| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_REAL_SCHUR_H |
| #define EIGEN_REAL_SCHUR_H |
| |
| #include "./HessenbergDecomposition.h" |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * |
| * \class RealSchur |
| * |
| * \brief Performs a real Schur decomposition of a square matrix |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the |
| * real Schur decomposition; this is expected to be an instantiation of the |
| * Matrix class template. |
| * |
| * Given a real square matrix A, this class computes the real Schur |
| * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and |
| * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose |
| * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular |
| * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 |
| * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the |
| * blocks on the diagonal of T are the same as the eigenvalues of the matrix |
| * A, and thus the real Schur decomposition is used in EigenSolver to compute |
| * the eigendecomposition of a matrix. |
| * |
| * Call the function compute() to compute the real Schur decomposition of a |
| * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) |
| * constructor which computes the real Schur decomposition at construction |
| * time. Once the decomposition is computed, you can use the matrixU() and |
| * matrixT() functions to retrieve the matrices U and T in the decomposition. |
| * |
| * The documentation of RealSchur(const MatrixType&, bool) contains an example |
| * of the typical use of this class. |
| * |
| * \note The implementation is adapted from |
| * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). |
| * Their code is based on EISPACK. |
| * |
| * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver |
| */ |
| template<typename MatrixType_> class RealSchur |
| { |
| public: |
| typedef MatrixType_ MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| |
| typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; |
| typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; |
| |
| /** \brief Default constructor. |
| * |
| * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via compute(). The \p size parameter is only |
| * used as a hint. It is not an error to give a wrong \p size, but it may |
| * impair performance. |
| * |
| * \sa compute() for an example. |
| */ |
| explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
| : m_matT(size, size), |
| m_matU(size, size), |
| m_workspaceVector(size), |
| m_hess(size), |
| m_isInitialized(false), |
| m_matUisUptodate(false), |
| m_maxIters(-1) |
| { } |
| |
| /** \brief Constructor; computes real Schur decomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
| * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
| * |
| * This constructor calls compute() to compute the Schur decomposition. |
| * |
| * Example: \include RealSchur_RealSchur_MatrixType.cpp |
| * Output: \verbinclude RealSchur_RealSchur_MatrixType.out |
| */ |
| template<typename InputType> |
| explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true) |
| : m_matT(matrix.rows(),matrix.cols()), |
| m_matU(matrix.rows(),matrix.cols()), |
| m_workspaceVector(matrix.rows()), |
| m_hess(matrix.rows()), |
| m_isInitialized(false), |
| m_matUisUptodate(false), |
| m_maxIters(-1) |
| { |
| compute(matrix.derived(), computeU); |
| } |
| |
| /** \brief Returns the orthogonal matrix in the Schur decomposition. |
| * |
| * \returns A const reference to the matrix U. |
| * |
| * \pre Either the constructor RealSchur(const MatrixType&, bool) or the |
| * member function compute(const MatrixType&, bool) has been called before |
| * to compute the Schur decomposition of a matrix, and \p computeU was set |
| * to true (the default value). |
| * |
| * \sa RealSchur(const MatrixType&, bool) for an example |
| */ |
| const MatrixType& matrixU() const |
| { |
| eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
| eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); |
| return m_matU; |
| } |
| |
| /** \brief Returns the quasi-triangular matrix in the Schur decomposition. |
| * |
| * \returns A const reference to the matrix T. |
| * |
| * \pre Either the constructor RealSchur(const MatrixType&, bool) or the |
| * member function compute(const MatrixType&, bool) has been called before |
| * to compute the Schur decomposition of a matrix. |
| * |
| * \sa RealSchur(const MatrixType&, bool) for an example |
| */ |
| const MatrixType& matrixT() const |
