| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void matrixVisitor(const MatrixType& p) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = p.rows(); |
| Index cols = p.cols(); |
| |
| // construct a random matrix where all coefficients are different |
| MatrixType m; |
| m = MatrixType::Random(rows, cols); |
| for(Index i = 0; i < m.size(); i++) |
| for(Index i2 = 0; i2 < i; i2++) |
| while(numext::equal_strict(m(i), m(i2))) // yes, strict equality |
| m(i) = internal::random<Scalar>(); |
| |
| Scalar minc = Scalar(1000), maxc = Scalar(-1000); |
| Index minrow=0,mincol=0,maxrow=0,maxcol=0; |
| for(Index j = 0; j < cols; j++) |
| for(Index i = 0; i < rows; i++) |
| { |
| if(m(i,j) < minc) |
| { |
| minc = m(i,j); |
| minrow = i; |
| mincol = j; |
| } |
| if(m(i,j) > maxc) |
| { |
| maxc = m(i,j); |
| maxrow = i; |
| maxcol = j; |
| } |
| } |
| Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; |
| Scalar eigen_minc, eigen_maxc; |
| eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); |
| eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); |
| VERIFY(minrow == eigen_minrow); |
| VERIFY(maxrow == eigen_maxrow); |
| VERIFY(mincol == eigen_mincol); |
| VERIFY(maxcol == eigen_maxcol); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, m.minCoeff()); |
| VERIFY_IS_APPROX(maxc, m.maxCoeff()); |
| |
| eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol); |
| Index maxrow2=0,maxcol2=0; |
| eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2); |
| VERIFY(maxrow2 == eigen_maxrow); |
| VERIFY(maxcol2 == eigen_maxcol); |
| |
| if (!NumTraits<Scalar>::IsInteger && m.size() > 2) { |
| // Test NaN propagation by replacing an element with NaN. |
| bool stop = false; |
| for (Index j = 0; j < cols && !stop; ++j) { |
| for (Index i = 0; i < rows && !stop; ++i) { |
| if (!(j == mincol && i == minrow) && |
| !(j == maxcol && i == maxrow)) { |
| m(i,j) = NumTraits<Scalar>::quiet_NaN(); |
| stop = true; |
| break; |
| } |
| } |
| } |
| |
| eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(minrow == eigen_minrow); |
| VERIFY(maxrow == eigen_maxrow); |
| VERIFY(mincol == eigen_mincol); |
| VERIFY(maxcol == eigen_maxcol); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>()); |
| VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>()); |
| |
| eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(minrow != eigen_minrow || mincol != eigen_mincol); |
| VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| } |
| |
| } |
| |
| template<typename VectorType> void vectorVisitor(const VectorType& w) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = w.size(); |
| |
| // construct a random vector where all coefficients are different |
| VectorType v; |
| v = VectorType::Random(size); |
| for(Index i = 0; i < size; i++) |
| for(Index i2 = 0; i2 < i; i2++) |
| while(v(i) == v(i2)) // yes, == |
| v(i) = internal::random<Scalar>(); |
| |
| Scalar minc = v(0), maxc = v(0); |
| Index minidx=0, maxidx=0; |
| for(Index i = 0; i < size; i++) |
| { |
| if(v(i) < minc) |
| { |
| minc = v(i); |
| minidx = i; |
| } |
| if(v(i) > maxc) |
| { |
| maxc = v(i); |
| maxidx = i; |
| } |
| } |
| Index eigen_minidx, eigen_maxidx; |
| Scalar eigen_minc, eigen_maxc; |
| eigen_minc = v.minCoeff(&eigen_minidx); |
| eigen_maxc = v.maxCoeff(&eigen_maxidx); |
| VERIFY(minidx == eigen_minidx); |
| VERIFY(maxidx == eigen_maxidx); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, v.minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.maxCoeff()); |
| |
| Index idx0 = internal::random<Index>(0,size-1); |
| Index idx1 = eigen_minidx; |
| Index idx2 = eigen_maxidx; |
| VectorType v1(v), v2(v); |
| v1(idx0) = v1(idx1); |
| v2(idx0) = v2(idx2); |
| v1.minCoeff(&eigen_minidx); |
| v2.maxCoeff(&eigen_maxidx); |
| VERIFY(eigen_minidx == (std::min)(idx0,idx1)); |
| VERIFY(eigen_maxidx == (std::min)(idx0,idx2)); |
| |
| if (!NumTraits<Scalar>::IsInteger && size > 2) { |
| // Test NaN propagation by replacing an element with NaN. |
| for (Index i = 0; i < size; ++i) { |
| if (i != minidx && i != maxidx) { |
| v(i) = NumTraits<Scalar>::quiet_NaN(); |
| break; |
| } |
| } |
| eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx); |
| eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx); |
| VERIFY(minidx == eigen_minidx); |
| VERIFY(maxidx == eigen_maxidx); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>()); |
| VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>()); |
| |
| eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx); |
| eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx); |
| VERIFY(minidx != eigen_minidx); |
| VERIFY(maxidx != eigen_maxidx); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| } |
| } |
| |
| template<typename T, bool Vectorizable> |
