blob: 39e305443d7ee7db1081e9cef69d26ab83b9bb9b [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* File contents: support functions for PCI/PCIe
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/pci.h>
#include <defs.h>
#include <chipcommon.h>
#include <brcmu_utils.h>
#include <brcm_hw_ids.h>
#include <soc.h>
#include "types.h"
#include "pub.h"
#include "pmu.h"
#include "srom.h"
#include "nicpci.h"
#include "aiutils.h"
/* slow_clk_ctl */
/* slow clock source mask */
#define SCC_SS_MASK 0x00000007
/* source of slow clock is LPO */
#define SCC_SS_LPO 0x00000000
/* source of slow clock is crystal */
#define SCC_SS_XTAL 0x00000001
/* source of slow clock is PCI */
#define SCC_SS_PCI 0x00000002
/* LPOFreqSel, 1: 160Khz, 0: 32KHz */
#define SCC_LF 0x00000200
/* LPOPowerDown, 1: LPO is disabled, 0: LPO is enabled */
#define SCC_LP 0x00000400
/* ForceSlowClk, 1: sb/cores running on slow clock, 0: power logic control */
#define SCC_FS 0x00000800
/* IgnorePllOffReq, 1/0:
* power logic ignores/honors PLL clock disable requests from core
*/
#define SCC_IP 0x00001000
/* XtalControlEn, 1/0:
* power logic does/doesn't disable crystal when appropriate
*/
#define SCC_XC 0x00002000
/* XtalPU (RO), 1/0: crystal running/disabled */
#define SCC_XP 0x00004000
/* ClockDivider (SlowClk = 1/(4+divisor)) */
#define SCC_CD_MASK 0xffff0000
#define SCC_CD_SHIFT 16
/* system_clk_ctl */
/* ILPen: Enable Idle Low Power */
#define SYCC_IE 0x00000001
/* ALPen: Enable Active Low Power */
#define SYCC_AE 0x00000002
/* ForcePLLOn */
#define SYCC_FP 0x00000004
/* Force ALP (or HT if ALPen is not set */
#define SYCC_AR 0x00000008
/* Force HT */
#define SYCC_HR 0x00000010
/* ClkDiv (ILP = 1/(4 * (divisor + 1)) */
#define SYCC_CD_MASK 0xffff0000
#define SYCC_CD_SHIFT 16
#define CST4329_SPROM_OTP_SEL_MASK 0x00000003
/* OTP is powered up, use def. CIS, no SPROM */
#define CST4329_DEFCIS_SEL 0
/* OTP is powered up, SPROM is present */
#define CST4329_SPROM_SEL 1
/* OTP is powered up, no SPROM */
#define CST4329_OTP_SEL 2
/* OTP is powered down, SPROM is present */
#define CST4329_OTP_PWRDN 3
#define CST4329_SPI_SDIO_MODE_MASK 0x00000004
#define CST4329_SPI_SDIO_MODE_SHIFT 2
/* 43224 chip-specific ChipControl register bits */
#define CCTRL43224_GPIO_TOGGLE 0x8000
/* 12 mA drive strength */
#define CCTRL_43224A0_12MA_LED_DRIVE 0x00F000F0
/* 12 mA drive strength for later 43224s */
#define CCTRL_43224B0_12MA_LED_DRIVE 0xF0
/* 43236 Chip specific ChipStatus register bits */
#define CST43236_SFLASH_MASK 0x00000040
#define CST43236_OTP_MASK 0x00000080
#define CST43236_HSIC_MASK 0x00000100 /* USB/HSIC */
#define CST43236_BP_CLK 0x00000200 /* 120/96Mbps */
#define CST43236_BOOT_MASK 0x00001800
#define CST43236_BOOT_SHIFT 11
#define CST43236_BOOT_FROM_SRAM 0 /* boot from SRAM, ARM in reset */
#define CST43236_BOOT_FROM_ROM 1 /* boot from ROM */
#define CST43236_BOOT_FROM_FLASH 2 /* boot from FLASH */
#define CST43236_BOOT_FROM_INVALID 3
/* 4331 chip-specific ChipControl register bits */
/* 0 disable */
#define CCTRL4331_BT_COEXIST (1<<0)
/* 0 SECI is disabled (JTAG functional) */
#define CCTRL4331_SECI (1<<1)
/* 0 disable */
#define CCTRL4331_EXT_LNA (1<<2)
/* sprom/gpio13-15 mux */
#define CCTRL4331_SPROM_GPIO13_15 (1<<3)
/* 0 ext pa disable, 1 ext pa enabled */
#define CCTRL4331_EXTPA_EN (1<<4)
/* set drive out GPIO_CLK on sprom_cs pin */
#define CCTRL4331_GPIOCLK_ON_SPROMCS (1<<5)
/* use sprom_cs pin as PCIE mdio interface */
#define CCTRL4331_PCIE_MDIO_ON_SPROMCS (1<<6)
/* aband extpa will be at gpio2/5 and sprom_dout */
#define CCTRL4331_EXTPA_ON_GPIO2_5 (1<<7)
/* override core control on pipe_AuxClkEnable */
#define CCTRL4331_OVR_PIPEAUXCLKEN (1<<8)
/* override core control on pipe_AuxPowerDown */
#define CCTRL4331_OVR_PIPEAUXPWRDOWN (1<<9)
/* pcie_auxclkenable */
#define CCTRL4331_PCIE_AUXCLKEN (1<<10)
/* pcie_pipe_pllpowerdown */
#define CCTRL4331_PCIE_PIPE_PLLDOWN (1<<11)
/* enable bt_shd0 at gpio4 */
#define CCTRL4331_BT_SHD0_ON_GPIO4 (1<<16)
/* enable bt_shd1 at gpio5 */
#define CCTRL4331_BT_SHD1_ON_GPIO5 (1<<17)
/* 4331 Chip specific ChipStatus register bits */
/* crystal frequency 20/40Mhz */
#define CST4331_XTAL_FREQ 0x00000001
#define CST4331_SPROM_PRESENT 0x00000002
#define CST4331_OTP_PRESENT 0x00000004
#define CST4331_LDO_RF 0x00000008
#define CST4331_LDO_PAR 0x00000010
/* 4319 chip-specific ChipStatus register bits */
#define CST4319_SPI_CPULESSUSB 0x00000001
#define CST4319_SPI_CLK_POL 0x00000002
#define CST4319_SPI_CLK_PH 0x00000008
/* gpio [7:6], SDIO CIS selection */
#define CST4319_SPROM_OTP_SEL_MASK 0x000000c0
#define CST4319_SPROM_OTP_SEL_SHIFT 6
/* use default CIS, OTP is powered up */
#define CST4319_DEFCIS_SEL 0x00000000
/* use SPROM, OTP is powered up */
#define CST4319_SPROM_SEL 0x00000040
/* use OTP, OTP is powered up */
#define CST4319_OTP_SEL 0x00000080
/* use SPROM, OTP is powered down */
#define CST4319_OTP_PWRDN 0x000000c0
/* gpio [8], sdio/usb mode */
#define CST4319_SDIO_USB_MODE 0x00000100