| { |
| eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
| return m_matT; |
| } |
| |
| /** \brief Computes Schur decomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
| * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
| * \returns Reference to \c *this |
| * |
| * The Schur decomposition is computed by first reducing the matrix to |
| * Hessenberg form using the class HessenbergDecomposition. The Hessenberg |
| * matrix is then reduced to triangular form by performing Francis QR |
| * iterations with implicit double shift. The cost of computing the Schur |
| * decomposition depends on the number of iterations; as a rough guide, it |
| * may be taken to be \f$25n^3\f$ flops if \a computeU is true and |
| * \f$10n^3\f$ flops if \a computeU is false. |
| * |
| * Example: \include RealSchur_compute.cpp |
| * Output: \verbinclude RealSchur_compute.out |
| * |
| * \sa compute(const MatrixType&, bool, Index) |
| */ |
| template<typename InputType> |
| RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); |
| |
| /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T |
| * \param[in] matrixH Matrix in Hessenberg form H |
| * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T |
| * \param computeU Computes the matriX U of the Schur vectors |
| * \return Reference to \c *this |
| * |
| * This routine assumes that the matrix is already reduced in Hessenberg form matrixH |
| * using either the class HessenbergDecomposition or another mean. |
| * It computes the upper quasi-triangular matrix T of the Schur decomposition of H |
| * When computeU is true, this routine computes the matrix U such that |
| * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix |
| * |
| * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix |
| * is not available, the user should give an identity matrix (Q.setIdentity()) |
| * |
| * \sa compute(const MatrixType&, bool) |
| */ |
| template<typename HessMatrixType, typename OrthMatrixType> |
| RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, \c NoConvergence otherwise. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "RealSchur is not initialized."); |
| return m_info; |
| } |
| |
| /** \brief Sets the maximum number of iterations allowed. |
| * |
| * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size |
| * of the matrix. |
| */ |
| RealSchur& setMaxIterations(Index maxIters) |
| { |
| m_maxIters = maxIters; |
| return *this; |
| } |
| |
| /** \brief Returns the maximum number of iterations. */ |
| Index getMaxIterations() |
| { |
| return m_maxIters; |
| } |
| |
| /** \brief Maximum number of iterations per row. |
| * |
| * If not otherwise specified, the maximum number of iterations is this number times the size of the |
| * matrix. It is currently set to 40. |
| */ |
| static const int m_maxIterationsPerRow = 40; |
| |
| private: |
| |
| MatrixType m_matT; |
| MatrixType m_matU; |
| ColumnVectorType m_workspaceVector; |
| HessenbergDecomposition<MatrixType> m_hess; |
| ComputationInfo m_info; |
| bool m_isInitialized; |
| bool m_matUisUptodate; |
| Index m_maxIters; |
| |
| typedef Matrix<Scalar,3,1> Vector3s; |
| |
| Scalar computeNormOfT(); |
| Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero); |
| void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift); |
| void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); |
| void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); |
| void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace); |
| }; |
| |
| |
| template<typename MatrixType> |
| template<typename InputType> |
| RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) |
| { |
| const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)(); |
| |
| eigen_assert(matrix.cols() == matrix.rows()); |
| Index maxIters = m_maxIters; |
| if (maxIters == -1) |
| maxIters = m_maxIterationsPerRow * matrix.rows(); |
| |
| Scalar scale = matrix.derived().cwiseAbs().maxCoeff(); |
| if(scale<considerAsZero) |
| { |
| m_matT.setZero(matrix.rows(),matrix.cols()); |
| if(computeU) |
| m_matU.setIdentity(matrix.rows(),matrix.cols()); |
| m_info = Success; |
| m_isInitialized = true; |
| m_matUisUptodate = computeU; |
| return *this; |
| } |
| |
| // Step 1. Reduce to Hessenberg form |
| m_hess.compute(matrix.derived()/scale); |
| |
| // Step 2. Reduce to real Schur form |
| // Note: we copy m_hess.matrixQ() into m_matU here and not in computeFromHessenberg |
| // to be able to pass our working-space buffer for the Householder to Dense evaluation. |
