| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_EULERANGLES_H |
| #define EIGEN_EULERANGLES_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * |
| * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) |
| * |
| * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. |
| * For instance, in: |
| * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode |
| * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that |
| * we have the following equality: |
| * \code |
| * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) |
| * * AngleAxisf(ea[1], Vector3f::UnitX()) |
| * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode |
| * This corresponds to the right-multiply conventions (with right hand side frames). |
| * |
| * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. |
| * |
| * \sa class AngleAxis |
| */ |
| template<typename Derived> |
| EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> |
| MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const |
| { |
| EIGEN_USING_STD(atan2) |
| EIGEN_USING_STD(sin) |
| EIGEN_USING_STD(cos) |
| /* Implemented from Graphics Gems IV */ |
| EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) |
| |
| Matrix<Scalar,3,1> res; |
| typedef Matrix<typename Derived::Scalar,2,1> Vector2; |
| |
| const Index odd = ((a0+1)%3 == a1) ? 0 : 1; |
| const Index i = a0; |
| const Index j = (a0 + 1 + odd)%3; |
| const Index k = (a0 + 2 - odd)%3; |
| |
| if (a0==a2) |
| { |
| res[0] = atan2(coeff(j,i), coeff(k,i)); |
| if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) |
| { |
| if(res[0] > Scalar(0)) { |
| res[0] -= Scalar(EIGEN_PI); |
| } |
| else { |
| res[0] += Scalar(EIGEN_PI); |
| } |
| Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); |
| res[1] = -atan2(s2, coeff(i,i)); |
| } |
| else |
| { |
| Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); |
| res[1] = atan2(s2, coeff(i,i)); |
| } |
| |
| // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, |
| // we can compute their respective rotation, and apply its inverse to M. Since the result must |
| // be a rotation around x, we have: |
| // |
| // c2 s1.s2 c1.s2 1 0 0 |
| // 0 c1 -s1 * M = 0 c3 s3 |
| // -s2 s1.c2 c1.c2 0 -s3 c3 |
| // |
| // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 |
| |
| Scalar s1 = sin(res[0]); |
| Scalar c1 = cos(res[0]); |
| res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); |
| } |
| else |
| { |
| res[0] = atan2(coeff(j,k), coeff(k,k)); |
| Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); |
| if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) { |
| if(res[0] > Scalar(0)) { |
| res[0] -= Scalar(EIGEN_PI); |
| } |
| else { |
| res[0] += Scalar(EIGEN_PI); |
| } |
| res[1] = atan2(-coeff(i,k), -c2); |
| } |
| else |
| res[1] = atan2(-coeff(i,k), c2); |
| Scalar s1 = sin(res[0]); |
| Scalar c1 = cos(res[0]); |
| res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); |
| } |
| if (!odd) |
| res = -res; |
| |
| return res; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_EULERANGLES_H |