTH==arPriv->arAuthMode) &&
(WEP_CRYPT==arPriv->arPairwiseCrypto)) {
ar6000_install_static_wep_keys(arPriv);
}
if (!arSta->arUserBssFilter) {
if (wmi_bssfilter_cmd(arPriv->arWmi, ALL_BSS_FILTER, 0) != A_OK) {
return -EIO;
}
}
/* Check for APs pending to be connected */
if( A_ERROR == ar6000_check_connect_request(arPriv, TRUE)) {
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("ar6000_connect_to_ap:unknown error, hold %x",ar->arHoldConnection));
}
AR_DEBUG_PRINTF(ATH_DEBUG_WLAN_CONNECT,("Connect called with authmode %d dot11 auth %d"\
" PW crypto %d PW crypto Len %d GRP crypto %d"\
" GRP crypto Len %d\n",
arPriv->arAuthMode, arPriv->arDot11AuthMode,
arPriv->arPairwiseCrypto, arPriv->arPairwiseCryptoLen,
arPriv->arGroupCrypto, arPriv->arGroupCryptoLen));
reconnect_flag = 0;
/* Set the listen interval into 1000TUs or more. This value will be indicated to Ap in the conn.
later set it back locally at the STA to 100/1000 TUs depending on the power mode */
if ((arPriv->arNetworkType == INFRA_NETWORK)) {
wmi_listeninterval_cmd(arPriv->arWmi, max(arSta->arListenIntervalT, (A_UINT16)A_MAX_WOW_LISTEN_INTERVAL), 0);
}
status = wmi_connect_cmd(arPriv->arWmi, arPriv->arNetworkType,
arPriv->arDot11AuthMode, arPriv->arAuthMode,
arPriv->arPairwiseCrypto, arPriv->arPairwiseCryptoLen,
arPriv->arGroupCrypto,arPriv->arGroupCryptoLen,
arPriv->arSsidLen, arPriv->arSsid,
arSta->arReqBssid, arPriv->arChannelHint,
arSta->arConnectCtrlFlags);
if (status != A_OK) {
wmi_listeninterval_cmd(arPriv->arWmi, arSta->arListenIntervalT, arSta->arListenIntervalB);
if (!arSta->arUserBssFilter) {
wmi_bssfilter_cmd(arPriv->arWmi, NONE_BSS_FILTER, 0);
}
return status;
}
if ((!(arSta->arConnectCtrlFlags & CONNECT_DO_WPA_OFFLOAD)) &&
((WMI_WPA_PSK_AUTH == arPriv->arAuthMode) || (WMI_WPA2_PSK_AUTH == arPriv->arAuthMode)))
{
A_TIMEOUT_MS(&arSta->disconnect_timer, A_DISCONNECT_TIMER_INTERVAL, 0);
}
arSta->arConnectCtrlFlags &= ~CONNECT_DO_WPA_OFFLOAD;
arSta->arConnectPending = TRUE;
return status;
}
return A_ERROR;
}
A_STATUS
ar6000_disconnect(AR_SOFTC_DEV_T *arPriv)
{
AR_SOFTC_T *ar = arPriv->arSoftc;
if ((arPriv->arConnected == TRUE) || (arPriv->arSta.arConnectPending == TRUE)) {
wmi_disconnect_cmd(arPriv->arWmi);
#ifdef P2P
if(arPriv->arNetworkSubType == SUBTYPE_P2PCLIENT) {
wait_event_interruptible_timeout(arPriv->arEvent, arPriv->arConnected == FALSE, wmitimeout * HZ);
if (signal_pending(current)) {
return -EINTR;
}
}
#endif
/*
* Disconnect cmd is issued, clear connectPending.
* arConnected will be cleard in disconnect_event notification.
