| |
| #include "main.h" |
| |
| namespace Eigen { |
| |
| template<typename Lhs,typename Rhs> |
| const Product<Lhs,Rhs> |
| prod(const Lhs& lhs, const Rhs& rhs) |
| { |
| return Product<Lhs,Rhs>(lhs,rhs); |
| } |
| |
| template<typename Lhs,typename Rhs> |
| const Product<Lhs,Rhs,LazyProduct> |
| lazyprod(const Lhs& lhs, const Rhs& rhs) |
| { |
| return Product<Lhs,Rhs,LazyProduct>(lhs,rhs); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| EIGEN_STRONG_INLINE |
| DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src) |
| { |
| call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); |
| return dst.const_cast_derived(); |
| } |
| |
| template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType> |
| EIGEN_STRONG_INLINE |
| const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src) |
| { |
| call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); |
| return dst.expression(); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| EIGEN_STRONG_INLINE |
| DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src) |
| { |
| #ifdef EIGEN_NO_AUTOMATIC_RESIZING |
| eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) |
| : (dst.rows() == src.rows() && dst.cols() == src.cols()))) |
| && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); |
| #else |
| dst.const_cast_derived().resizeLike(src.derived()); |
| #endif |
| |
| call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>()); |
| return dst.const_cast_derived(); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>()); |
| } |
| |
| template<typename DstXprType, typename SrcXprType> |
| void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) |
| { |
| typedef typename DstXprType::Scalar Scalar; |
| call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>()); |
| } |
| |
| namespace internal { |
| template<typename Dst, template <typename> class StorageBase, typename Src, typename Func> |
| EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func) |
| { |
| call_assignment_no_alias(dst.expression(), src, func); |
| } |
| |
| template<typename Dst, template <typename> class StorageBase, typename Src, typename Func> |
| EIGEN_DEVICE_FUNC void call_restricted_packet_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func) |
| { |
| call_restricted_packet_assignment_no_alias(dst.expression(), src, func); |
| } |
| } |
| |
| } |
| |
| template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; } |
| |
| using namespace std; |
| |
| #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval()); |
| #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval()); |
| |
| EIGEN_DECLARE_TEST(evaluators) |
| { |
| // Testing Matrix evaluator and Transpose |
| Vector2d v = Vector2d::Random(); |
| const Vector2d v_const(v); |
| Vector2d v2; |
| RowVector2d w; |
| |
| VERIFY_IS_APPROX_EVALUATOR(v2, v); |
| VERIFY_IS_APPROX_EVALUATOR(v2, v_const); |
| |
| // Testing Transpose |
| VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue |
| VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); |
| |
| copy_using_evaluator(w.transpose(), v); // Transpose as lvalue |
| VERIFY_IS_APPROX(w,v.transpose().eval()); |
| |
| copy_using_evaluator(w.transpose(), v_const); |
| VERIFY_IS_APPROX(w,v_const.transpose().eval()); |
| |
| // Testing Array evaluator |
| { |
| ArrayXXf a(2,3); |
| ArrayXXf b(3,2); |
| a << 1,2,3, 4,5,6; |
| const ArrayXXf a_const(a); |
| |
| VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); |
| |
| VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); |
| |
| // Testing CwiseNullaryOp evaluator |
| copy_using_evaluator(w, RowVector2d::Random()); |
| VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... |
| |
| VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); |
| |
| VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); |
| |
| // mix CwiseNullaryOp and transpose |
| VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); |
| } |
| |
| { |
| // test product expressions |
| int s = internal::random<int>(1,100); |
| MatrixXf a(s,s), b(s,s), c(s,s), d(s,s); |
| a.setRandom(); |
| b.setRandom(); |
| c.setRandom(); |
| d.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); |
| VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b); |
| VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c); |
| VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c); |
| |
| // check that prod works even with aliasing present |
| c = a*a; |
| copy_using_evaluator(a, prod(a,a)); |
| VERIFY_IS_APPROX(a,c); |
| |
| // check compound assignment of products |
| d = c; |
| add_assign_using_evaluator(c.noalias(), prod(a,b)); |
| d.noalias() += a*b; |
| VERIFY_IS_APPROX(c, d); |
| |
| d = c; |
| subtract_assign_using_evaluator(c.noalias(), prod(a,b)); |
| d.noalias() -= a*b; |
| VERIFY_IS_APPROX(c, d); |
| } |
| |
| { |
| // test product with all possible sizes |
| int s = internal::random<int>(1,100); |
| Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1); |
| Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4); |
| Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s); |
| Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1); |
| Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4); |
| Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s); |
| Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1); |
| Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4); |
| Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11); |
| VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41); |
| VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1); |
| VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14); |
| VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44); |
| VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4); |
| VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X); |
| VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X); |
| VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX); |
| VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11); |
| VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41); |
| VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1); |
| VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14); |
| VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44); |
| VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4); |
| VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X); |
| VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X); |
| VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX); |
| VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11); |
| VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41); |
| VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1); |
| VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14); |
| VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44); |
| VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4); |
| VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X); |
| VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X); |
| VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX); |
| } |
| |
| { |
| ArrayXXf a(2,3); |
| ArrayXXf b(3,2); |
| a << 1,2,3, 4,5,6; |
| const ArrayXXf a_const(a); |
| |
| // this does not work because Random is eval-before-nested: |
| // copy_using_evaluator(w, Vector2d::Random().transpose()); |
| |
| // test CwiseUnaryOp |
| VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); |
| VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); |
| VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); |
| |
| // test CwiseBinaryOp |
| VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); |
| VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); |
| |
| // dynamic matrices and arrays |
| MatrixXd mat1(6,6), mat2(6,6); |
| VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); |
| copy_using_evaluator(mat2.transpose(), mat1); |
| VERIFY_IS_APPROX(mat2.transpose(), mat1); |
| |
| ArrayXXd arr1(6,6), arr2(6,6); |
| VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0)); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); |
| |
| // test automatic resizing |
| mat2.resize(3,3); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); |
| arr2.resize(9,9); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); |
| |
| // test direct traversal |
| Matrix3f m3; |
| Array33f a3; |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary |
| // TODO: find a way to test direct traversal with array |
| VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose |
| VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary |
| VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block |
| |
| // test linear traversal |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary |
| VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array |
| VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose |
| VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary |
| VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary |
| |
| // test inner vectorization |
| Matrix4f m4, m4src = Matrix4f::Random(); |
| Array44f a4, a4src = Matrix4f::Random(); |
| VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix |
| VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array |
| VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose |
| // TODO: find out why Matrix4f::Zero() does not allow inner vectorization |
| VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary |
| VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary |
| |
| // test linear vectorization |
| MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6); |
| ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6); |
| VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix |
| VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array |
| VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose |
| VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary |
| VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary |
| VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary |
| |
| // test blocks and slice vectorization |
| VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0))); |
| VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); |
| |
| Matrix4f m4ref = m4; |
| copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); |
| m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); |
| VERIFY_IS_APPROX(m4, m4ref); |
| |
| mX.setIdentity(20,20); |
| MatrixXf mXref = MatrixXf::Identity(20,20); |
| mXsrc = MatrixXf::Random(9,12); |
| copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); |
| mXref.block(4, 4, 9, 12) = mXsrc; |
| VERIFY_IS_APPROX(mX, mXref); |
| |
| // test Map |
| const float raw[3] = {1,2,3}; |
| float buffer[3] = {0,0,0}; |
| Vector3f v3; |
| Array3f a3f; |
| VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw)); |
| VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw)); |
| Vector3f::Map(buffer) = 2*v3; |
| VERIFY(buffer[0] == 2); |
| VERIFY(buffer[1] == 4); |
| VERIFY(buffer[2] == 6); |
| |
| // test CwiseUnaryView |
| mat1.setRandom(); |
| mat2.setIdentity(); |
| MatrixXcd matXcd(6,6), matXcd_ref(6,6); |
| copy_using_evaluator(matXcd.real(), mat1); |
| copy_using_evaluator(matXcd.imag(), mat2); |
| matXcd_ref.real() = mat1; |
| matXcd_ref.imag() = mat2; |
| VERIFY_IS_APPROX(matXcd, matXcd_ref); |
| |
| // test Select |
| VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); |
| |
| // test Replicate |
| mXsrc = MatrixXf::Random(6, 6); |
| VectorXf vX = VectorXf::Random(6); |
| mX.resize(6, 6); |
| VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); |
| matXcd.resize(12, 12); |
| VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2)); |
| VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>())); |
| |
| // test partial reductions |
| VectorXd vec1(6); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); |
| |
| // test MatrixWrapper and ArrayWrapper |
| mat1.setRandom(6,6); |
| arr1.setRandom(6,6); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); |
| VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); |
| mat2.array() = arr1 * arr1; |
| VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); |
| arr2.matrix() = MatrixXd::Identity(6,6); |
| VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); |
| |
| // test Reverse |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); |
| VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); |
| arr2.reverse() = arr1; |
| VERIFY_IS_APPROX(arr2, arr1.reverse()); |
| mat2.array() = mat1.array().reverse(); |
| VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); |
| |
| // test Diagonal |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); |
| vec1.resize(5); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); |
| VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); |
| vec1.setRandom(); |
| |
| mat2 = mat1; |
| copy_using_evaluator(mat1.diagonal(1), vec1); |
| mat2.diagonal(1) = vec1; |
| VERIFY_IS_APPROX(mat1, mat2); |
| |
| copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); |
| mat2.diagonal<-1>() = mat2.diagonal(1); |
| VERIFY_IS_APPROX(mat1, mat2); |
| } |
| |
| { |
| // test swapping |
| MatrixXd mat1, mat2, mat1ref, mat2ref; |
| mat1ref = mat1 = MatrixXd::Random(6, 6); |
| mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); |
| swap_using_evaluator(mat1, mat2); |
| mat1ref.swap(mat2ref); |
| VERIFY_IS_APPROX(mat1, mat1ref); |
| VERIFY_IS_APPROX(mat2, mat2ref); |
| |
| swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); |
| mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); |
| VERIFY_IS_APPROX(mat1, mat1ref); |
| VERIFY_IS_APPROX(mat2, mat2ref); |
| |
| swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); |
| mat1.row(2).swap(mat2.col(3).transpose()); |
| VERIFY_IS_APPROX(mat1, mat1ref); |
| VERIFY_IS_APPROX(mat2, mat2ref); |
| } |
| |
| { |
| // test compound assignment |
| const Matrix4d mat_const = Matrix4d::Random(); |
| Matrix4d mat, mat_ref; |
| mat = mat_ref = Matrix4d::Identity(); |
| add_assign_using_evaluator(mat, mat_const); |
| mat_ref += mat_const; |
| VERIFY_IS_APPROX(mat, mat_ref); |
| |
| subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2)); |
| mat_ref.row(1) -= 2*mat_ref.row(2); |
| VERIFY_IS_APPROX(mat, mat_ref); |
| |
| const ArrayXXf arr_const = ArrayXXf::Random(5,3); |
| ArrayXXf arr, arr_ref; |
| arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); |
| multiply_assign_using_evaluator(arr, arr_const); |
| arr_ref *= arr_const; |
| VERIFY_IS_APPROX(arr, arr_ref); |
| |
| divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); |
| arr_ref.row(1) /= (arr_ref.row(2) + 1); |
| VERIFY_IS_APPROX(arr, arr_ref); |
| } |
| |
| { |
| // test triangular shapes |
| MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6); |
| A.setRandom();B.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); |
| |
| A.setRandom();B.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>())); |
| |
| A.setRandom();B.setRandom(); |
| VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>())); |
| |
| A.setRandom();B.setRandom(); |
| C = B; C.triangularView<Upper>() = A; |
| copy_using_evaluator(B.triangularView<Upper>(), A); |
| VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)"); |
| |
| A.setRandom();B.setRandom(); |
| C = B; C.triangularView<Lower>() = A.triangularView<Lower>(); |
| copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>()); |
| VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())"); |
| |
| |
| A.setRandom();B.setRandom(); |
| C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose(); |
| copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose()); |
| VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())"); |
| |
| |
| A.setRandom();B.setRandom(); C = B; D = A; |
| C.triangularView<Upper>().swap(D.triangularView<Upper>()); |
| swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>()); |
| VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())"); |
| |
| |
| VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A)); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A)); |
| } |
| |
| { |
| // test diagonal shapes |
| VectorXd d = VectorXd::Random(6); |
| MatrixXd A = MatrixXd::Random(6,6), B(6,6); |
| A.setRandom();B.setRandom(); |
| |
| VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A)); |
| VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal())); |
| } |
| |
| { |
| // test CoeffReadCost |
| Matrix4d a, b; |
| VERIFY_IS_EQUAL( get_cost(a), 1 ); |
| VERIFY_IS_EQUAL( get_cost(a+b), 3); |
| VERIFY_IS_EQUAL( get_cost(2*a+b), 4); |
| VERIFY_IS_EQUAL( get_cost(a*b), 1); |
| VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15); |
| VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1); |
| VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15); |
| VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1); |
| VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15); |
| } |
| |
| // regression test for PR 544 and bug 1622 (introduced in #71609c4) |
| { |
| // test restricted_packet_assignment with an unaligned destination |
| const size_t M = 2; |
| const size_t K = 2; |
| const size_t N = 5; |
| float *destMem = new float[(M*N) + 1]; |
| // In case of no alignment, avoid division by zero. |
| constexpr int alignment = (std::max<int>)(EIGEN_MAX_ALIGN_BYTES, 1); |
| float *dest = (internal::UIntPtr(destMem)%alignment) == 0 ? destMem+1 : destMem; |
| |
| const Matrix<float, Dynamic, Dynamic, RowMajor> a = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(M, K); |
| const Matrix<float, Dynamic, Dynamic, RowMajor> b = Matrix<float, Dynamic, Dynamic, RowMajor>::Random(K, N); |
| |
| Map<Matrix<float, Dynamic, Dynamic, RowMajor> > z(dest, M, N);; |
| Product<Matrix<float, Dynamic, Dynamic, RowMajor>, Matrix<float, Dynamic, Dynamic, RowMajor>, LazyProduct> tmp(a,b); |
| internal::call_restricted_packet_assignment(z.noalias(), tmp.derived(), internal::assign_op<float, float>()); |
| |
| VERIFY_IS_APPROX(z, a*b); |
| delete[] destMem; |
| } |
| } |