#define CST4319_REMAP_SEL_MASK 0x00000600
#define CST4319_ILPDIV_EN 0x00000800
#define CST4319_XTAL_PD_POL 0x00001000
#define CST4319_LPO_SEL 0x00002000
#define CST4319_RES_INIT_MODE 0x0000c000
/* PALDO is configured with external PNP */
#define CST4319_PALDO_EXTPNP 0x00010000
#define CST4319_CBUCK_MODE_MASK 0x00060000
#define CST4319_CBUCK_MODE_BURST 0x00020000
#define CST4319_CBUCK_MODE_LPBURST 0x00060000
#define CST4319_RCAL_VALID 0x01000000
#define CST4319_RCAL_VALUE_MASK 0x3e000000
#define CST4319_RCAL_VALUE_SHIFT 25
/* 4336 chip-specific ChipStatus register bits */
#define CST4336_SPI_MODE_MASK 0x00000001
#define CST4336_SPROM_PRESENT 0x00000002
#define CST4336_OTP_PRESENT 0x00000004
#define CST4336_ARMREMAP_0 0x00000008
#define CST4336_ILPDIV_EN_MASK 0x00000010
#define CST4336_ILPDIV_EN_SHIFT 4
#define CST4336_XTAL_PD_POL_MASK 0x00000020
#define CST4336_XTAL_PD_POL_SHIFT 5
#define CST4336_LPO_SEL_MASK 0x00000040
#define CST4336_LPO_SEL_SHIFT 6
#define CST4336_RES_INIT_MODE_MASK 0x00000180
#define CST4336_RES_INIT_MODE_SHIFT 7
#define CST4336_CBUCK_MODE_MASK 0x00000600
#define CST4336_CBUCK_MODE_SHIFT 9
/* 4313 chip-specific ChipStatus register bits */
#define CST4313_SPROM_PRESENT 1
#define CST4313_OTP_PRESENT 2
#define CST4313_SPROM_OTP_SEL_MASK 0x00000002
#define CST4313_SPROM_OTP_SEL_SHIFT 0
/* 4313 Chip specific ChipControl register bits */
/* 12 mA drive strengh for later 4313 */
#define CCTRL_4313_12MA_LED_DRIVE 0x00000007
/* Manufacturer Ids */
#define MFGID_ARM 0x43b
#define MFGID_BRCM 0x4bf
#define MFGID_MIPS 0x4a7
/* Enumeration ROM registers */
#define ER_EROMENTRY 0x000
#define ER_REMAPCONTROL 0xe00
#define ER_REMAPSELECT 0xe04
#define ER_MASTERSELECT 0xe10
#define ER_ITCR 0xf00
#define ER_ITIP 0xf04
/* Erom entries */
#define ER_TAG 0xe
#define ER_TAG1 0x6
#define ER_VALID 1
#define ER_CI 0
#define ER_MP 2
#define ER_ADD 4
#define ER_END 0xe
#define ER_BAD 0xffffffff
/* EROM CompIdentA */
#define CIA_MFG_MASK 0xfff00000
#define CIA_MFG_SHIFT 20
#define CIA_CID_MASK 0x000fff00
#define CIA_CID_SHIFT 8
#define CIA_CCL_MASK 0x000000f0
#define CIA_CCL_SHIFT 4
/* EROM CompIdentB */
#define CIB_REV_MASK 0xff000000
#define CIB_REV_SHIFT 24
#define CIB_NSW_MASK 0x00f80000
#define CIB_NSW_SHIFT 19
#define CIB_NMW_MASK 0x0007c000
#define CIB_NMW_SHIFT 14
#define CIB_NSP_MASK 0x00003e00
#define CIB_NSP_SHIFT 9
#define CIB_NMP_MASK 0x000001f0
#define CIB_NMP_SHIFT 4
/* EROM AddrDesc */
#define AD_ADDR_MASK 0xfffff000
#define AD_SP_MASK 0x00000f00
#define AD_SP_SHIFT 8
#define AD_ST_MASK 0x000000c0
#define AD_ST_SHIFT 6
#define AD_ST_SLAVE 0x00000000
#define AD_ST_BRIDGE 0x00000040
#define AD_ST_SWRAP 0x00000080
#define AD_ST_MWRAP 0x000000c0
#define AD_SZ_MASK 0x00000030
#define AD_SZ_SHIFT 4
#define AD_SZ_4K 0x00000000
#define AD_SZ_8K 0x00000010
#define AD_SZ_16K 0x00000020
#define AD_SZ_SZD 0x00000030
#define AD_AG32 0x00000008
#define AD_ADDR_ALIGN 0x00000fff
#define AD_SZ_BASE 0x00001000 /* 4KB */
/* EROM SizeDesc */
#define SD_SZ_MASK 0xfffff000
#define SD_SG32 0x00000008
#define SD_SZ_ALIGN 0x00000fff
/* PCI config space bit 4 for 4306c0 slow clock source */
#define PCI_CFG_GPIO_SCS 0x10
/* PCI config space GPIO 14 for Xtal power-up */
#define PCI_CFG_GPIO_XTAL 0x40
/* PCI config space GPIO 15 for PLL power-down */
#define PCI_CFG_GPIO_PLL 0x80
/* power control defines */
#define PLL_DELAY 150 /* us pll on delay */
#define FREF_DELAY 200 /* us fref change delay */
#define XTAL_ON_DELAY 1000 /* us crystal power-on delay */
/* resetctrl */
#define AIRC_RESET 1
#define NOREV -1 /* Invalid rev */
/* GPIO Based LED powersave defines */
#define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */
#define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */
/* When Srom support present, fields in sromcontrol */
#define SRC_START 0x80000000
#define SRC_BUSY 0x80000000
#define SRC_OPCODE 0x60000000
#define SRC_OP_READ 0x00000000
#define SRC_OP_WRITE 0x20000000
#define SRC_OP_WRDIS 0x40000000
#define SRC_OP_WREN 0x60000000
#define SRC_OTPSEL 0x00000010
#define SRC_LOCK 0x00000008
#define SRC_SIZE_MASK 0x00000006
#define SRC_SIZE_1K 0x00000000
#define SRC_SIZE_4K 0x00000002
#define SRC_SIZE_16K 0x00000004
#define SRC_SIZE_SHIFT 1
#define SRC_PRESENT 0x00000001
/* External PA enable mask */
#define GPIO_CTRL_EPA_EN_MASK 0x40
#define DEFAULT_GPIOTIMERVAL \
((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME)
#define BADIDX (SI_MAXCORES + 1)
/* Newer chips can access PCI/PCIE and CC core without requiring to change
* PCI BAR0 WIN
*/
#define SI_FAST(si) (((si)->pub.buscoretype == PCIE_CORE_ID) || \
(((si)->pub.buscoretype == PCI_CORE_ID) && \
(si)->pub.buscorerev >= 13))
#define CCREGS_FAST(si) (((char __iomem *)((si)->curmap) + \
PCI_16KB0_CCREGS_OFFSET))
#define IS_SIM(chippkg) \
((chippkg == HDLSIM_PKG_ID) || (chippkg == HWSIM_PKG_ID))
/*
* Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts
* before after core switching to avoid invalid register accesss inside ISR.
