| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_DGMRES_H |
| #define EIGEN_DGMRES_H |
| |
| #include "../../../../Eigen/Eigenvalues" |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| template< typename MatrixType_, |
| typename Preconditioner_ = DiagonalPreconditioner<typename MatrixType_::Scalar> > |
| class DGMRES; |
| |
| namespace internal { |
| |
| template< typename MatrixType_, typename Preconditioner_> |
| struct traits<DGMRES<MatrixType_,Preconditioner_> > |
| { |
| typedef MatrixType_ MatrixType; |
| typedef Preconditioner_ Preconditioner; |
| }; |
| |
| /** \brief Computes a permutation vector to have a sorted sequence |
| * \param vec The vector to reorder. |
| * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1 |
| * \param ncut Put the ncut smallest elements at the end of the vector |
| * WARNING This is an expensive sort, so should be used only |
| * for small size vectors |
| * TODO Use modified QuickSplit or std::nth_element to get the smallest values |
| */ |
| template <typename VectorType, typename IndexType> |
| void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut) |
| { |
| eigen_assert(vec.size() == perm.size()); |
| bool flag; |
| for (Index k = 0; k < ncut; k++) |
| { |
| flag = false; |
| for (Index j = 0; j < vec.size()-1; j++) |
| { |
| if ( vec(perm(j)) < vec(perm(j+1)) ) |
| { |
| std::swap(perm(j),perm(j+1)); |
| flag = true; |
| } |
| if (!flag) break; // The vector is in sorted order |
| } |
| } |
| } |
| |
| } |
| /** |
| * \ingroup IterativeLinearSolvers_Module |
| * \brief A Restarted GMRES with deflation. |
| * This class implements a modification of the GMRES solver for |
| * sparse linear systems. The basis is built with modified |
| * Gram-Schmidt. At each restart, a few approximated eigenvectors |
| * corresponding to the smallest eigenvalues are used to build a |
| * preconditioner for the next cycle. This preconditioner |
| * for deflation can be combined with any other preconditioner, |
| * the IncompleteLUT for instance. The preconditioner is applied |
| * at right of the matrix and the combination is multiplicative. |
| * |
| * \tparam MatrixType_ the type of the sparse matrix A, can be a dense or a sparse matrix. |
| * \tparam Preconditioner_ the type of the preconditioner. Default is DiagonalPreconditioner |
| * Typical usage : |
| * \code |
| * SparseMatrix<double> A; |
| * VectorXd x, b; |
| * //Fill A and b ... |
| * DGMRES<SparseMatrix<double> > solver; |
| * solver.set_restart(30); // Set restarting value |
| * solver.setEigenv(1); // Set the number of eigenvalues to deflate |
| * solver.compute(A); |
| * x = solver.solve(b); |
| * \endcode |
| * |
| * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. |
| * |
| * References : |
| * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid |
| * Algebraic Solvers for Linear Systems Arising from Compressible |
| * Flows, Computers and Fluids, In Press, |
| * https://doi.org/10.1016/j.compfluid.2012.03.023 |
| * [2] K. Burrage and J. Erhel, On the performance of various |
| * adaptive preconditioned GMRES strategies, 5(1998), 101-121. |
| * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES |
| * preconditioned by deflation,J. Computational and Applied |
| * Mathematics, 69(1996), 303-318. |
| |
| * |
| */ |
| template< typename MatrixType_, typename Preconditioner_> |
| class DGMRES : public IterativeSolverBase<DGMRES<MatrixType_,Preconditioner_> > |
| { |
| typedef IterativeSolverBase<DGMRES> Base; |
| using Base::matrix; |
| using Base::m_error; |
| using Base::m_iterations; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| using Base::m_tolerance; |
| public: |
| using Base::_solve_impl; |
| using Base::_solve_with_guess_impl; |
| typedef MatrixType_ MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Preconditioner_ Preconditioner; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| typedef Matrix<RealScalar,Dynamic,1> DenseRealVector; |
| typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector; |