| struct TrackedVisitor { |
| void init(T v, Index i, Index j) { return this->operator()(v,i,j); } |
| void operator()(T v, Index i, Index j) { |
| EIGEN_UNUSED_VARIABLE(v) |
| visited.push_back({i, j}); |
| vectorized = false; |
| } |
| |
| template<typename Packet> |
| void packet(Packet p, Index i, Index j) { |
| EIGEN_UNUSED_VARIABLE(p) |
| visited.push_back({i, j}); |
| vectorized = true; |
| } |
| std::vector<std::pair<int,int>> visited; |
| bool vectorized; |
| }; |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template<typename T, bool Vectorizable> |
| struct functor_traits<TrackedVisitor<T, Vectorizable> > { |
| enum { PacketAccess = Vectorizable, Cost = 1 }; |
| }; |
| |
| } // namespace internal |
| } // namespace Eigen |
| |
| void checkOptimalTraversal() { |
| |
| // Unrolled - ColMajor. |
| { |
| Eigen::Matrix4f X = Eigen::Matrix4f::Random(); |
| TrackedVisitor<double, false> visitor; |
| X.visit(visitor); |
| Index count = 0; |
| for (Index j=0; j<X.cols(); ++j) { |
| for (Index i=0; i<X.rows(); ++i) { |
| VERIFY_IS_EQUAL(visitor.visited[count].first, i); |
| VERIFY_IS_EQUAL(visitor.visited[count].second, j); |
| ++count; |
| } |
| } |
| } |
| |
| // Unrolled - RowMajor. |
| using Matrix4fRowMajor = Eigen::Matrix<float, 4, 4, Eigen::RowMajor>; |
| { |
| Matrix4fRowMajor X = Matrix4fRowMajor::Random(); |
| TrackedVisitor<double, false> visitor; |
| X.visit(visitor); |
| Index count = 0; |
| for (Index i=0; i<X.rows(); ++i) { |
| for (Index j=0; j<X.cols(); ++j) { |
| VERIFY_IS_EQUAL(visitor.visited[count].first, i); |
| VERIFY_IS_EQUAL(visitor.visited[count].second, j); |
| ++count; |
| } |
| } |
| } |
| |
| // Not unrolled - ColMajor |
| { |
| Eigen::MatrixXf X = Eigen::MatrixXf::Random(4, 4); |
| TrackedVisitor<double, false> visitor; |
| X.visit(visitor); |
| Index count = 0; |
| for (Index j=0; j<X.cols(); ++j) { |
| for (Index i=0; i<X.rows(); ++i) { |
| VERIFY_IS_EQUAL(visitor.visited[count].first, i); |
| VERIFY_IS_EQUAL(visitor.visited[count].second, j); |
| ++count; |
| } |
| } |
| } |
| |
| // Not unrolled - RowMajor. |
| using MatrixXfRowMajor = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; |
| { |
| MatrixXfRowMajor X = MatrixXfRowMajor::Random(4, 4); |
| TrackedVisitor<double, false> visitor; |
| X.visit(visitor); |
| Index count = 0; |
| for (Index i=0; i<X.rows(); ++i) { |
| for (Index j=0; j<X.cols(); ++j) { |
| VERIFY_IS_EQUAL(visitor.visited[count].first, i); |
| VERIFY_IS_EQUAL(visitor.visited[count].second, j); |
| ++count; |
| } |
| } |
| } |
| |
| // Vectorized - ColMajor |
| { |
| // Ensure rows/cols is larger than packet size. |
| constexpr int PacketSize = Eigen::internal::packet_traits<float>::size; |
| Eigen::MatrixXf X = Eigen::MatrixXf::Random(4 * PacketSize, 4 * PacketSize); |
| TrackedVisitor<double, true> visitor; |
| X.visit(visitor); |
| Index previ = -1; |
| Index prevj = 0; |
| for (const auto& p : visitor.visited) { |
| Index i = p.first; |
| Index j = p.second; |
| VERIFY( |
| (j == prevj && i == previ + 1) // Advance single element |
| || (j == prevj && i == previ + PacketSize) // Advance packet |
| || (j == prevj + 1 && i == 0) // Advance column |
| ); |
| previ = i; |
| prevj = j; |
| } |
| if (Eigen::internal::packet_traits<float>::Vectorizable) { |
| VERIFY(visitor.vectorized); |
| } |
| } |
| |
| // Vectorized - RowMajor. |
| { |
| // Ensure rows/cols is larger than packet size. |
| constexpr int PacketSize = Eigen::internal::packet_traits<float>::size; |
| MatrixXfRowMajor X = MatrixXfRowMajor::Random(4 * PacketSize, 4 * PacketSize); |
| TrackedVisitor<double, true> visitor; |
| X.visit(visitor); |
| Index previ = 0; |
| Index prevj = -1; |
| for (const auto& p : visitor.visited) { |
| Index i = p.first; |
| Index j = p.second; |
| VERIFY( |
| (i == previ && j == prevj + 1) // Advance single element |
| || (i == previ && j == prevj + PacketSize) // Advance packet |
| || (i == previ + 1 && j == 0) // Advance row |
| ); |
| previ = i; |
| prevj = j; |
| } |
| if (Eigen::internal::packet_traits<float>::Vectorizable) { |
| VERIFY(visitor.vectorized); |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(visitor) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); |
| CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); |
| CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); |
| CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) ); |
| CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); |
| CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) ); |
| CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) ); |
| CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) ); |
| CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) ); |
| } |
| CALL_SUBTEST_11(checkOptimalTraversal()); |
| } |