*/
#define INTR_OFF(si, intr_val) \
if ((si)->intrsoff_fn && \
(si)->coreid[(si)->curidx] == (si)->dev_coreid) \
intr_val = (*(si)->intrsoff_fn)((si)->intr_arg)
#define INTR_RESTORE(si, intr_val) \
if ((si)->intrsrestore_fn && \
(si)->coreid[(si)->curidx] == (si)->dev_coreid) \
(*(si)->intrsrestore_fn)((si)->intr_arg, intr_val)
#define PCI(si) ((si)->pub.buscoretype == PCI_CORE_ID)
#define PCIE(si) ((si)->pub.buscoretype == PCIE_CORE_ID)
#define PCI_FORCEHT(si) (PCIE(si) && (si->pub.chip == BCM4716_CHIP_ID))
#ifdef BCMDBG
#define SI_MSG(fmt, ...) pr_debug(fmt, ##__VA_ARGS__)
#else
#define SI_MSG(fmt, ...) no_printk(fmt, ##__VA_ARGS__)
#endif /* BCMDBG */
#define GOODCOREADDR(x, b) \
(((x) >= (b)) && ((x) < ((b) + SI_MAXCORES * SI_CORE_SIZE)) && \
IS_ALIGNED((x), SI_CORE_SIZE))
#define PCIEREGS(si) ((__iomem char *)((si)->curmap) + \
PCI_16KB0_PCIREGS_OFFSET)
struct aidmp {
u32 oobselina30; /* 0x000 */
u32 oobselina74; /* 0x004 */
u32 PAD[6];
u32 oobselinb30; /* 0x020 */
u32 oobselinb74; /* 0x024 */
u32 PAD[6];
u32 oobselinc30; /* 0x040 */
u32 oobselinc74; /* 0x044 */
u32 PAD[6];
u32 oobselind30; /* 0x060 */
u32 oobselind74; /* 0x064 */
u32 PAD[38];
u32 oobselouta30; /* 0x100 */
u32 oobselouta74; /* 0x104 */
u32 PAD[6];
u32 oobseloutb30; /* 0x120 */
u32 oobseloutb74; /* 0x124 */
u32 PAD[6];
u32 oobseloutc30; /* 0x140 */
u32 oobseloutc74; /* 0x144 */
u32 PAD[6];
u32 oobseloutd30; /* 0x160 */
u32 oobseloutd74; /* 0x164 */
u32 PAD[38];
u32 oobsynca; /* 0x200 */
u32 oobseloutaen; /* 0x204 */
u32 PAD[6];
u32 oobsyncb; /* 0x220 */
u32 oobseloutben; /* 0x224 */
u32 PAD[6];
u32 oobsyncc; /* 0x240 */
u32 oobseloutcen; /* 0x244 */
u32 PAD[6];
u32 oobsyncd; /* 0x260 */
u32 oobseloutden; /* 0x264 */
u32 PAD[38];
u32 oobaextwidth; /* 0x300 */
u32 oobainwidth; /* 0x304 */
u32 oobaoutwidth; /* 0x308 */
u32 PAD[5];
u32 oobbextwidth; /* 0x320 */
u32 oobbinwidth; /* 0x324 */
u32 oobboutwidth; /* 0x328 */
u32 PAD[5];
u32 oobcextwidth; /* 0x340 */
u32 oobcinwidth; /* 0x344 */
u32 oobcoutwidth; /* 0x348 */
u32 PAD[5];
u32 oobdextwidth; /* 0x360 */
u32 oobdinwidth; /* 0x364 */
u32 oobdoutwidth; /* 0x368 */
u32 PAD[37];
u32 ioctrlset; /* 0x400 */
u32 ioctrlclear; /* 0x404 */
u32 ioctrl; /* 0x408 */
u32 PAD[61];
u32 iostatus; /* 0x500 */
u32 PAD[127];
u32 ioctrlwidth; /* 0x700 */
u32 iostatuswidth; /* 0x704 */
u32 PAD[62];
u32 resetctrl; /* 0x800 */
u32 resetstatus; /* 0x804 */
u32 resetreadid; /* 0x808 */
u32 resetwriteid; /* 0x80c */
u32 PAD[60];
u32 errlogctrl; /* 0x900 */
u32 errlogdone; /* 0x904 */
u32 errlogstatus; /* 0x908 */
u32 errlogaddrlo; /* 0x90c */
u32 errlogaddrhi; /* 0x910 */
u32 errlogid; /* 0x914 */
u32 errloguser; /* 0x918 */
u32 errlogflags; /* 0x91c */
u32 PAD[56];
u32 intstatus; /* 0xa00 */
u32 PAD[127];
u32 config; /* 0xe00 */
u32 PAD[63];
u32 itcr; /* 0xf00 */
u32 PAD[3];
u32 itipooba; /* 0xf10 */
u32 itipoobb; /* 0xf14 */
u32 itipoobc; /* 0xf18 */
u32 itipoobd; /* 0xf1c */
u32 PAD[4];
u32 itipoobaout; /* 0xf30 */
u32 itipoobbout; /* 0xf34 */
u32 itipoobcout; /* 0xf38 */
u32 itipoobdout; /* 0xf3c */
u32 PAD[4];
u32 itopooba; /* 0xf50 */
u32 itopoobb; /* 0xf54 */
u32 itopoobc; /* 0xf58 */
u32 itopoobd; /* 0xf5c */
u32 PAD[4];
u32 itopoobain; /* 0xf70 */
u32 itopoobbin; /* 0xf74 */
u32 itopoobcin; /* 0xf78 */
u32 itopoobdin; /* 0xf7c */
u32 PAD[4];
u32 itopreset; /* 0xf90 */
u32 PAD[15];
u32 peripherialid4; /* 0xfd0 */
u32 peripherialid5; /* 0xfd4 */
u32 peripherialid6; /* 0xfd8 */
u32 peripherialid7; /* 0xfdc */
u32 peripherialid0; /* 0xfe0 */
u32 peripherialid1; /* 0xfe4 */
u32 peripherialid2; /* 0xfe8 */
u32 peripherialid3; /* 0xfec */
u32 componentid0; /* 0xff0 */
u32 componentid1; /* 0xff4 */
u32 componentid2; /* 0xff8 */
u32 componentid3; /* 0xffc */
};
/* EROM parsing */
static u32
get_erom_ent(struct si_pub *sih, u32 __iomem **eromptr, u32 mask, u32 match)
{
u32 ent;
uint inv = 0, nom = 0;
while (true) {
ent = R_REG(*eromptr);
(*eromptr)++;
if (mask == 0)
break;
if ((ent & ER_VALID) == 0) {
inv++;
continue;
}
if (ent == (ER_END | ER_VALID))
break;
if ((ent & mask) == match)
break;
nom++;
}
return ent;
}
static u32
get_asd(struct si_pub *sih, u32 __iomem **eromptr, uint sp, uint ad, uint st,
u32 *addrl, u32 *addrh, u32 *sizel, u32 *sizeh)
{
u32 asd, sz, szd;
asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID);
if (((asd & ER_TAG1) != ER_ADD) ||
(((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) ||
((asd & AD_ST_MASK) != st)) {
/* This is not what we want, "push" it back */
(*eromptr)--;
return 0;
}
*addrl = asd & AD_ADDR_MASK;
if (asd & AD_AG32)
*addrh = get_erom_ent(sih, eromptr, 0, 0);
else
*addrh = 0;
*sizeh = 0;
sz = asd & AD_SZ_MASK;
if (sz == AD_SZ_SZD) {
szd = get_erom_ent(sih, eromptr, 0, 0);
*sizel = szd & SD_SZ_MASK;
if (szd & SD_SG32)
*sizeh = get_erom_ent(sih, eromptr, 0, 0);
} else
*sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT);
return asd;
}
static void ai_hwfixup(struct si_info *sii)
{
}
/* parse the enumeration rom to identify all cores */
static void ai_scan(struct si_pub *sih, struct chipcregs __iomem *cc)
{
struct si_info *sii = (struct si_info *)sih;
u32 erombase;
u32 __iomem *eromptr, *eromlim;
void __iomem *regs = cc;
erombase = R_REG(&cc->eromptr);
/* Set wrappers address */
sii->curwrap = (void *)((unsigned long)cc + SI_CORE_SIZE);
/* Now point the window at the erom */
pci_write_config_dword(sii->pbus, PCI_BAR0_WIN, erombase);
eromptr = regs;
eromlim = eromptr + (ER_REMAPCONTROL / sizeof(u32));
while (eromptr < eromlim) {
u32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp;
u32 mpd, asd, addrl, addrh, sizel, sizeh;
u32 __iomem *base;
uint i, j, idx;
bool br;
br = false;
/* Grok a component */
cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI);
if (cia == (ER_END | ER_VALID)) {
/* Found END of erom */
ai_hwfixup(sii);
return;
}
base = eromptr - 1;
cib = get_erom_ent(sih, &eromptr, 0, 0);
if ((cib & ER_TAG) != ER_CI) {
/* CIA not followed by CIB */
goto error;
}
cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT;
mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT;
nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT;
nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT;
nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT;
if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0))
continue;
if ((nmw + nsw == 0)) {
/* A component which is not a core */
if (cid == OOB_ROUTER_CORE_ID) {
asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE,
&addrl, &addrh, &sizel, &sizeh);
if (asd != 0)
sii->oob_router = addrl;
}
continue;
}
idx = sii->numcores;
/* sii->eromptr[idx] = base; */
sii->cia[idx] = cia;
sii->cib[idx] = cib;
sii->coreid[idx] = cid;
for (i = 0; i < nmp; i++) {
mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID);
if ((mpd & ER_TAG) != ER_MP) {
/* Not enough MP entries for component */
goto error;
}
}
/* First Slave Address Descriptor should be port 0:
* the main register space for the core
*/
asd =
get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh,
&sizel, &sizeh);
if (asd == 0) {
/* Try again to see if it is a bridge */
asd =
get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl,
&addrh, &sizel, &sizeh);
if (asd != 0)
br = true;
else if ((addrh != 0) || (sizeh != 0)
|| (sizel != SI_CORE_SIZE)) {
/* First Slave ASD for core malformed */
goto error;
}
}
sii->coresba[idx] = addrl;
sii->coresba_size[idx] = sizel;
/* Get any more ASDs in port 0 */
j = 1;
do {
asd =
get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl,
&addrh, &sizel, &sizeh);
if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) {
sii->coresba2[idx] = addrl;
sii->coresba2_size[idx] = sizel;
}
j++;
} while (asd != 0);
/* Go through the ASDs for other slave ports */
for (i = 1; i < nsp; i++) {
j = 0;
do {
asd =
get_asd(sih, &eromptr, i, j++, AD_ST_SLAVE,
&addrl, &addrh, &sizel, &sizeh);
} while (asd != 0);
if (j == 0) {
/* SP has no address descriptors */
goto error;
}
}
/* Now get master wrappers */
for (i = 0; i < nmw; i++) {
asd =
get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl,
&addrh, &sizel, &sizeh);
if (asd == 0) {
/* Missing descriptor for MW */
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
/* Master wrapper %d is not 4KB */
goto error;
}
if (i == 0)
sii->wrapba[idx] = addrl;
}
/* And finally slave wrappers */
for (i = 0; i < nsw; i++) {
uint fwp = (nsp == 1) ? 0 : 1;
asd =
get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP,
&addrl, &addrh, &sizel, &sizeh);
if (asd == 0) {
/* Missing descriptor for SW */
goto error;
}
if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) {
/* Slave wrapper is not 4KB */
goto error;
}
if ((nmw == 0) && (i == 0))
sii->wrapba[idx] = addrl;
}
/* Don't record bridges */
if (br)
continue;
/* Done with core */
sii->numcores++;
}
error:
/* Reached end of erom without finding END */
sii->numcores = 0;
return;
}
/*
* This function changes the logical "focus" to the indicated core.
