blob: eaa4352b857c0bcaaa340664cf5e66a891db51bb [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BINARY_FUNCTORS_H
#define EIGEN_BINARY_FUNCTORS_H
#include "../InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
//---------- associative binary functors ----------
template<typename Arg1, typename Arg2>
struct binary_op_base
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
};
/** \internal
* \brief Template functor to compute the sum of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_sum_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_sum_op>::ReturnType result_type;
#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN
scalar_sum_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::padd(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
{ return internal::predux(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_sum_op<LhsScalar,RhsScalar> > {
enum {
Cost = (int(NumTraits<LhsScalar>::AddCost) + int(NumTraits<RhsScalar>::AddCost)) / 2, // rough estimate!
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasAdd && packet_traits<RhsScalar>::HasAdd
// TODO vectorize mixed sum
};
};
template<>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool scalar_sum_op<bool,bool>::operator() (const bool& a, const bool& b) const { return a || b; }
/** \internal
* \brief Template functor to compute the product of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_product_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_product_op>::ReturnType result_type;
#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN
scalar_product_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmul(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
{ return internal::predux_mul(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
enum {
Cost = (int(NumTraits<LhsScalar>::MulCost) + int(NumTraits<RhsScalar>::MulCost))/2, // rough estimate!
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
// TODO vectorize mixed product
};
};
template<>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool scalar_product_op<bool,bool>::operator() (const bool& a, const bool& b) const { return a && b; }
/** \internal
* \brief Template functor to compute the conjugate product of two scalars
*
* This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_conj_product_op : binary_op_base<LhsScalar,RhsScalar>
{
enum {
Conj = NumTraits<LhsScalar>::IsComplex
};
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_conj_product_op>::ReturnType result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const
{ return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
enum {
Cost = NumTraits<LhsScalar>::MulCost,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
};
};
/** \internal
* \brief Template functor to compute the min of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
*/
template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
struct scalar_min_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_min_op>::ReturnType result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const {
return internal::pmin<NaNPropagation>(a, b);
}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{
return internal::pmin<NaNPropagation>(a,b);
}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
{
return internal::predux_min<NaNPropagation>(a);
}
};
template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
struct functor_traits<scalar_min_op<LhsScalar,RhsScalar, NaNPropagation> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMin
};
};
/** \internal
* \brief Template functor to compute the max of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
*/
template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
struct scalar_max_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_max_op>::ReturnType result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const LhsScalar& a, const RhsScalar& b) const {
return internal::pmax<NaNPropagation>(a,b);
}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{
return internal::pmax<NaNPropagation>(a,b);
}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type predux(const Packet& a) const
{
return internal::predux_max<NaNPropagation>(a);
}
};
template<typename LhsScalar,typename RhsScalar, int NaNPropagation>
struct functor_traits<scalar_max_op<LhsScalar,RhsScalar, NaNPropagation> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMax
};
};
/** \internal
* \brief Template functors for comparison of two scalars
* \todo Implement packet-comparisons
*/
template<typename LhsScalar, typename RhsScalar, ComparisonName cmp> struct scalar_cmp_op;
template<typename LhsScalar, typename RhsScalar, ComparisonName cmp>
struct functor_traits<scalar_cmp_op<LhsScalar,RhsScalar, cmp> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = is_same<LhsScalar, RhsScalar>::value &&
packet_traits<LhsScalar>::HasCmp &&
// Since return type is bool, we currently require the inputs
// to be bool to enable packet access.
is_same<LhsScalar, bool>::value
};
};
template<ComparisonName Cmp, typename LhsScalar, typename RhsScalar>
struct result_of<scalar_cmp_op<LhsScalar, RhsScalar, Cmp>(LhsScalar,RhsScalar)> {
typedef bool type;
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_EQ> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a==b;}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_eq(a,b); }
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LT> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<b;}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_lt(a,b); }
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LE> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<=b;}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_le(a,b); }
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GT> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>b;}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_lt(b,a); }
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GE> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>=b;}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_le(b,a); }
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_UNORD> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return !(a<=b || b<=a);}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_eq(internal::por(internal::pcmp_le(a, b), internal::pcmp_le(b, a)), internal::pzero(a)); }
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_NEQ> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a!=b;}
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pcmp_eq(internal::pcmp_eq(a, b), internal::pzero(a)); }
};
/** \internal
* \brief Template functor to compute the hypot of two \b positive \b and \b real scalars
*
* \sa MatrixBase::stableNorm(), class Redux
*/
template<typename Scalar>
struct scalar_hypot_op<Scalar,Scalar> : binary_op_base<Scalar,Scalar>
{
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar &x, const Scalar &y) const
{
// This functor is used by hypotNorm only for which it is faster to first apply abs
// on all coefficients prior to reduction through hypot.
