| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_LLT_H |
| #define EIGEN_LLT_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal{ |
| |
| template<typename MatrixType_, int UpLo_> struct traits<LLT<MatrixType_, UpLo_> > |
| : traits<MatrixType_> |
| { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef int StorageIndex; |
| enum { Flags = 0 }; |
| }; |
| |
| template<typename MatrixType, int UpLo> struct LLT_Traits; |
| } |
| |
| /** \ingroup Cholesky_Module |
| * |
| * \class LLT |
| * |
| * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition |
| * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. |
| * The other triangular part won't be read. |
| * |
| * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
| * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
| * |
| * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
| * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
| * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
| * situations like generalised eigen problems with hermitian matrices. |
| * |
| * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, |
| * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations |
| * has a solution. |
| * |
| * Example: \include LLT_example.cpp |
| * Output: \verbinclude LLT_example.out |
| * |
| * \b Performance: for best performance, it is recommended to use a column-major storage format |
| * with the Lower triangular part (the default), or, equivalently, a row-major storage format |
| * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization |
| * step, and rank-updates can be up to 3 times slower. |
| * |
| * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| * |
| * Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is considered. |
| * Therefore, the strict lower part does not have to store correct values. |
| * |
| * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT |
| */ |
| template<typename MatrixType_, int UpLo_> class LLT |
| : public SolverBase<LLT<MatrixType_, UpLo_> > |
| { |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef SolverBase<LLT> Base; |
| friend class SolverBase<LLT>; |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) |
| enum { |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| enum { |
| PacketSize = internal::packet_traits<Scalar>::size, |
| AlignmentMask = int(PacketSize)-1, |
| UpLo = UpLo_ |
| }; |
| |
| typedef internal::LLT_Traits<MatrixType,UpLo> Traits; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via LLT::compute(const MatrixType&). |
| */ |
| LLT() : m_matrix(), m_isInitialized(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa LLT() |
| */ |
| explicit LLT(Index size) : m_matrix(size, size), |
| m_isInitialized(false) {} |
| |
| template<typename InputType> |
| explicit LLT(const EigenBase<InputType>& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()), |
| m_isInitialized(false) |
| { |
| compute(matrix.derived()); |
| } |
| |
| /** \brief Constructs a LLT factorization from a given matrix |
| * |
| * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when |
| * \c MatrixType is a Eigen::Ref. |
| * |
| * \sa LLT(const EigenBase&) |
| */ |
| template<typename InputType> |
| explicit LLT(EigenBase<InputType>& matrix) |
| : m_matrix(matrix.derived()), |
| m_isInitialized(false) |
| { |
| compute(matrix.derived()); |
| } |
| |
| /** \returns a view of the upper triangular matrix U */ |
| inline typename Traits::MatrixU matrixU() const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return Traits::getU(m_matrix); |
| } |
| |
| /** \returns a view of the lower triangular matrix L */ |
| inline typename Traits::MatrixL matrixL() const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return Traits::getL(m_matrix); |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * Since this LLT class assumes anyway that the matrix A is invertible, the solution |
| * theoretically exists and is unique regardless of b. |
| * |
| * Example: \include LLT_solve.cpp |
| * Output: \verbinclude LLT_solve.out |
| * |
| * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() |
| */ |
| template<typename Rhs> |
| inline const Solve<LLT, Rhs> |
| solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| template<typename Derived> |
| void solveInPlace(const MatrixBase<Derived> &bAndX) const; |
| |
| template<typename InputType> |
| LLT& compute(const EigenBase<InputType>& matrix); |
| |
| /** \returns an estimate of the reciprocal condition number of the matrix of |
| * which \c *this is the Cholesky decomposition. |
| */ |
| RealScalar rcond() const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); |
| return internal::rcond_estimate_helper(m_l1_norm, *this); |
| } |
| |
| /** \returns the LLT decomposition matrix |
| * |
| * TODO: document the storage layout |
| */ |
| inline const MatrixType& matrixLLT() const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return m_matrix; |
| } |
| |
| MatrixType reconstructedMatrix() const; |
| |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the matrix.appears not to be positive definite. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return m_info; |
| } |
| |
| /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. |
| * |
| * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: |