* Return the current core's virtual address. Since each core starts with the
* same set of registers (BIST, clock control, etc), the returned address
* contains the first register of this 'common' register block (not to be
* confused with 'common core').
*/
void __iomem *ai_setcoreidx(struct si_pub *sih, uint coreidx)
{
struct si_info *sii = (struct si_info *)sih;
u32 addr = sii->coresba[coreidx];
u32 wrap = sii->wrapba[coreidx];
if (coreidx >= sii->numcores)
return NULL;
/* point bar0 window */
pci_write_config_dword(sii->pbus, PCI_BAR0_WIN, addr);
/* point bar0 2nd 4KB window */
pci_write_config_dword(sii->pbus, PCI_BAR0_WIN2, wrap);
sii->curidx = coreidx;
return sii->curmap;
}
/* Return the number of address spaces in current core */
int ai_numaddrspaces(struct si_pub *sih)
{
return 2;
}
/* Return the address of the nth address space in the current core */
u32 ai_addrspace(struct si_pub *sih, uint asidx)
{
struct si_info *sii;
uint cidx;
sii = (struct si_info *)sih;
cidx = sii->curidx;
if (asidx == 0)
return sii->coresba[cidx];
else if (asidx == 1)
return sii->coresba2[cidx];
else {
/* Need to parse the erom again to find addr space */
return 0;
}
}
/* Return the size of the nth address space in the current core */
u32 ai_addrspacesize(struct si_pub *sih, uint asidx)
{
struct si_info *sii;
uint cidx;
sii = (struct si_info *)sih;
cidx = sii->curidx;
if (asidx == 0)
return sii->coresba_size[cidx];
else if (asidx == 1)
return sii->coresba2_size[cidx];
else {
/* Need to parse the erom again to find addr */
return 0;
}
}
uint ai_flag(struct si_pub *sih)
{
struct si_info *sii;
struct aidmp *ai;
sii = (struct si_info *)sih;
ai = sii->curwrap;
return R_REG(&ai->oobselouta30) & 0x1f;
}
void ai_setint(struct si_pub *sih, int siflag)
{
}
uint ai_corevendor(struct si_pub *sih)
{
struct si_info *sii;
u32 cia;
sii = (struct si_info *)sih;
cia = sii->cia[sii->curidx];
return (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT;
}
uint ai_corerev(struct si_pub *sih)
{
struct si_info *sii;
u32 cib;
sii = (struct si_info *)sih;
cib = sii->cib[sii->curidx];
return (cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
}
bool ai_iscoreup(struct si_pub *sih)
{
struct si_info *sii;
struct aidmp *ai;
sii = (struct si_info *)sih;
ai = sii->curwrap;
return (((R_REG(&ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) ==
SICF_CLOCK_EN)
&& ((R_REG(&ai->resetctrl) & AIRC_RESET) == 0));
}
void ai_core_cflags_wo(struct si_pub *sih, u32 mask, u32 val)
{
struct si_info *sii;
struct aidmp *ai;
u32 w;
sii = (struct si_info *)sih;
ai = sii->curwrap;
if (mask || val) {
w = ((R_REG(&ai->ioctrl) & ~mask) | val);
W_REG(&ai->ioctrl, w);
}
}
u32 ai_core_cflags(struct si_pub *sih, u32 mask, u32 val)
{
struct si_info *sii;
struct aidmp *ai;
u32 w;
sii = (struct si_info *)sih;
ai = sii->curwrap;
if (mask || val) {
w = ((R_REG(&ai->ioctrl) & ~mask) | val);
W_REG(&ai->ioctrl, w);
}
return R_REG(&ai->ioctrl);
}
/* return true if PCIE capability exists in the pci config space */
static bool ai_ispcie(struct si_info *sii)
{
u8 cap_ptr;
cap_ptr =
pcicore_find_pci_capability(sii->pbus, PCI_CAP_ID_EXP, NULL,
NULL);
if (!cap_ptr)
return false;
return true;
}
static bool ai_buscore_prep(struct si_info *sii)
{
/* kludge to enable the clock on the 4306 which lacks a slowclock */
if (!ai_ispcie(sii))
ai_clkctl_xtal(&sii->pub, XTAL | PLL, ON);
return true;
}
u32 ai_core_sflags(struct si_pub *sih, u32 mask, u32 val)
{
struct si_info *sii;
struct aidmp *ai;
u32 w;
sii = (struct si_info *)sih;
ai = sii->curwrap;
if (mask || val) {
w = ((R_REG(&ai->iostatus) & ~mask) | val);
W_REG(&ai->iostatus, w);
}
return R_REG(&ai->iostatus);
}
static bool
ai_buscore_setup(struct si_info *sii, u32 savewin, uint *origidx)
{
bool pci, pcie;
uint i;
uint pciidx, pcieidx, pcirev, pcierev;
struct chipcregs __iomem *cc;
cc = ai_setcoreidx(&sii->pub, SI_CC_IDX);
/* get chipcommon rev */
sii->pub.ccrev = (int)ai_corerev(&sii->pub);
/* get chipcommon chipstatus */
if (sii->pub.ccrev >= 11)
sii->pub.chipst = R_REG(&cc->chipstatus);
/* get chipcommon capabilites */
sii->pub.cccaps = R_REG(&cc->capabilities);
/* get chipcommon extended capabilities */
if (sii->pub.ccrev >= 35)
sii->pub.cccaps_ext = R_REG(&cc->capabilities_ext);
/* get pmu rev and caps */
if (sii->pub.cccaps & CC_CAP_PMU) {
sii->pub.pmucaps = R_REG(&cc->pmucapabilities);
sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK;
}
/* figure out bus/orignal core idx */
sii->pub.buscoretype = NODEV_CORE_ID;
sii->pub.buscorerev = NOREV;
sii->pub.buscoreidx = BADIDX;
pci = pcie = false;
pcirev = pcierev = NOREV;
pciidx = pcieidx = BADIDX;
for (i = 0; i < sii->numcores; i++) {
uint cid, crev;
ai_setcoreidx(&sii->pub, i);
cid = ai_coreid(&sii->pub);
crev = ai_corerev(&sii->pub);
if (cid == PCI_CORE_ID) {
pciidx = i;
pcirev = crev;
pci = true;
} else if (cid == PCIE_CORE_ID) {
pcieidx = i;
pcierev = crev;
pcie = true;
}
/* find the core idx before entering this func. */
if ((savewin && (savewin == sii->coresba[i])) ||
(cc == sii->regs[i]))
*origidx = i;
}
if (pci && pcie) {
if (ai_ispcie(sii))
pci = false;
else
pcie = false;
}
if (pci) {
sii->pub.buscoretype = PCI_CORE_ID;
sii->pub.buscorerev = pcirev;
sii->pub.buscoreidx = pciidx;
} else if (pcie) {
sii->pub.buscoretype = PCIE_CORE_ID;
sii->pub.buscorerev = pcierev;
sii->pub.buscoreidx = pcieidx;
}
/* fixup necessary chip/core configurations */