*/
arPriv->arSta.arConnectPending = FALSE;
}
ar->arHoldConnection &= ~(1 << arPriv->arDeviceIndex);
return A_OK;
}
A_STATUS
ar6000_ap_mode_get_wpa_ie(AR_SOFTC_DEV_T *arPriv, struct ieee80211req_wpaie *wpaie)
{
conn_t *conn = NULL;
conn = ieee80211_find_conn(arPriv, wpaie->wpa_macaddr);
A_MEMZERO(wpaie->wpa_ie, IEEE80211_MAX_IE);
A_MEMZERO(wpaie->rsn_ie, IEEE80211_MAX_IE);
if(conn) {
A_MEMCPY(wpaie->wpa_ie, conn->wpa_ie, IEEE80211_MAX_IE);
}
return 0;
}
A_STATUS
is_iwioctl_allowed(A_UINT8 mode, A_UINT16 cmd)
{
if(cmd >= SIOCSIWCOMMIT && cmd <= SIOCGIWPOWER) {
cmd -= SIOCSIWCOMMIT;
if(sioctl_filter[cmd] == 0xFF) return A_OK;
if(sioctl_filter[cmd] & mode) return A_OK;
} else if(cmd >= SIOCIWFIRSTPRIV && cmd <= (SIOCIWFIRSTPRIV+30)) {
cmd -= SIOCIWFIRSTPRIV;
if(pioctl_filter[cmd] == 0xFF) return A_OK;
if(pioctl_filter[cmd] & mode) return A_OK;
} else {
return A_ERROR;
}
return A_ENOTSUP;
}
A_STATUS
is_xioctl_allowed(A_UINT8 mode, A_UINT8 submode, int cmd)
{
A_UINT8 mode_bits, submode_bits;
A_BOOL is_valid_mode=FALSE, is_valid_submode=FALSE;
if(sizeof(xioctl_filter)-1 < cmd) {
AR_DEBUG_PRINTF(ATH_DEBUG_ERR,("Filter for this cmd=%d not defined\n",cmd));
return A_OK;
}
/* Valid for all modes/submodes */
if(xioctl_filter[cmd] == 0xFF) return A_OK;
/* Check if this cmd is valid for the set mode of this device.
*/
#define XIOCTL_FILTER_MODE_MASK 0x1F
#define XIOCTL_FILTER_MODE_BIT_OFFSET 0x0
mode_bits = xioctl_filter[cmd] & XIOCTL_FILTER_MODE_MASK;
if (mode_bits & (mode << XIOCTL_FILTER_MODE_BIT_OFFSET)) {
/* Valid cmd for this mode */
is_valid_mode = TRUE;
}
/* Check if this cmd is valid for the set submode of this device.
*/
#define XIOCTL_FILTER_SUBMODE_MASK 0xE0
#define XIOCTL_FILTER_SUBMODE_BIT_OFFSET 0x0
submode_bits = (xioctl_filter[cmd] & XIOCTL_FILTER_SUBMODE_MASK)>>XIOCTL_FILTER_SUBMODE_BIT_OFFSET;
if (submode == SUBTYPE_P2PDEV || submode == SUBTYPE_P2PCLIENT ||
submode == SUBTYPE_P2PGO) {
/* P2P Submode */
if (submode_bits & XIOCTL_FILTER_P2P_SUBMODE) {
is_valid_submode = TRUE;
}
} else {
/* Non P2P Sub mode */
if ((submode_bits & XIOCTL_FILTER_NONP2P_SUBMODE)) {
is_valid_submode = TRUE;
}
}
if (is_valid_mode && is_valid_submode) {
return A_OK;
}
return A_ERROR;
}
#ifdef WAPI_ENABLE
int
ap_set_wapi_key(AR_SOFTC_DEV_T *arPriv, void *ikey)
{
struct ieee80211req_key *ik = (struct ieee80211req_key *)ikey;
KEY_USAGE keyUsage = 0;
A_STATUS status;
if (A_MEMCMP(ik->ik_macaddr, bcast_mac, IEEE80211_ADDR_LEN) == 0) {
keyUsage = GROUP_USAGE;
} else {
keyUsage = PAIRWISE_USAGE;
}
AR_DEBUG_PRINTF(ATH_DEBUG_INFO,("WAPI_KEY: Type:%d ix:%d mac:%02x:%02x len:%d\n",
keyUsage, ik->ik_keyix, ik->ik_macaddr[4], ik->ik_macaddr[5],
ik->ik_keylen));
status = wmi_addKey_cmd(arPriv->arWmi, ik->ik_keyix, WAPI_CRYPT, keyUsage,
ik->ik_keylen, (A_UINT8 *)&ik->ik_keyrsc,
ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr,
SYNC_BOTH_WMIFLAG);
if (A_OK != status) {
return -EIO;
}
return 0;
}
#endif
#ifdef P2P
void ar6000_p2p_prov_disc_req_event(AR_SOFTC_DEV_T *arPriv,
const A_UINT8 *peer, A_UINT16 wps_config_method,
const A_UINT8 *dev_addr, const A_UINT8 *pri_dev_type,
const A_UINT8 *dev_name, A_UINT8 dev_name_len,
A_UINT16 supp_config_methods, A_UINT8 dev_capab, A_UINT8 group_capab)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_UINT8 *pos=buf;
A_MEMZERO(pos, sizeof(buf));
A_MEMCPY(pos, "P2PPROVDISCREQ", 14);
pos += 14;