// This way we avoid calling abs on positive and real entries, and this also permits
// to seamlessly handle complexes. Otherwise we would have to handle both real and complexes
// through the same functor...
return internal::positive_real_hypot(x,y);
}
};
template<typename Scalar>
struct functor_traits<scalar_hypot_op<Scalar,Scalar> > {
enum
{
Cost = 3 * NumTraits<Scalar>::AddCost +
2 * NumTraits<Scalar>::MulCost +
2 * scalar_div_cost<Scalar,false>::value,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the pow of two scalars
* See the specification of pow in https://en.cppreference.com/w/cpp/numeric/math/pow
*/
template<typename Scalar, typename Exponent>
struct scalar_pow_op : binary_op_base<Scalar,Exponent>
{
typedef typename ScalarBinaryOpTraits<Scalar,Exponent,scalar_pow_op>::ReturnType result_type;
#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN
scalar_pow_op() {
typedef Scalar LhsScalar;
typedef Exponent RhsScalar;
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC
inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{
return generic_pow(a,b);
}
};
template<typename Scalar, typename Exponent>
struct functor_traits<scalar_pow_op<Scalar,Exponent> > {
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = (!NumTraits<Scalar>::IsComplex && !NumTraits<Scalar>::IsInteger &&
packet_traits<Scalar>::HasExp && packet_traits<Scalar>::HasLog &&
packet_traits<Scalar>::HasRound && packet_traits<Scalar>::HasCmp &&
// Temporarily disable packet access for half/bfloat16 until
// accuracy is improved.
!is_same<Scalar, half>::value && !is_same<Scalar, bfloat16>::value
)
};
};
//---------- non associative binary functors ----------
/** \internal
* \brief Template functor to compute the difference of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator-
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_difference_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_difference_op>::ReturnType result_type;
#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN
scalar_difference_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::psub(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_difference_op<LhsScalar,RhsScalar> > {
enum {
Cost = (int(NumTraits<LhsScalar>::AddCost) + int(NumTraits<RhsScalar>::AddCost)) / 2,
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasSub && packet_traits<RhsScalar>::HasSub
};
};
template <typename Packet, bool IsInteger = NumTraits<typename unpacket_traits<Packet>::type>::IsInteger>
struct maybe_raise_div_by_zero {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Packet x) {
EIGEN_UNUSED_VARIABLE(x);
}
};
#ifndef EIGEN_GPU_COMPILE_PHASE
template <typename Packet>
struct maybe_raise_div_by_zero<Packet, true> {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(Packet x) {
if (EIGEN_PREDICT_FALSE(predux_any(pcmp_eq(x, pzero(x))))) {
std::raise(SIGFPE);
}
}
};
#endif
/** \internal
* \brief Template functor to compute the quotient of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator/()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_quotient_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_quotient_op>::ReturnType result_type;
#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN
scalar_quotient_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const {
maybe_raise_div_by_zero<Packet>::run(b);
return internal::pdiv(a,b);
}
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
typedef typename scalar_quotient_op<LhsScalar,RhsScalar>::result_type result_type;
enum {
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv,
Cost = scalar_div_cost<result_type,PacketAccess>::value
};
};
/** \internal
* \brief Template functor to compute the and of two booleans
*
* \sa class CwiseBinaryOp, ArrayBase::operator&&
*/
struct scalar_boolean_and_op {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pand(a,b); }
};
template<> struct functor_traits<scalar_boolean_and_op> {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = true
};
};
/** \internal
* \brief Template functor to compute the or of two booleans
*
* \sa class CwiseBinaryOp, ArrayBase::operator||
*/
struct scalar_boolean_or_op {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::por(a,b); }
};
template<> struct functor_traits<scalar_boolean_or_op> {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = true
};
};
/** \internal
* \brief Template functor to compute the xor of two booleans
*
* \sa class CwiseBinaryOp, ArrayBase::operator^
*/
struct scalar_boolean_xor_op {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a ^ b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pxor(a,b); }
};
template<> struct functor_traits<scalar_boolean_xor_op> {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = true
};
};
/** \internal
* \brief Template functor to compute the absolute difference of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::absolute_difference
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_absolute_difference_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_absolute_difference_op>::ReturnType result_type;
#ifdef EIGEN_SCALAR_BINARY_OP_PLUGIN
scalar_absolute_difference_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
{ return numext::absdiff(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pabsdiff(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_absolute_difference_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasAbsDiff
};
};
template <typename LhsScalar, typename RhsScalar>
struct scalar_atan2_op {
using Scalar = LhsScalar;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::enable_if_t<is_same<LhsScalar,RhsScalar>::value, Scalar>
operator()(const Scalar& y, const Scalar& x) const {
EIGEN_USING_STD(atan2);
return static_cast<Scalar>(atan2(y, x));
}
template <typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
std::enable_if_t<is_same<LhsScalar, RhsScalar>::value, Packet>
packetOp(const Packet& y, const Packet& x) const {
// See https://en.cppreference.com/w/cpp/numeric/math/atan2
// for how corner cases are supposed to be handled according to the
// IEEE floating-point standard (IEC 60559).