| m_workspaceVector.resize(matrix.cols()); |
| if(computeU) |
| m_hess.matrixQ().evalTo(m_matU, m_workspaceVector); |
| computeFromHessenberg(m_hess.matrixH(), m_matU, computeU); |
| |
| m_matT *= scale; |
| |
| return *this; |
| } |
| template<typename MatrixType> |
| template<typename HessMatrixType, typename OrthMatrixType> |
| RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) |
| { |
| using std::abs; |
| |
| m_matT = matrixH; |
| m_workspaceVector.resize(m_matT.cols()); |
| if(computeU && !internal::is_same_dense(m_matU,matrixQ)) |
| m_matU = matrixQ; |
| |
| Index maxIters = m_maxIters; |
| if (maxIters == -1) |
| maxIters = m_maxIterationsPerRow * matrixH.rows(); |
| Scalar* workspace = &m_workspaceVector.coeffRef(0); |
| |
| // The matrix m_matT is divided in three parts. |
| // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
| // Rows il,...,iu is the part we are working on (the active window). |
| // Rows iu+1,...,end are already brought in triangular form. |
| Index iu = m_matT.cols() - 1; |
| Index iter = 0; // iteration count for current eigenvalue |
| Index totalIter = 0; // iteration count for whole matrix |
| Scalar exshift(0); // sum of exceptional shifts |
| Scalar norm = computeNormOfT(); |
| // sub-diagonal entries smaller than considerAsZero will be treated as zero. |
| // We use eps^2 to enable more precision in small eigenvalues. |
| Scalar considerAsZero = numext::maxi<Scalar>( norm * numext::abs2(NumTraits<Scalar>::epsilon()), |
| (std::numeric_limits<Scalar>::min)() ); |
| |
| if(!numext::is_exactly_zero(norm)) |
| { |
| while (iu >= 0) |
| { |
| Index il = findSmallSubdiagEntry(iu,considerAsZero); |
| |
| // Check for convergence |
| if (il == iu) // One root found |
| { |
| m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; |
| if (iu > 0) |
| m_matT.coeffRef(iu, iu-1) = Scalar(0); |
| iu--; |
| iter = 0; |
| } |
| else if (il == iu-1) // Two roots found |
| { |
| splitOffTwoRows(iu, computeU, exshift); |
| iu -= 2; |
| iter = 0; |
| } |
| else // No convergence yet |
| { |
| // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG ) |
| Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo; |
| computeShift(iu, iter, exshift, shiftInfo); |
| iter = iter + 1; |
| totalIter = totalIter + 1; |
| if (totalIter > maxIters) break; |
| Index im; |
| initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); |
| performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); |
| } |
| } |
| } |
| if(totalIter <= maxIters) |
| m_info = Success; |
| else |
| m_info = NoConvergence; |
| |
| m_isInitialized = true; |
| m_matUisUptodate = computeU; |
| return *this; |
| } |
| |
| /** \internal Computes and returns vector L1 norm of T */ |
| template<typename MatrixType> |
| inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT() |
| { |
| const Index size = m_matT.cols(); |
| // FIXME to be efficient the following would requires a triangular reduxion code |
| // Scalar norm = m_matT.upper().cwiseAbs().sum() |
| // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); |
| Scalar norm(0); |
| for (Index j = 0; j < size; ++j) |
| norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); |
| return norm; |
| } |
| |
| /** \internal Look for single small sub-diagonal element and returns its index */ |
| template<typename MatrixType> |
| inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero) |
| { |
| using std::abs; |
| Index res = iu; |
| while (res > 0) |
| { |
| Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res)); |
| |
| s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero); |
| |
| if (abs(m_matT.coeff(res,res-1)) <= s) |
| break; |
| res--; |
| } |
| return res; |
| } |
| |
| /** \internal Update T given that rows iu-1 and iu decouple from the rest. */ |
| template<typename MatrixType> |
| inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) |
| { |
| using std::sqrt; |
| using std::abs; |
| const Index size = m_matT.cols(); |
| |
| // The eigenvalues of the 2x2 matrix [a b; c d] are |
| // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc |
| Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); |
| Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 |
| m_matT.coeffRef(iu,iu) += exshift; |
| m_matT.coeffRef(iu-1,iu-1) += exshift; |
| |
| if (q >= Scalar(0)) // Two real eigenvalues |
| { |
| Scalar z = sqrt(abs(q)); |
| JacobiRotation<Scalar> rot; |
| if (p >= Scalar(0)) |
| rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); |
| else |
| rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); |
| |
| m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); |
| m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); |
| m_matT.coeffRef(iu, iu-1) = Scalar(0); |
| if (computeU) |
| m_matU.applyOnTheRight(iu-1, iu, rot); |
| } |
| |
| if (iu > 1) |
| m_matT.coeffRef(iu-1, iu-2) = Scalar(0); |
| } |
| |
| /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ |
| template<typename MatrixType> |
| inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) |
| { |
| using std::sqrt; |
| using std::abs; |
| shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); |
| shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); |
| shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); |
| |
| // Wilkinson's original ad hoc shift |
| if (iter == 10) |
| { |
| exshift += shiftInfo.coeff(0); |
| for (Index i = 0; i <= iu; ++i) |
| m_matT.coeffRef(i,i) -= shiftInfo.coeff(0); |
| Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); |
| shiftInfo.coeffRef(0) = Scalar(0.75) * s; |
| shiftInfo.coeffRef(1) = Scalar(0.75) * s; |
| shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; |
| } |
| |
| // MATLAB's new ad hoc shift |
| if (iter == 30) |
| { |
| Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); |
| s = s * s + shiftInfo.coeff(2); |
| if (s > Scalar(0)) |
| { |
| s = sqrt(s); |
| if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) |
| s = -s; |
| s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); |
| s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; |
| exshift += s; |
| for (Index i = 0; i <= iu; ++i) |
| m_matT.coeffRef(i,i) -= s; |
| shiftInfo.setConstant(Scalar(0.964)); |
| } |
| } |
| } |
| |
| /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ |
| template<typename MatrixType> |
| inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector) |
| { |
| using std::abs; |
| Vector3s& v = firstHouseholderVector; // alias to save typing |
| |
| for (im = iu-2; im >= il; --im) |
| { |
| const Scalar Tmm = m_matT.coeff(im,im); |
| const Scalar r = shiftInfo.coeff(0) - Tmm; |
| const Scalar s = shiftInfo.coeff(1) - Tmm; |
| v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1); |
| v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s; |
| v.coeffRef(2) = m_matT.coeff(im+2,im+1); |
| if (im == il) { |
| break; |
| } |
| const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2))); |
| const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1))); |
| if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs) |
| break; |
| } |
| } |
| |
| /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ |
| template<typename MatrixType> |
| inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace) |
| { |
| eigen_assert(im >= il); |
| eigen_assert(im <= iu-2); |
| |
| const Index size = m_matT.cols(); |
| |
| for (Index k = im; k <= iu-2; ++k) |
| { |
| bool firstIteration = (k == im); |
| |
| Vector3s v; |
| if (firstIteration) |
| v = firstHouseholderVector; |
| else |
| v = m_matT.template block<3,1>(k,k-1); |
| |
| Scalar tau, beta; |
| Matrix<Scalar, 2, 1> ess; |
| v.makeHouseholder(ess, tau, beta); |
| |
| if (!numext::is_exactly_zero(beta)) // if v is not zero |
| { |
| if (firstIteration && k > il) |
| m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1); |
| else if (!firstIteration) |
| m_matT.coeffRef(k,k-1) = beta; |
| |
| // These Householder transformations form the O(n^3) part of the algorithm |
| m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace); |
| m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); |
| if (computeU) |
| m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); |
| } |
| } |
| |
| Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2); |
| Scalar tau, beta; |
| Matrix<Scalar, 1, 1> ess; |
| v.makeHouseholder(ess, tau, beta); |
| |
| if (!numext::is_exactly_zero(beta)) // if v is not zero |
| { |
| m_matT.coeffRef(iu-1, iu-2) = beta; |
| m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); |
| m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); |
| if (computeU) |
| m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); |
| } |
| |
| // clean up pollution due to round-off errors |
| for (Index i = im+2; i <= iu; ++i) |
| { |
| m_matT.coeffRef(i,i-2) = Scalar(0); |
| if (i > im+2) |
| m_matT.coeffRef(i,i-3) = Scalar(0); |
| } |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_REAL_SCHUR_H |