| |
| |
| /** Default constructor. */ |
| DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| template<typename MatrixDerived> |
| explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {} |
| |
| ~DGMRES() {} |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const |
| { |
| EIGEN_STATIC_ASSERT(Rhs::ColsAtCompileTime==1 || Dest::ColsAtCompileTime==1, YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX); |
| |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| dgmres(matrix(), b, x, Base::m_preconditioner); |
| } |
| |
| /** |
| * Get the restart value |
| */ |
| Index restart() { return m_restart; } |
| |
| /** |
| * Set the restart value (default is 30) |
| */ |
| void set_restart(const Index restart) { m_restart=restart; } |
| |
| /** |
| * Set the number of eigenvalues to deflate at each restart |
| */ |
| void setEigenv(const Index neig) |
| { |
| m_neig = neig; |
| if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates |
| } |
| |
| /** |
| * Get the size of the deflation subspace size |
| */ |
| Index deflSize() {return m_r; } |
| |
| /** |
| * Set the maximum size of the deflation subspace |
| */ |
| void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; } |
| |
| protected: |
| // DGMRES algorithm |
| template<typename Rhs, typename Dest> |
| void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const; |
| // Perform one cycle of GMRES |
| template<typename Dest> |
| Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const; |
| // Compute data to use for deflation |
| Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const; |
| // Apply deflation to a vector |
| template<typename RhsType, typename DestType> |
| Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const; |
| ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const; |
| ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const; |
| // Init data for deflation |
| void dgmresInitDeflation(Index& rows) const; |
| mutable DenseMatrix m_V; // Krylov basis vectors |
| mutable DenseMatrix m_H; // Hessenberg matrix |
| mutable DenseMatrix m_Hes; // Initial hessenberg matrix without Givens rotations applied |
| mutable Index m_restart; // Maximum size of the Krylov subspace |
| mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace |
| mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles) |
| mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */ |
| mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T |
| mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart |
| mutable Index m_r; // Current number of deflated eigenvalues, size of m_U |
| mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate |
| mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A |
| mutable bool m_isDeflAllocated; |
| mutable bool m_isDeflInitialized; |
| |
| //Adaptive strategy |
| mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed |
| mutable bool m_force; // Force the use of deflation at each restart |
| |
| }; |
| /** |
| * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt, |
| * |
| * A right preconditioner is used combined with deflation. |
| * |
| */ |
| template< typename MatrixType_, typename Preconditioner_> |
| template<typename Rhs, typename Dest> |
| void DGMRES<MatrixType_, Preconditioner_>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, |
| const Preconditioner& precond) const |
| { |
| const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| |
| RealScalar normRhs = rhs.norm(); |
| if(normRhs <= considerAsZero) |
| { |
| x.setZero(); |
| m_error = 0; |
| return; |
| } |
| |
| //Initialization |
| m_isDeflInitialized = false; |
| Index n = mat.rows(); |
| DenseVector r0(n); |
| Index nbIts = 0; |
| m_H.resize(m_restart+1, m_restart); |
| m_Hes.resize(m_restart, m_restart); |
| m_V.resize(n,m_restart+1); |
| //Initial residual vector and initial norm |
| if(x.squaredNorm()==0) |
| x = precond.solve(rhs); |
| r0 = rhs - mat * x; |
| RealScalar beta = r0.norm(); |
| |
| m_error = beta/normRhs; |