if (SI_FAST(sii)) {
if (!sii->pch) {
sii->pch = pcicore_init(&sii->pub, sii->pbus,
(__iomem void *)PCIEREGS(sii));
if (sii->pch == NULL)
return false;
}
}
if (ai_pci_fixcfg(&sii->pub)) {
/* si_doattach: si_pci_fixcfg failed */
return false;
}
/* return to the original core */
ai_setcoreidx(&sii->pub, *origidx);
return true;
}
/*
* get boardtype and boardrev
*/
static __used void ai_nvram_process(struct si_info *sii)
{
uint w = 0;
/* do a pci config read to get subsystem id and subvendor id */
pci_read_config_dword(sii->pbus, PCI_SUBSYSTEM_VENDOR_ID, &w);
sii->pub.boardvendor = w & 0xffff;
sii->pub.boardtype = (w >> 16) & 0xffff;
sii->pub.boardflags = getintvar(&sii->pub, BRCMS_SROM_BOARDFLAGS);
}
static struct si_info *ai_doattach(struct si_info *sii,
void __iomem *regs, struct pci_dev *pbus)
{
struct si_pub *sih = &sii->pub;
u32 w, savewin;
struct chipcregs __iomem *cc;
uint socitype;
uint origidx;
memset((unsigned char *) sii, 0, sizeof(struct si_info));
savewin = 0;
sih->buscoreidx = BADIDX;
sii->curmap = regs;
sii->pbus = pbus;
/* find Chipcommon address */
pci_read_config_dword(sii->pbus, PCI_BAR0_WIN, &savewin);
if (!GOODCOREADDR(savewin, SI_ENUM_BASE))
savewin = SI_ENUM_BASE;
pci_write_config_dword(sii->pbus, PCI_BAR0_WIN,
SI_ENUM_BASE);
cc = (struct chipcregs __iomem *) regs;
/* bus/core/clk setup for register access */
if (!ai_buscore_prep(sii))
return NULL;
/*
* ChipID recognition.
* We assume we can read chipid at offset 0 from the regs arg.
* If we add other chiptypes (or if we need to support old sdio
* hosts w/o chipcommon), some way of recognizing them needs to
* be added here.
*/
w = R_REG(&cc->chipid);
socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
/* Might as wll fill in chip id rev & pkg */
sih->chip = w & CID_ID_MASK;
sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT;
sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT;
sih->issim = false;
/* scan for cores */
if (socitype == SOCI_AI) {
SI_MSG("Found chip type AI (0x%08x)\n", w);
/* pass chipc address instead of original core base */
ai_scan(&sii->pub, cc);
} else {
/* Found chip of unknown type */
return NULL;
}
/* no cores found, bail out */
if (sii->numcores == 0)
return NULL;
/* bus/core/clk setup */
origidx = SI_CC_IDX;
if (!ai_buscore_setup(sii, savewin, &origidx))
goto exit;
/* Init nvram from sprom/otp if they exist */
if (srom_var_init(&sii->pub, cc))
goto exit;
ai_nvram_process(sii);
/* === NVRAM, clock is ready === */
cc = (struct chipcregs __iomem *) ai_setcore(sih, CC_CORE_ID, 0);
W_REG(&cc->gpiopullup, 0);
W_REG(&cc->gpiopulldown, 0);
ai_setcoreidx(sih, origidx);
/* PMU specific initializations */
if (sih->cccaps & CC_CAP_PMU) {
u32 xtalfreq;
si_pmu_init(sih);
si_pmu_chip_init(sih);
xtalfreq = si_pmu_measure_alpclk(sih);
si_pmu_pll_init(sih, xtalfreq);
si_pmu_res_init(sih);
si_pmu_swreg_init(sih);
}
/* setup the GPIO based LED powersave register */
w = getintvar(sih, BRCMS_SROM_LEDDC);
if (w == 0)
w = DEFAULT_GPIOTIMERVAL;
ai_corereg(sih, SI_CC_IDX, offsetof(struct chipcregs, gpiotimerval),
~0, w);
if (PCIE(sii))
pcicore_attach(sii->pch, SI_DOATTACH);
if (sih->chip == BCM43224_CHIP_ID) {
/*
* enable 12 mA drive strenth for 43224 and
* set chipControl register bit 15
*/
if (sih->chiprev == 0) {
SI_MSG("Applying 43224A0 WARs\n");
ai_corereg(sih, SI_CC_IDX,
offsetof(struct chipcregs, chipcontrol),
CCTRL43224_GPIO_TOGGLE,
CCTRL43224_GPIO_TOGGLE);
si_pmu_chipcontrol(sih, 0, CCTRL_43224A0_12MA_LED_DRIVE,
CCTRL_43224A0_12MA_LED_DRIVE);
}
if (sih->chiprev >= 1) {
SI_MSG("Applying 43224B0+ WARs\n");
si_pmu_chipcontrol(sih, 0, CCTRL_43224B0_12MA_LED_DRIVE,
CCTRL_43224B0_12MA_LED_DRIVE);
}
}
if (sih->chip == BCM4313_CHIP_ID) {
/*
* enable 12 mA drive strenth for 4313 and
* set chipControl register bit 1
*/
SI_MSG("Applying 4313 WARs\n");
si_pmu_chipcontrol(sih, 0, CCTRL_4313_12MA_LED_DRIVE,
CCTRL_4313_12MA_LED_DRIVE);
}
return sii;
exit:
if (sii->pch)
pcicore_deinit(sii->pch);
sii->pch = NULL;
return NULL;
}
/*
* Allocate a si handle.
* devid - pci device id (used to determine chip#)
* osh - opaque OS handle
* regs - virtual address of initial core registers
*/
struct si_pub *
ai_attach(void __iomem *regs, struct pci_dev *sdh)
{
struct si_info *sii;
/* alloc struct si_info */
sii = kmalloc(sizeof(struct si_info), GFP_ATOMIC);
if (sii == NULL)
return NULL;
if (ai_doattach(sii, regs, sdh) == NULL) {
kfree(sii);
return NULL;
}
return (struct si_pub *) sii;
}
/* may be called with core in reset */
void ai_detach(struct si_pub *sih)
{
struct si_info *sii;
struct si_pub *si_local = NULL;
memcpy(&si_local, &sih, sizeof(struct si_pub **));
sii = (struct si_info *)sih;
if (sii == NULL)
return;
if (sii->pch)
pcicore_deinit(sii->pch);
sii->pch = NULL;
srom_free_vars(sih);
kfree(sii);
}
/* register driver interrupt disabling and restoring callback functions */
void
ai_register_intr_callback(struct si_pub *sih, void *intrsoff_fn,
void *intrsrestore_fn,
void *intrsenabled_fn, void *intr_arg)
{
struct si_info *sii;
sii = (struct si_info *)sih;
sii->intr_arg = intr_arg;
sii->intrsoff_fn = (u32 (*)(void *)) intrsoff_fn;
sii->intrsrestore_fn = (void (*) (void *, u32)) intrsrestore_fn;
sii->intrsenabled_fn = (bool (*)(void *)) intrsenabled_fn;
/* save current core id. when this function called, the current core
* must be the core which provides driver functions(il, et, wl, etc.)