| * \code x = decomposition.adjoint().solve(b) \endcode |
| */ |
| const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; } |
| |
| inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
| inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| |
| template<typename VectorType> |
| LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename RhsType, typename DstType> |
| void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| |
| template<bool Conjugate, typename RhsType, typename DstType> |
| void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
| #endif |
| |
| protected: |
| |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| /** \internal |
| * Used to compute and store L |
| * The strict upper part is not used and even not initialized. |
| */ |
| MatrixType m_matrix; |
| RealScalar m_l1_norm; |
| bool m_isInitialized; |
| ComputationInfo m_info; |
| }; |
| |
| namespace internal { |
| |
| template<typename Scalar, int UpLo> struct llt_inplace; |
| |
| template<typename MatrixType, typename VectorType> |
| static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) |
| { |
| using std::sqrt; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::ColXpr ColXpr; |
| typedef internal::remove_all_t<ColXpr> ColXprCleaned; |
| typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
| typedef Matrix<Scalar,Dynamic,1> TempVectorType; |
| typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
| |
| Index n = mat.cols(); |
| eigen_assert(mat.rows()==n && vec.size()==n); |
| |
| TempVectorType temp; |
| |
| if(sigma>0) |
| { |
| // This version is based on Givens rotations. |
| // It is faster than the other one below, but only works for updates, |
| // i.e., for sigma > 0 |
| temp = sqrt(sigma) * vec; |
| |
| for(Index i=0; i<n; ++i) |
| { |
| JacobiRotation<Scalar> g; |
| g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); |
| |
| Index rs = n-i-1; |
| if(rs>0) |
| { |
| ColXprSegment x(mat.col(i).tail(rs)); |
| TempVecSegment y(temp.tail(rs)); |
| apply_rotation_in_the_plane(x, y, g); |
| } |
| } |
| } |
| else |
| { |
| temp = vec; |
| RealScalar beta = 1; |
| for(Index j=0; j<n; ++j) |
| { |
| RealScalar Ljj = numext::real(mat.coeff(j,j)); |
| RealScalar dj = numext::abs2(Ljj); |
| Scalar wj = temp.coeff(j); |
| RealScalar swj2 = sigma*numext::abs2(wj); |
| RealScalar gamma = dj*beta + swj2; |
| |
| RealScalar x = dj + swj2/beta; |
| if (x<=RealScalar(0)) |
| return j; |
| RealScalar nLjj = sqrt(x); |
| mat.coeffRef(j,j) = nLjj; |
| beta += swj2/dj; |
| |
| // Update the terms of L |
| Index rs = n-j-1; |
| if(rs) |
| { |
| temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); |
| if(!numext::is_exactly_zero(gamma)) |
| mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); |
| } |
| } |
| } |
| return -1; |
| } |
| |
| template<typename Scalar> struct llt_inplace<Scalar, Lower> |
| { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| template<typename MatrixType> |
| static Index unblocked(MatrixType& mat) |
| { |
| using std::sqrt; |
| |
| eigen_assert(mat.rows()==mat.cols()); |
| const Index size = mat.rows(); |
| for(Index k = 0; k < size; ++k) |
| { |
| Index rs = size-k-1; // remaining size |
| |
| Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
| Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
| Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
| |
| RealScalar x = numext::real(mat.coeff(k,k)); |
| if (k>0) x -= A10.squaredNorm(); |
| if (x<=RealScalar(0)) |
| return k; |
| mat.coeffRef(k,k) = x = sqrt(x); |
| if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); |
| if (rs>0) A21 /= x; |
| } |
| return -1; |
| } |
| |
| template<typename MatrixType> |
| static Index blocked(MatrixType& m) |
| { |
| eigen_assert(m.rows()==m.cols()); |
| Index size = m.rows(); |
| if(size<32) |
| return unblocked(m); |
| |
| Index blockSize = size/8; |
| blockSize = (blockSize/16)*16; |
| blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); |
| |
| for (Index k=0; k<size; k+=blockSize) |
| { |
| // partition the matrix: |
| // A00 | - | - |
| // lu = A10 | A11 | - |
| // A20 | A21 | A22 |
| Index bs = (std::min)(blockSize, size-k); |
| Index rs = size - k - bs; |
| Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); |
| Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); |
| Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); |
| |
| Index ret; |
| if((ret=unblocked(A11))>=0) return k+ret; |
| if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
| if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck |
| } |
| return -1; |
| } |
| |
| template<typename MatrixType, typename VectorType> |
| static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
| { |
| return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
| } |
| }; |
| |
| template<typename Scalar> struct llt_inplace<Scalar, Upper> |
| { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| template<typename MatrixType> |
| static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) |
| { |
| Transpose<MatrixType> matt(mat); |
| return llt_inplace<Scalar, Lower>::unblocked(matt); |
| } |
| template<typename MatrixType> |
| static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) |
| { |
| Transpose<MatrixType> matt(mat); |