| if(m_error < m_tolerance) |
| m_info = Success; |
| else |
| m_info = NoConvergence; |
| |
| // Iterative process |
| while (nbIts < m_iterations && m_info == NoConvergence) |
| { |
| dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts); |
| |
| // Compute the new residual vector for the restart |
| if (nbIts < m_iterations && m_info == NoConvergence) { |
| r0 = rhs - mat * x; |
| beta = r0.norm(); |
| } |
| } |
| } |
| |
| /** |
| * \brief Perform one restart cycle of DGMRES |
| * \param mat The coefficient matrix |
| * \param precond The preconditioner |
| * \param x the new approximated solution |
| * \param r0 The initial residual vector |
| * \param beta The norm of the residual computed so far |
| * \param normRhs The norm of the right hand side vector |
| * \param nbIts The number of iterations |
| */ |
| template< typename MatrixType_, typename Preconditioner_> |
| template<typename Dest> |
| Index DGMRES<MatrixType_, Preconditioner_>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const |
| { |
| //Initialization |
| DenseVector g(m_restart+1); // Right hand side of the least square problem |
| g.setZero(); |
| g(0) = Scalar(beta); |
| m_V.col(0) = r0/beta; |
| m_info = NoConvergence; |
| std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations |
| Index it = 0; // Number of inner iterations |
| Index n = mat.rows(); |
| DenseVector tv1(n), tv2(n); //Temporary vectors |
| while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations) |
| { |
| // Apply preconditioner(s) at right |
| if (m_isDeflInitialized ) |
| { |
| dgmresApplyDeflation(m_V.col(it), tv1); // Deflation |
| tv2 = precond.solve(tv1); |
| } |
| else |
| { |
| tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner |
| } |
| tv1 = mat * tv2; |
| |
| // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt |
| Scalar coef; |
| for (Index i = 0; i <= it; ++i) |
| { |
| coef = tv1.dot(m_V.col(i)); |
| tv1 = tv1 - coef * m_V.col(i); |
| m_H(i,it) = coef; |
| m_Hes(i,it) = coef; |
| } |
| // Normalize the vector |
| coef = tv1.norm(); |
| m_V.col(it+1) = tv1/coef; |
| m_H(it+1, it) = coef; |
| // m_Hes(it+1,it) = coef; |
| |
| // FIXME Check for happy breakdown |
| |
| // Update Hessenberg matrix with Givens rotations |
| for (Index i = 1; i <= it; ++i) |
| { |
| m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint()); |
| } |
| // Compute the new plane rotation |
| gr[it].makeGivens(m_H(it, it), m_H(it+1,it)); |
| // Apply the new rotation |
| m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint()); |
| g.applyOnTheLeft(it,it+1, gr[it].adjoint()); |
| |
| beta = std::abs(g(it+1)); |
| m_error = beta/normRhs; |
| // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl; |
| it++; nbIts++; |
| |
| if (m_error < m_tolerance) |
| { |
| // The method has converged |
| m_info = Success; |
| break; |
| } |
| } |
| |
| // Compute the new coefficients by solving the least square problem |
| // it++; |
| //FIXME Check first if the matrix is singular ... zero diagonal |
| DenseVector nrs(m_restart); |
| nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it)); |
| |
| // Form the new solution |
| if (m_isDeflInitialized) |
| { |
| tv1 = m_V.leftCols(it) * nrs; |
| dgmresApplyDeflation(tv1, tv2); |
| x = x + precond.solve(tv2); |
| } |
| else |
| x = x + precond.solve(m_V.leftCols(it) * nrs); |
| |
| // Go for a new cycle and compute data for deflation |
| if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig) |
| dgmresComputeDeflationData(mat, precond, it, m_neig); |
| return 0; |
| |
| } |
| |
| |
| template< typename MatrixType_, typename Preconditioner_> |
| void DGMRES<MatrixType_, Preconditioner_>::dgmresInitDeflation(Index& rows) const |
| { |
| m_U.resize(rows, m_maxNeig); |
| m_MU.resize(rows, m_maxNeig); |
| m_T.resize(m_maxNeig, m_maxNeig); |
| m_lambdaN = 0.0; |
| m_isDeflAllocated = true; |
| } |
| |
| template< typename MatrixType_, typename Preconditioner_> |
| inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const |