*/
sii->dev_coreid = sii->coreid[sii->curidx];
}
void ai_deregister_intr_callback(struct si_pub *sih)
{
struct si_info *sii;
sii = (struct si_info *)sih;
sii->intrsoff_fn = NULL;
}
uint ai_coreid(struct si_pub *sih)
{
struct si_info *sii;
sii = (struct si_info *)sih;
return sii->coreid[sii->curidx];
}
uint ai_coreidx(struct si_pub *sih)
{
struct si_info *sii;
sii = (struct si_info *)sih;
return sii->curidx;
}
bool ai_backplane64(struct si_pub *sih)
{
return (sih->cccaps & CC_CAP_BKPLN64) != 0;
}
/* return index of coreid or BADIDX if not found */
uint ai_findcoreidx(struct si_pub *sih, uint coreid, uint coreunit)
{
struct si_info *sii;
uint found;
uint i;
sii = (struct si_info *)sih;
found = 0;
for (i = 0; i < sii->numcores; i++)
if (sii->coreid[i] == coreid) {
if (found == coreunit)
return i;
found++;
}
return BADIDX;
}
/*
* This function changes logical "focus" to the indicated core;
* must be called with interrupts off.
* Moreover, callers should keep interrupts off during switching
* out of and back to d11 core.
*/
void __iomem *ai_setcore(struct si_pub *sih, uint coreid, uint coreunit)
{
uint idx;
idx = ai_findcoreidx(sih, coreid, coreunit);
if (idx >= SI_MAXCORES)
return NULL;
return ai_setcoreidx(sih, idx);
}
/* Turn off interrupt as required by ai_setcore, before switch core */
void __iomem *ai_switch_core(struct si_pub *sih, uint coreid, uint *origidx,
uint *intr_val)
{
void __iomem *cc;
struct si_info *sii;
sii = (struct si_info *)sih;
if (SI_FAST(sii)) {
/* Overloading the origidx variable to remember the coreid,
* this works because the core ids cannot be confused with
* core indices.
*/
*origidx = coreid;
if (coreid == CC_CORE_ID)
return CCREGS_FAST(sii);
else if (coreid == sih->buscoretype)
return PCIEREGS(sii);
}
INTR_OFF(sii, *intr_val);
*origidx = sii->curidx;
cc = ai_setcore(sih, coreid, 0);
return cc;
}
/* restore coreidx and restore interrupt */
void ai_restore_core(struct si_pub *sih, uint coreid, uint intr_val)
{
struct si_info *sii;
sii = (struct si_info *)sih;
if (SI_FAST(sii)
&& ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype)))
return;
ai_setcoreidx(sih, coreid);
INTR_RESTORE(sii, intr_val);
}
void ai_write_wrapperreg(struct si_pub *sih, u32 offset, u32 val)
{
struct si_info *sii = (struct si_info *)sih;
u32 *w = (u32 *) sii->curwrap;
W_REG(w + (offset / 4), val);
return;
}
/*
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set
* operation, switch back to the original core, and return the new value.
*
* When using the silicon backplane, no fiddling with interrupts or core
* switches is needed.
*
* Also, when using pci/pcie, we can optimize away the core switching for pci
* registers and (on newer pci cores) chipcommon registers.
*/
uint ai_corereg(struct si_pub *sih, uint coreidx, uint regoff, uint mask,
uint val)
{
uint origidx = 0;
u32 __iomem *r = NULL;
uint w;
uint intr_val = 0;
bool fast = false;
struct si_info *sii;
sii = (struct si_info *)sih;
if (coreidx >= SI_MAXCORES)
return 0;
/*
* If pci/pcie, we can get at pci/pcie regs
* and on newer cores to chipc
*/
if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
/* Chipc registers are mapped at 12KB */
fast = true;
r = (u32 __iomem *)((__iomem char *)sii->curmap +
PCI_16KB0_CCREGS_OFFSET + regoff);
} else if (sii->pub.buscoreidx == coreidx) {
/*
* pci registers are at either in the last 2KB of
* an 8KB window or, in pcie and pci rev 13 at 8KB
*/
fast = true;
if (SI_FAST(sii))
r = (u32 __iomem *)((__iomem char *)sii->curmap +
PCI_16KB0_PCIREGS_OFFSET + regoff);
else
r = (u32 __iomem *)((__iomem char *)sii->curmap +
((regoff >= SBCONFIGOFF) ?
PCI_BAR0_PCISBR_OFFSET :
PCI_BAR0_PCIREGS_OFFSET) + regoff);
}
if (!fast) {
INTR_OFF(sii, intr_val);
/* save current core index */
origidx = ai_coreidx(&sii->pub);
/* switch core */
r = (u32 __iomem *) ((unsigned char __iomem *)
ai_setcoreidx(&sii->pub, coreidx) + regoff);
}
/* mask and set */
if (mask || val) {
w = (R_REG(r) & ~mask) | val;
W_REG(r, w);
}
/* readback */
w = R_REG(r);
if (!fast) {
/* restore core index */
if (origidx != coreidx)
ai_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return w;
}
void ai_core_disable(struct si_pub *sih, u32 bits)
{
struct si_info *sii;
u32 dummy;
struct aidmp *ai;
sii = (struct si_info *)sih;
ai = sii->curwrap;
/* if core is already in reset, just return */
if (R_REG(&ai->resetctrl) & AIRC_RESET)
return;
W_REG(&ai->ioctrl, bits);
dummy = R_REG(&ai->ioctrl);
udelay(10);
W_REG(&ai->resetctrl, AIRC_RESET);
udelay(1);
}
/* reset and re-enable a core
* inputs:
* bits - core specific bits that are set during and after reset sequence
* resetbits - core specific bits that are set only during reset sequence
*/
void ai_core_reset(struct si_pub *sih, u32 bits, u32 resetbits)
{
struct si_info *sii;
struct aidmp *ai;
u32 dummy;
sii = (struct si_info *)sih;
ai = sii->curwrap;
/*
* Must do the disable sequence first to work
* for arbitrary current core state.
*/
ai_core_disable(sih, (bits | resetbits));
/*
* Now do the initialization sequence.
*/
W_REG(&ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN));
dummy = R_REG(&ai->ioctrl);
W_REG(&ai->resetctrl, 0);
udelay(1);
W_REG(&ai->ioctrl, (bits | SICF_CLOCK_EN));
dummy = R_REG(&ai->ioctrl);
udelay(1);
}
/* return the slow clock source - LPO, XTAL, or PCI */
static uint ai_slowclk_src(struct si_info *sii)
{
struct chipcregs __iomem *cc;
u32 val;
if (sii->pub.ccrev < 6) {
pci_read_config_dword(sii->pbus, PCI_GPIO_OUT,
&val);
if (val & PCI_CFG_GPIO_SCS)
return SCC_SS_PCI;
return SCC_SS_XTAL;
} else if (sii->pub.ccrev < 10) {
cc = (struct chipcregs __iomem *)
ai_setcoreidx(&sii->pub, sii->curidx);
return R_REG(&cc->slow_clk_ctl) & SCC_SS_MASK;
} else /* Insta-clock */
return SCC_SS_XTAL;
}
/*
* return the ILP (slowclock) min or max frequency
* precondition: we've established the chip has dynamic clk control
*/
static uint ai_slowclk_freq(struct si_info *sii, bool max_freq,
struct chipcregs __iomem *cc)
{
u32 slowclk;
uint div;
slowclk = ai_slowclk_src(sii);
if (sii->pub.ccrev < 6) {
if (slowclk == SCC_SS_PCI)
return max_freq ? (PCIMAXFREQ / 64)
: (PCIMINFREQ / 64);
else
return max_freq ? (XTALMAXFREQ / 32)
: (XTALMINFREQ / 32);
} else if (sii->pub.ccrev < 10) {
div = 4 *
(((R_REG(&cc->slow_clk_ctl) & SCC_CD_MASK) >>
SCC_CD_SHIFT) + 1);
if (slowclk == SCC_SS_LPO)
return max_freq ? LPOMAXFREQ : LPOMINFREQ;
else if (slowclk == SCC_SS_XTAL)
return max_freq ? (XTALMAXFREQ / div)
: (XTALMINFREQ / div);
else if (slowclk == SCC_SS_PCI)
return max_freq ? (PCIMAXFREQ / div)
: (PCIMINFREQ / div);
} else {
/* Chipc rev 10 is InstaClock */
div = R_REG(&cc->system_clk_ctl) >> SYCC_CD_SHIFT;
div = 4 * (div + 1);
return max_freq ? XTALMAXFREQ : (XTALMINFREQ / div);
}
return 0;
}
static void
ai_clkctl_setdelay(struct si_info *sii, struct chipcregs __iomem *cc)
{
uint slowmaxfreq, pll_delay, slowclk;
uint pll_on_delay, fref_sel_delay;
pll_delay = PLL_DELAY;
/*
* If the slow clock is not sourced by the xtal then
* add the xtal_on_delay since the xtal will also be
* powered down by dynamic clk control logic.