A_MEMCPY(pos, peer, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
A_MEMCPY(pos, dev_addr, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
A_MEMCPY(pos, pri_dev_type, 8);
pos += 8;
A_MEMCPY(pos, dev_name, dev_name_len);
pos += dev_name_len;
*pos++ = '\0';
A_MEMCPY(pos, (A_UINT8 *)&supp_config_methods, 2);
pos += 2;
A_MEMCPY(pos, (A_UINT8 *)&wps_config_method, 2);
pos += 2;
A_MEMCPY(pos, &dev_capab, 1);
pos++;
A_MEMCPY(pos, &group_capab, 1);
pos++;
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = (pos-buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void ar6000_p2p_prov_disc_resp_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *peer,
A_UINT16 config_methods)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_UINT8 *pos=buf;
A_MEMZERO(pos, sizeof(buf));
A_MEMCPY(pos, "P2PPROVDISCRESP", 15);
pos += 15;
A_MEMCPY(pos, peer, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
A_MEMCPY(pos, (A_UINT8 *)&config_methods, 2);
pos += 2;
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = (pos-buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void ar6000_p2pdev_event(AR_SOFTC_DEV_T *arPriv, const A_UINT8 *addr,
const A_UINT8 *dev_addr,
const A_UINT8 *pri_dev_type, const A_UINT8 *dev_name,
A_UINT8 dev_name_len, A_UINT16 config_methods, A_UINT8 dev_capab,
A_UINT8 grp_capab)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_UINT8 *pos=buf;
A_MEMZERO(pos, sizeof(buf));
A_MEMCPY(pos, "P2PDEVFOUND", 11);
pos += 11;
A_MEMCPY(pos, addr, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
A_MEMCPY(pos, dev_addr, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
/* Size of P2P Attributes hardcoded here. Can this be changed ?
*/
A_MEMCPY(pos, pri_dev_type, 8);
pos += 8;
A_MEMCPY(pos, dev_name, dev_name_len);
pos += dev_name_len;
*pos++ = '\0';
A_MEMCPY(pos, (A_UINT8 *)&config_methods, 2);
pos += 2;
A_MEMCPY(pos, &dev_capab, 1);
pos++;
A_MEMCPY(pos, &grp_capab, 1);
pos++;
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = (pos-buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
return;
}
void ar6000_p2pdev_lost_event(AR_SOFTC_DEV_T *arPriv, const A_UINT8 *dev_addr) {
union iwreq_data wrqu;
A_UINT8 buf[20];
A_UINT8 *pos=buf;
A_MEMZERO(pos, sizeof(buf));
A_MEMCPY(pos, "P2PDEVLOST", 10);
pos += 10;
A_MEMCPY(pos, dev_addr, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = (pos-buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void ar6000_p2p_sd_rx_event(AR_SOFTC_DEV_T *arPriv, WMI_P2P_SDPD_RX_EVENT *ev)
{
union iwreq_data wrqu;
A_UINT8 *event_ptr;
A_UINT8 *pos;
A_UINT16 size;
#define P2P_SD_REQ_RESP_STR_LEN 12
size = P2P_SD_REQ_RESP_STR_LEN
+ sizeof(WMI_P2P_SDPD_RX_EVENT)
+ ev->tlv_length;
event_ptr = A_MALLOC_NOWAIT(size);
pos = event_ptr;
A_MEMZERO(pos, size);
A_MEMCPY(pos, "P2PSDREQRESP", P2P_SD_REQ_RESP_STR_LEN);
pos += P2P_SD_REQ_RESP_STR_LEN;
#undef P2P_SD_REQ_RESP_STR_LEN
/* Copy the event followed by TLV, parsing will be dobe in supplicant */
A_MEMCPY(pos, ev, sizeof(WMI_P2P_SDPD_RX_EVENT) + ev->tlv_length);
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = size;
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, event_ptr);
A_FREE(event_ptr);
return;
}
void p2p_go_neg_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *res, A_UINT8 len)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_MEMZERO(&buf, sizeof(buf));
A_MEMCPY(buf, "P2PNEGCOMPLETE",14);