| return llt_inplace<Scalar, Lower>::blocked(matt); |
| } |
| template<typename MatrixType, typename VectorType> |
| static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
| { |
| Transpose<MatrixType> matt(mat); |
| return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
| } |
| }; |
| |
| template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> |
| { |
| typedef const TriangularView<const MatrixType, Lower> MatrixL; |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
| static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
| static bool inplace_decomposition(MatrixType& m) |
| { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } |
| }; |
| |
| template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> |
| { |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
| typedef const TriangularView<const MatrixType, Upper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
| static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
| static bool inplace_decomposition(MatrixType& m) |
| { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } |
| }; |
| |
| } // end namespace internal |
| |
| /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
| * |
| * \returns a reference to *this |
| * |
| * Example: \include TutorialLinAlgComputeTwice.cpp |
| * Output: \verbinclude TutorialLinAlgComputeTwice.out |
| */ |
| template<typename MatrixType, int UpLo_> |
| template<typename InputType> |
| LLT<MatrixType,UpLo_>& LLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a) |
| { |
| eigen_assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| m_matrix.resize(size, size); |
| if (!internal::is_same_dense(m_matrix, a.derived())) |
| m_matrix = a.derived(); |
| |
| // Compute matrix L1 norm = max abs column sum. |
| m_l1_norm = RealScalar(0); |
| // TODO move this code to SelfAdjointView |
| for (Index col = 0; col < size; ++col) { |
| RealScalar abs_col_sum; |
| if (UpLo_ == Lower) |
| abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
| else |
| abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
| if (abs_col_sum > m_l1_norm) |
| m_l1_norm = abs_col_sum; |
| } |
| |
| m_isInitialized = true; |
| bool ok = Traits::inplace_decomposition(m_matrix); |
| m_info = ok ? Success : NumericalIssue; |
| |
| return *this; |
| } |
| |
| /** Performs a rank one update (or dowdate) of the current decomposition. |
| * If A = LL^* before the rank one update, |
| * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector |
| * of same dimension. |
| */ |
| template<typename MatrixType_, int UpLo_> |
| template<typename VectorType> |
| LLT<MatrixType_,UpLo_> & LLT<MatrixType_,UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
| eigen_assert(v.size()==m_matrix.cols()); |
| eigen_assert(m_isInitialized); |
| if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) |
| m_info = NumericalIssue; |
| else |
| m_info = Success; |
| |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename MatrixType_,int UpLo_> |
| template<typename RhsType, typename DstType> |
| void LLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| { |
| _solve_impl_transposed<true>(rhs, dst); |
| } |
| |
| template<typename MatrixType_,int UpLo_> |
| template<bool Conjugate, typename RhsType, typename DstType> |
| void LLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
| { |
| dst = rhs; |
| |
| matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); |
| matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst); |
| } |
| #endif |
| |
| /** \internal use x = llt_object.solve(x); |
| * |
| * This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * This version avoids a copy when the right hand side matrix b is not needed anymore. |
| * |
| * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. |
| * This function will const_cast it, so constness isn't honored here. |
| * |
| * \sa LLT::solve(), MatrixBase::llt() |
| */ |
| template<typename MatrixType, int UpLo_> |
| template<typename Derived> |
| void LLT<MatrixType,UpLo_>::solveInPlace(const MatrixBase<Derived> &bAndX) const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| eigen_assert(m_matrix.rows()==bAndX.rows()); |
| matrixL().solveInPlace(bAndX); |
| matrixU().solveInPlace(bAndX); |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: L L^*. |
| * This function is provided for debug purpose. */ |
| template<typename MatrixType, int UpLo_> |
| MatrixType LLT<MatrixType,UpLo_>::reconstructedMatrix() const |
| { |
| eigen_assert(m_isInitialized && "LLT is not initialized."); |
| return matrixL() * matrixL().adjoint().toDenseMatrix(); |
| } |
| |
| /** \cholesky_module |
| * \returns the LLT decomposition of \c *this |
| * \sa SelfAdjointView::llt() |
| */ |
| template<typename Derived> |
| inline const LLT<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::llt() const |
| { |
| return LLT<PlainObject>(derived()); |
| } |
| |
| /** \cholesky_module |
| * \returns the LLT decomposition of \c *this |
| * \sa SelfAdjointView::llt() |
| */ |
| template<typename MatrixType, unsigned int UpLo> |
| inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
| SelfAdjointView<MatrixType, UpLo>::llt() const |
| { |
| return LLT<PlainObject,UpLo>(m_matrix); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_LLT_H |