*/
slowclk = ai_slowclk_src(sii);
if (slowclk != SCC_SS_XTAL)
pll_delay += XTAL_ON_DELAY;
/* Starting with 4318 it is ILP that is used for the delays */
slowmaxfreq =
ai_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? false : true, cc);
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
W_REG(&cc->pll_on_delay, pll_on_delay);
W_REG(&cc->fref_sel_delay, fref_sel_delay);
}
/* initialize power control delay registers */
void ai_clkctl_init(struct si_pub *sih)
{
struct si_info *sii;
uint origidx = 0;
struct chipcregs __iomem *cc;
bool fast;
if (!(sih->cccaps & CC_CAP_PWR_CTL))
return;
sii = (struct si_info *)sih;
fast = SI_FAST(sii);
if (!fast) {
origidx = sii->curidx;
cc = (struct chipcregs __iomem *)
ai_setcore(sih, CC_CORE_ID, 0);
if (cc == NULL)
return;
} else {
cc = (struct chipcregs __iomem *) CCREGS_FAST(sii);
if (cc == NULL)
return;
}
/* set all Instaclk chip ILP to 1 MHz */
if (sih->ccrev >= 10)
SET_REG(&cc->system_clk_ctl, SYCC_CD_MASK,
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
ai_clkctl_setdelay(sii, cc);
if (!fast)
ai_setcoreidx(sih, origidx);
}
/*
* return the value suitable for writing to the
* dot11 core FAST_PWRUP_DELAY register
*/
u16 ai_clkctl_fast_pwrup_delay(struct si_pub *sih)
{
struct si_info *sii;
uint origidx = 0;
struct chipcregs __iomem *cc;
uint slowminfreq;
u16 fpdelay;
uint intr_val = 0;
bool fast;
sii = (struct si_info *)sih;
if (sih->cccaps & CC_CAP_PMU) {
INTR_OFF(sii, intr_val);
fpdelay = si_pmu_fast_pwrup_delay(sih);
INTR_RESTORE(sii, intr_val);
return fpdelay;
}
if (!(sih->cccaps & CC_CAP_PWR_CTL))
return 0;
fast = SI_FAST(sii);
fpdelay = 0;
if (!fast) {
origidx = sii->curidx;
INTR_OFF(sii, intr_val);
cc = (struct chipcregs __iomem *)
ai_setcore(sih, CC_CORE_ID, 0);
if (cc == NULL)
goto done;
} else {
cc = (struct chipcregs __iomem *) CCREGS_FAST(sii);
if (cc == NULL)
goto done;
}
slowminfreq = ai_slowclk_freq(sii, false, cc);
fpdelay = (((R_REG(&cc->pll_on_delay) + 2) * 1000000) +
(slowminfreq - 1)) / slowminfreq;
done:
if (!fast) {
ai_setcoreidx(sih, origidx);
INTR_RESTORE(sii, intr_val);
}
return fpdelay;
}
/* turn primary xtal and/or pll off/on */
int ai_clkctl_xtal(struct si_pub *sih, uint what, bool on)
{
struct si_info *sii;
u32 in, out, outen;
sii = (struct si_info *)sih;
/* pcie core doesn't have any mapping to control the xtal pu */
if (PCIE(sii))
return -1;
pci_read_config_dword(sii->pbus, PCI_GPIO_IN, &in);
pci_read_config_dword(sii->pbus, PCI_GPIO_OUT, &out);
pci_read_config_dword(sii->pbus, PCI_GPIO_OUTEN, &outen);
/*
* Avoid glitching the clock if GPRS is already using it.
* We can't actually read the state of the PLLPD so we infer it
* by the value of XTAL_PU which *is* readable via gpioin.
*/
if (on && (in & PCI_CFG_GPIO_XTAL))
return 0;
if (what & XTAL)
outen |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
outen |= PCI_CFG_GPIO_PLL;
if (on) {
/* turn primary xtal on */
if (what & XTAL) {
out |= PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUT, out);
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUTEN, outen);
udelay(XTAL_ON_DELAY);
}
/* turn pll on */
if (what & PLL) {
out &= ~PCI_CFG_GPIO_PLL;
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUT, out);
mdelay(2);
}
} else {
if (what & XTAL)
out &= ~PCI_CFG_GPIO_XTAL;
if (what & PLL)
out |= PCI_CFG_GPIO_PLL;
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUT, out);
pci_write_config_dword(sii->pbus,
PCI_GPIO_OUTEN, outen);
}
return 0;
}
/* clk control mechanism through chipcommon, no policy checking */
static bool _ai_clkctl_cc(struct si_info *sii, uint mode)
{
uint origidx = 0;
struct chipcregs __iomem *cc;
u32 scc;
uint intr_val = 0;
bool fast = SI_FAST(sii);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (sii->pub.ccrev < 6)
return false;
if (!fast) {
INTR_OFF(sii, intr_val);
origidx = sii->curidx;
cc = (struct chipcregs __iomem *)
ai_setcore(&sii->pub, CC_CORE_ID, 0);
} else {
cc = (struct chipcregs __iomem *) CCREGS_FAST(sii);
if (cc == NULL)
goto done;
}
if (!(sii->pub.cccaps & CC_CAP_PWR_CTL) && (sii->pub.ccrev < 20))
goto done;
switch (mode) {
case CLK_FAST: /* FORCEHT, fast (pll) clock */
if (sii->pub.ccrev < 10) {
/*
* don't forget to force xtal back
* on before we clear SCC_DYN_XTAL..