const Packet kSignMask = pset1<Packet>(-Scalar(0));
const Packet kPi = pset1<Packet>(Scalar(EIGEN_PI));
const Packet kPiO2 = pset1<Packet>(Scalar(EIGEN_PI / 2));
const Packet kPiO4 = pset1<Packet>(Scalar(EIGEN_PI / 4));
const Packet k3PiO4 = pset1<Packet>(Scalar(3.0 * (EIGEN_PI / 4)));
// Various predicates about the inputs.
Packet x_signbit = pand(x, kSignMask);
Packet x_has_signbit = pcmp_lt(por(x_signbit, kPi), pzero(x));
Packet x_is_zero = pcmp_eq(x, pzero(x));
Packet x_neg = pandnot(x_has_signbit, x_is_zero);
Packet y_signbit = pand(y, kSignMask);
Packet y_is_zero = pcmp_eq(y, pzero(y));
Packet x_is_not_nan = pcmp_eq(x, x);
Packet y_is_not_nan = pcmp_eq(y, y);
// Compute the normal case. Notice that we expect that
// finite/infinite = +/-0 here.
Packet result = patan(pdiv(y, x));
// Compute shift for when x != 0 and y != 0.
Packet shift = pselect(x_neg, por(kPi, y_signbit), pzero(x));
// Special cases:
// Handle x = +/-inf && y = +/-inf.
Packet is_not_nan = pcmp_eq(result, result);
result =
pselect(is_not_nan, padd(shift, result),
pselect(x_neg, por(k3PiO4, y_signbit), por(kPiO4, y_signbit)));
// Handle x == +/-0.
result = pselect(
x_is_zero, pselect(y_is_zero, pzero(y), por(y_signbit, kPiO2)), result);
// Handle y == +/-0.
result = pselect(
y_is_zero,
pselect(x_has_signbit, por(y_signbit, kPi), por(y_signbit, pzero(y))),
result);
// Handle NaN inputs.
Packet kQNaN = pset1<Packet>(NumTraits<Scalar>::quiet_NaN());
return pselect(pand(x_is_not_nan, y_is_not_nan), result, kQNaN);
}
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_atan2_op<LhsScalar, RhsScalar>> {
enum {
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasATan && packet_traits<LhsScalar>::HasDiv && !NumTraits<LhsScalar>::IsInteger && !NumTraits<LhsScalar>::IsComplex,
Cost =
scalar_div_cost<LhsScalar, PacketAccess>::value + 5 * NumTraits<LhsScalar>::MulCost + 5 * NumTraits<LhsScalar>::AddCost
};
};
//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
// The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value.
// They are analogues to std::binder1st/binder2nd but with the following differences:
// - they are compatible with packetOp
// - they are portable across C++ versions (the std::binder* are deprecated in C++11)
template<typename BinaryOp> struct bind1st_op : BinaryOp {
typedef typename BinaryOp::first_argument_type first_argument_type;
typedef typename BinaryOp::second_argument_type second_argument_type;
typedef typename BinaryOp::result_type result_type;
EIGEN_DEVICE_FUNC explicit bind1st_op(const first_argument_type &val) : m_value(val) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const
{ return BinaryOp::packetOp(internal::pset1<Packet>(m_value), b); }
first_argument_type m_value;
};
template<typename BinaryOp> struct functor_traits<bind1st_op<BinaryOp> > : functor_traits<BinaryOp> {};
template<typename BinaryOp> struct bind2nd_op : BinaryOp {
typedef typename BinaryOp::first_argument_type first_argument_type;
typedef typename BinaryOp::second_argument_type second_argument_type;
typedef typename BinaryOp::result_type result_type;
EIGEN_DEVICE_FUNC explicit bind2nd_op(const second_argument_type &val) : m_value(val) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return BinaryOp::packetOp(a,internal::pset1<Packet>(m_value)); }
second_argument_type m_value;
};
template<typename BinaryOp> struct functor_traits<bind2nd_op<BinaryOp> > : functor_traits<BinaryOp> {};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BINARY_FUNCTORS_H