A_MEMCPY(&buf[14], res, len);
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = 14+len;
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void p2p_go_neg_req_event(AR_SOFTC_DEV_T *arPriv, const A_UINT8 *sa, A_UINT16 dev_passwd_id)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_UINT8 *pos=buf;
A_MEMZERO(pos, sizeof(buf));
A_MEMCPY(pos, "P2PNEGREQEV", 11);
pos += 11;
A_MEMCPY(pos, sa, IEEE80211_ADDR_LEN);
pos += IEEE80211_ADDR_LEN;
A_MEMCPY(pos, (A_UINT8 *)&dev_passwd_id, 2);
pos += 2;
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = (pos-buf);
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void p2p_invite_sent_result_event(AR_SOFTC_DEV_T *arPriv, A_UINT8 *res,
A_UINT8 len)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_MEMZERO(&buf, sizeof(buf));
A_MEMCPY(buf, "P2PINVITESENTRESULT", 19);
A_MEMCPY(&buf[19], res, len);
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = 19 + len;
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
void p2p_invite_rcvd_result_event(AR_SOFTC_DEV_T *arPriv,
A_UINT8 *res, A_UINT8 len)
{
union iwreq_data wrqu;
A_UINT8 buf[100];
A_MEMZERO(&buf, sizeof(buf));
A_MEMCPY(buf, "P2PINVITERCVDRESULT", 19);
A_MEMCPY(&buf[19], res, len);
A_MEMZERO(&wrqu, sizeof(wrqu));
wrqu.data.length = 19 + len;
wireless_send_event(arPriv->arNetDev, IWEVCUSTOM, &wrqu, buf);
}
#endif /* P2P */
void ar6000_peer_event(
void *context,
A_UINT8 eventCode,
A_UINT8 *macAddr)
{
A_UINT8 pos;
for (pos=0;pos<6;pos++)
printk("%02x: ",*(macAddr+pos));
printk("\n");
}
void ar6000_get_device_addr(AR_SOFTC_DEV_T *arPriv, A_UINT8 *addr)
{
A_MEMCPY(addr, arPriv->arNetDev->dev_addr, IEEE80211_ADDR_LEN);
return;
}
#ifdef HTC_TEST_SEND_PKTS
#define HTC_TEST_DUPLICATE 8
static void DoHTCSendPktsTest(AR_SOFTC_T *ar, int MapNo, HTC_ENDPOINT_ID eid, struct sk_buff *dupskb)
{
struct ar_cookie *cookie;
struct ar_cookie *cookieArray[HTC_TEST_DUPLICATE];
struct sk_buff *new_skb;
int i;
int pkts = 0;
HTC_PACKET_QUEUE pktQueue;
EPPING_HEADER *eppingHdr;
eppingHdr = A_NETBUF_DATA(dupskb);
if (eppingHdr->Cmd_h == EPPING_CMD_NO_ECHO) {
/* skip test if this is already a tx perf test */
return;
}
for (i = 0; i < HTC_TEST_DUPLICATE; i++,pkts++) {
AR6000_SPIN_LOCK(&ar->arLock, 0);
cookie = ar6000_alloc_cookie(ar);
if (cookie != NULL) {
ar->arTxPending[eid]++;
ar->arTotalTxDataPending++;
}
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
if (NULL == cookie) {
break;
}
new_skb = A_NETBUF_ALLOC(A_NETBUF_LEN(dupskb));
if (new_skb == NULL) {
AR6000_SPIN_LOCK(&ar->arLock, 0);
ar6000_free_cookie(ar,cookie);
AR6000_SPIN_UNLOCK(&ar->arLock, 0);
break;
}
A_NETBUF_PUT_DATA(new_skb, A_NETBUF_DATA(dupskb), A_NETBUF_LEN(dupskb));
cookie->arc_bp[0] = (A_UINT32)new_skb;
cookie->arc_bp[1] = MapNo;
SET_HTC_PACKET_INFO_TX(&cookie->HtcPkt,
cookie,
A_NETBUF_DATA(new_skb),
A_NETBUF_LEN(new_skb),
eid,
AR6K_DATA_PKT_TAG);
cookieArray[i] = cookie;
{
EPPING_HEADER *pHdr = (EPPING_HEADER *)A_NETBUF_DATA(new_skb);
pHdr->Cmd_h = EPPING_CMD_NO_ECHO; /* do not echo the packet */
}
}
if (pkts == 0) {
return;
}
INIT_HTC_PACKET_QUEUE(&pktQueue);
for (i = 0; i < pkts; i++) {
HTC_PACKET_ENQUEUE(&pktQueue,&cookieArray[i]->HtcPkt);
}
HTCSendPktsMultiple(ar->arHtcTarget, &pktQueue);
}
#endif
#ifdef EXPORT_HCI_BRIDGE_INTERFACE
EXPORT_SYMBOL(setupbtdev);
#endif
NETWORK_TYPE ar6000_get_network_type(AR_SOFTC_DEV_T *arPriv)
{
return (arPriv->arNetworkType);
}