*/
ai_clkctl_xtal(&sii->pub, XTAL, ON);
SET_REG(&cc->slow_clk_ctl,
(SCC_XC | SCC_FS | SCC_IP), SCC_IP);
} else if (sii->pub.ccrev < 20) {
OR_REG(&cc->system_clk_ctl, SYCC_HR);
} else {
OR_REG(&cc->clk_ctl_st, CCS_FORCEHT);
}
/* wait for the PLL */
if (sii->pub.cccaps & CC_CAP_PMU) {
u32 htavail = CCS_HTAVAIL;
SPINWAIT(((R_REG(&cc->clk_ctl_st) & htavail)
== 0), PMU_MAX_TRANSITION_DLY);
} else {
udelay(PLL_DELAY);
}
break;
case CLK_DYNAMIC: /* enable dynamic clock control */
if (sii->pub.ccrev < 10) {
scc = R_REG(&cc->slow_clk_ctl);
scc &= ~(SCC_FS | SCC_IP | SCC_XC);
if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
scc |= SCC_XC;
W_REG(&cc->slow_clk_ctl, scc);
/*
* for dynamic control, we have to
* release our xtal_pu "force on"
*/
if (scc & SCC_XC)
ai_clkctl_xtal(&sii->pub, XTAL, OFF);
} else if (sii->pub.ccrev < 20) {
/* Instaclock */
AND_REG(&cc->system_clk_ctl, ~SYCC_HR);
} else {
AND_REG(&cc->clk_ctl_st, ~CCS_FORCEHT);
}
break;
default:
break;
}
done:
if (!fast) {
ai_setcoreidx(&sii->pub, origidx);
INTR_RESTORE(sii, intr_val);
}
return mode == CLK_FAST;
}
/*
* clock control policy function throught chipcommon
*
* set dynamic clk control mode (forceslow, forcefast, dynamic)
* returns true if we are forcing fast clock
* this is a wrapper over the next internal function
* to allow flexible policy settings for outside caller
*/
bool ai_clkctl_cc(struct si_pub *sih, uint mode)
{
struct si_info *sii;
sii = (struct si_info *)sih;
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (sih->ccrev < 6)
return false;
if (PCI_FORCEHT(sii))
return mode == CLK_FAST;
return _ai_clkctl_cc(sii, mode);
}
/* Build device path */
int ai_devpath(struct si_pub *sih, char *path, int size)
{
int slen;
if (!path || size <= 0)
return -1;
slen = snprintf(path, (size_t) size, "pci/%u/%u/",
((struct si_info *)sih)->pbus->bus->number,
PCI_SLOT(((struct pci_dev *)
(((struct si_info *)(sih))->pbus))->devfn));
if (slen < 0 || slen >= size) {
path[0] = '\0';
return -1;
}
return 0;
}
void ai_pci_up(struct si_pub *sih)
{
struct si_info *sii;
sii = (struct si_info *)sih;
if (PCI_FORCEHT(sii))
_ai_clkctl_cc(sii, CLK_FAST);
if (PCIE(sii))
pcicore_up(sii->pch, SI_PCIUP);
}
/* Unconfigure and/or apply various WARs when system is going to sleep mode */
void ai_pci_sleep(struct si_pub *sih)
{
struct si_info *sii;
sii = (struct si_info *)sih;
pcicore_sleep(sii->pch);
}
/* Unconfigure and/or apply various WARs when going down */
void ai_pci_down(struct si_pub *sih)
{
struct si_info *sii;
sii = (struct si_info *)sih;
/* release FORCEHT since chip is going to "down" state */
if (PCI_FORCEHT(sii))
_ai_clkctl_cc(sii, CLK_DYNAMIC);
pcicore_down(sii->pch, SI_PCIDOWN);
}
/*
* Configure the pci core for pci client (NIC) action
* coremask is the bitvec of cores by index to be enabled.
*/
void ai_pci_setup(struct si_pub *sih, uint coremask)
{
struct si_info *sii;
struct sbpciregs __iomem *regs = NULL;
u32 siflag = 0, w;
uint idx = 0;
sii = (struct si_info *)sih;
if (PCI(sii)) {
/* get current core index */
idx = sii->curidx;
/* we interrupt on this backplane flag number */
siflag = ai_flag(sih);
/* switch over to pci core */
regs = ai_setcoreidx(sih, sii->pub.buscoreidx);
}
/*
* Enable sb->pci interrupts. Assume
* PCI rev 2.3 support was added in pci core rev 6 and things changed..
*/
if (PCIE(sii) || (PCI(sii) && ((sii->pub.buscorerev) >= 6))) {
/* pci config write to set this core bit in PCIIntMask */
pci_read_config_dword(sii->pbus, PCI_INT_MASK, &w);
w |= (coremask << PCI_SBIM_SHIFT);
pci_write_config_dword(sii->pbus, PCI_INT_MASK, w);
} else {
/* set sbintvec bit for our flag number */
ai_setint(sih, siflag);
}
if (PCI(sii)) {
pcicore_pci_setup(sii->pch, regs);
/* switch back to previous core */
ai_setcoreidx(sih, idx);
}
}
/*
* Fixup SROMless PCI device's configuration.
* The current core may be changed upon return.
*/
int ai_pci_fixcfg(struct si_pub *sih)
{
uint origidx;
void __iomem *regs = NULL;
struct si_info *sii = (struct si_info *)sih;
/* Fixup PI in SROM shadow area to enable the correct PCI core access */
/* save the current index */
origidx = ai_coreidx(&sii->pub);
/* check 'pi' is correct and fix it if not */
regs = ai_setcore(&sii->pub, sii->pub.buscoretype, 0);
if (sii->pub.buscoretype == PCIE_CORE_ID)
pcicore_fixcfg_pcie(sii->pch,
(struct sbpcieregs __iomem *)regs);
else if (sii->pub.buscoretype == PCI_CORE_ID)
pcicore_fixcfg_pci(sii->pch, (struct sbpciregs __iomem *)regs);
/* restore the original index */
ai_setcoreidx(&sii->pub, origidx);
pcicore_hwup(sii->pch);
return 0;
}
/* mask&set gpiocontrol bits */
u32 ai_gpiocontrol(struct si_pub *sih, u32 mask, u32 val, u8 priority)
{
uint regoff;
regoff = offsetof(struct chipcregs, gpiocontrol);
return ai_corereg(sih, SI_CC_IDX, regoff, mask, val);
}
void ai_chipcontrl_epa4331(struct si_pub *sih, bool on)
{
struct si_info *sii;
struct chipcregs __iomem *cc;
uint origidx;
u32 val;
sii = (struct si_info *)sih;
origidx = ai_coreidx(sih);
cc = (struct chipcregs __iomem *) ai_setcore(sih, CC_CORE_ID, 0);
val = R_REG(&cc->chipcontrol);
if (on) {
if (sih->chippkg == 9 || sih->chippkg == 0xb)
/* Ext PA Controls for 4331 12x9 Package */
W_REG(&cc->chipcontrol, val |
CCTRL4331_EXTPA_EN |
CCTRL4331_EXTPA_ON_GPIO2_5);
else
/* Ext PA Controls for 4331 12x12 Package */
W_REG(&cc->chipcontrol,
val | CCTRL4331_EXTPA_EN);
} else {
val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5);
W_REG(&cc->chipcontrol, val);
}
ai_setcoreidx(sih, origidx);
}
/* Enable BT-COEX & Ex-PA for 4313 */
void ai_epa_4313war(struct si_pub *sih)
{
struct si_info *sii;
struct chipcregs __iomem *cc;
uint origidx;
sii = (struct si_info *)sih;
origidx = ai_coreidx(sih);
cc = ai_setcore(sih, CC_CORE_ID, 0);
/* EPA Fix */
W_REG(&cc->gpiocontrol,
R_REG(&cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK);
ai_setcoreidx(sih, origidx);
}
/* check if the device is removed */
bool ai_deviceremoved(struct si_pub *sih)
{
u32 w;
struct si_info *sii;
sii = (struct si_info *)sih;
pci_read_config_dword(sii->pbus, PCI_VENDOR_ID, &w);
if ((w & 0xFFFF) != PCI_VENDOR_ID_BROADCOM)
return true;
return false;
}
bool ai_is_sprom_available(struct si_pub *sih)
{
if (sih->ccrev >= 31) {
struct si_info *sii;
uint origidx;
struct chipcregs __iomem *cc;
u32 sromctrl;
if ((sih->cccaps & CC_CAP_SROM) == 0)
return false;
sii = (struct si_info *)sih;
origidx = sii->curidx;
cc = ai_setcoreidx(sih, SI_CC_IDX);
sromctrl = R_REG(&cc->sromcontrol);
ai_setcoreidx(sih, origidx);
return sromctrl & SRC_PRESENT;
}
switch (sih->chip) {
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_SPROM_PRESENT) != 0;
default:
return true;
}
}
bool ai_is_otp_disabled(struct si_pub *sih)
{
switch (sih->chip) {
case BCM4313_CHIP_ID:
return (sih->chipst & CST4313_OTP_PRESENT) == 0;
/* These chips always have their OTP on */
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
default:
return false;
}
}