| { |
| return schurofH.matrixT().diagonal(); |
| } |
| |
| template< typename MatrixType_, typename Preconditioner_> |
| inline typename DGMRES<MatrixType_, Preconditioner_>::ComplexVector DGMRES<MatrixType_, Preconditioner_>::schurValues(const RealSchur<DenseMatrix>& schurofH) const |
| { |
| const DenseMatrix& T = schurofH.matrixT(); |
| Index it = T.rows(); |
| ComplexVector eig(it); |
| Index j = 0; |
| while (j < it-1) |
| { |
| if (T(j+1,j) ==Scalar(0)) |
| { |
| eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); |
| j++; |
| } |
| else |
| { |
| eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j)); |
| eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1)); |
| j++; |
| } |
| } |
| if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); |
| return eig; |
| } |
| |
| template< typename MatrixType_, typename Preconditioner_> |
| Index DGMRES<MatrixType_, Preconditioner_>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const |
| { |
| // First, find the Schur form of the Hessenberg matrix H |
| std::conditional_t<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> > schurofH; |
| bool computeU = true; |
| DenseMatrix matrixQ(it,it); |
| matrixQ.setIdentity(); |
| schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU); |
| |
| ComplexVector eig(it); |
| Matrix<StorageIndex,Dynamic,1>perm(it); |
| eig = this->schurValues(schurofH); |
| |
| // Reorder the absolute values of Schur values |
| DenseRealVector modulEig(it); |
| for (Index j=0; j<it; ++j) modulEig(j) = std::abs(eig(j)); |
| perm.setLinSpaced(it,0,internal::convert_index<StorageIndex>(it-1)); |
| internal::sortWithPermutation(modulEig, perm, neig); |
| |
| if (!m_lambdaN) |
| { |
| m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN); |
| } |
| //Count the real number of extracted eigenvalues (with complex conjugates) |
| Index nbrEig = 0; |
| while (nbrEig < neig) |
| { |
| if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++; |
| else nbrEig += 2; |
| } |
| // Extract the Schur vectors corresponding to the smallest Ritz values |
| DenseMatrix Sr(it, nbrEig); |
| Sr.setZero(); |
| for (Index j = 0; j < nbrEig; j++) |
| { |
| Sr.col(j) = schurofH.matrixU().col(perm(it-j-1)); |
| } |
| |
| // Form the Schur vectors of the initial matrix using the Krylov basis |
| DenseMatrix X; |
| X = m_V.leftCols(it) * Sr; |
| if (m_r) |
| { |
| // Orthogonalize X against m_U using modified Gram-Schmidt |
| for (Index j = 0; j < nbrEig; j++) |
| for (Index k =0; k < m_r; k++) |
| X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k); |
| } |
| |
| // Compute m_MX = A * M^-1 * X |
| Index m = m_V.rows(); |
| if (!m_isDeflAllocated) |
| dgmresInitDeflation(m); |
| DenseMatrix MX(m, nbrEig); |
| DenseVector tv1(m); |
| for (Index j = 0; j < nbrEig; j++) |
| { |
| tv1 = mat * X.col(j); |
| MX.col(j) = precond.solve(tv1); |
| } |
| |
| //Update m_T = [U'MU U'MX; X'MU X'MX] |
| m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX; |
| if(m_r) |
| { |
| m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX; |
| m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r); |
| } |
| |
| // Save X into m_U and m_MX in m_MU |
| for (Index j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j); |
| for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j); |
| // Increase the size of the invariant subspace |
| m_r += nbrEig; |
| |
| // Factorize m_T into m_luT |
| m_luT.compute(m_T.topLeftCorner(m_r, m_r)); |
| |
| //FIXME CHeck if the factorization was correctly done (nonsingular matrix) |
| m_isDeflInitialized = true; |
| return 0; |
| } |
| template<typename MatrixType_, typename Preconditioner_> |
| template<typename RhsType, typename DestType> |
| Index DGMRES<MatrixType_, Preconditioner_>::dgmresApplyDeflation(const RhsType &x, DestType &y) const |
| { |
| DenseVector x1 = m_U.leftCols(m_r).transpose() * x; |
| y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1); |
| return 0; |
| } |
| |
| } // end namespace Eigen |
| #endif |