| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATRIX_EXPONENTIAL |
| #define EIGEN_MATRIX_EXPONENTIAL |
| |
| #include "StemFunction.h" |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| namespace internal { |
| |
| /** \brief Scaling operator. |
| * |
| * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$. |
| */ |
| template <typename RealScalar> |
| struct MatrixExponentialScalingOp |
| { |
| /** \brief Constructor. |
| * |
| * \param[in] squarings The integer \f$ s \f$ in this document. |
| */ |
| MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { } |
| |
| |
| /** \brief Scale a matrix coefficient. |
| * |
| * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. |
| */ |
| inline const RealScalar operator() (const RealScalar& x) const |
| { |
| using std::ldexp; |
| return ldexp(x, -m_squarings); |
| } |
| |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| /** \brief Scale a matrix coefficient. |
| * |
| * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. |
| */ |
| inline const ComplexScalar operator() (const ComplexScalar& x) const |
| { |
| using std::ldexp; |
| return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings)); |
| } |
| |
| private: |
| int m_squarings; |
| }; |
| |
| /** \brief Compute the (3,3)-Padé approximant to the exponential. |
| * |
| * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| */ |
| template <typename MatA, typename MatU, typename MatV> |
| void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V) |
| { |
| typedef typename MatA::PlainObject MatrixType; |
| typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar; |
| const RealScalar b[] = {120.L, 60.L, 12.L, 1.L}; |
| const MatrixType A2 = A * A; |
| const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| U.noalias() = A * tmp; |
| V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| } |
| |
| /** \brief Compute the (5,5)-Padé approximant to the exponential. |
| * |
| * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| */ |
| template <typename MatA, typename MatU, typename MatV> |
| void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V) |
| { |
| typedef typename MatA::PlainObject MatrixType; |
| typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L}; |
| const MatrixType A2 = A * A; |
| const MatrixType A4 = A2 * A2; |
| const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| U.noalias() = A * tmp; |
| V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| } |
| |
| /** \brief Compute the (7,7)-Padé approximant to the exponential. |
| * |
| * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| */ |
| template <typename MatA, typename MatU, typename MatV> |
| void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V) |
| { |
| typedef typename MatA::PlainObject MatrixType; |
| typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L}; |
| const MatrixType A2 = A * A; |
| const MatrixType A4 = A2 * A2; |
| const MatrixType A6 = A4 * A2; |
| const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 |
| + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| U.noalias() = A * tmp; |
| V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| |
| } |
| |
| /** \brief Compute the (9,9)-Padé approximant to the exponential. |
| * |
| * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| */ |
| template <typename MatA, typename MatU, typename MatV> |
| void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V) |
| { |
| typedef typename MatA::PlainObject MatrixType; |
| typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L, |
| 2162160.L, 110880.L, 3960.L, 90.L, 1.L}; |
| const MatrixType A2 = A * A; |
| const MatrixType A4 = A2 * A2; |
| const MatrixType A6 = A4 * A2; |
| const MatrixType A8 = A6 * A2; |
| const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 |
| + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| U.noalias() = A * tmp; |
| V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| } |
| |
| /** \brief Compute the (13,13)-Padé approximant to the exponential. |
| * |
| * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| */ |
| template <typename MatA, typename MatU, typename MatV> |
| void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V) |
| { |
| typedef typename MatA::PlainObject MatrixType; |
| typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L, |
| 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L, |
| 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L}; |
| const MatrixType A2 = A * A; |
| const MatrixType A4 = A2 * A2; |
| const MatrixType A6 = A4 * A2; |
| V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage |
| MatrixType tmp = A6 * V; |
| tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| U.noalias() = A * tmp; |
| tmp = b[12] * A6 + b[10] * A4 + b[8] * A2; |
| V.noalias() = A6 * tmp; |
| V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| } |
| |
| /** \brief Compute the (17,17)-Padé approximant to the exponential. |
| * |
| * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé |
| * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. |
| * |
| * This function activates only if your long double is double-double or quadruple. |
| */ |
| #if LDBL_MANT_DIG > 64 |
| template <typename MatA, typename MatU, typename MatV> |
| void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V) |
| { |
| typedef typename MatA::PlainObject MatrixType; |
| typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, |
| 100610229646136770560000.L, 15720348382208870400000.L, |
| 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, |
| 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, |
| 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, |
| 46512.L, 306.L, 1.L}; |
| const MatrixType A2 = A * A; |
| const MatrixType A4 = A2 * A2; |
| const MatrixType A6 = A4 * A2; |
| const MatrixType A8 = A4 * A4; |
| V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage |
| MatrixType tmp = A8 * V; |
| tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 |
| + b[1] * MatrixType::Identity(A.rows(), A.cols()); |
| U.noalias() = A * tmp; |
| tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2; |
| V.noalias() = tmp * A8; |
| V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 |
| + b[0] * MatrixType::Identity(A.rows(), A.cols()); |
| } |
| #endif |
| |
| template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real> |
| struct matrix_exp_computeUV |
| { |
| /** \brief Compute Padé approximant to the exponential. |
| * |
| * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé |
| * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$ |
| * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings |
| * are chosen such that the approximation error is no more than the round-off error. |
| */ |
| static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings); |
| }; |
| |
| template <typename MatrixType> |
| struct matrix_exp_computeUV<MatrixType, float> |
| { |
| template <typename ArgType> |
| static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) |
| { |
| using std::frexp; |
| using std::pow; |
| const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); |
| squarings = 0; |
| if (l1norm < 4.258730016922831e-001f) { |
| matrix_exp_pade3(arg, U, V); |
| } else if (l1norm < 1.880152677804762e+000f) { |
| matrix_exp_pade5(arg, U, V); |
| } else { |
| const float maxnorm = 3.925724783138660f; |
| frexp(l1norm / maxnorm, &squarings); |
| if (squarings < 0) squarings = 0; |
| MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings)); |
| matrix_exp_pade7(A, U, V); |
| } |
| } |
| }; |
| |
| template <typename MatrixType> |
| struct matrix_exp_computeUV<MatrixType, double> |
| { |
| typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; |
| template <typename ArgType> |
| static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) |
| { |
| using std::frexp; |
| using std::pow; |
| const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); |
| squarings = 0; |
| if (l1norm < 1.495585217958292e-002) { |
| matrix_exp_pade3(arg, U, V); |
| } else if (l1norm < 2.539398330063230e-001) { |
| matrix_exp_pade5(arg, U, V); |
| } else if (l1norm < 9.504178996162932e-001) { |
| matrix_exp_pade7(arg, U, V); |
| } else if (l1norm < 2.097847961257068e+000) { |
| matrix_exp_pade9(arg, U, V); |
| } else { |
| const RealScalar maxnorm = 5.371920351148152; |
| frexp(l1norm / maxnorm, &squarings); |
| if (squarings < 0) squarings = 0; |
| MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings)); |
| matrix_exp_pade13(A, U, V); |
| } |
| } |
| }; |
| |
| template <typename MatrixType> |
| struct matrix_exp_computeUV<MatrixType, long double> |
| { |
| template <typename ArgType> |
| static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) |
| { |
| #if LDBL_MANT_DIG == 53 // double precision |
| matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings); |
| |
| #else |
| |
| using std::frexp; |
| using std::pow; |
| const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); |
| squarings = 0; |
| |
| #if LDBL_MANT_DIG <= 64 // extended precision |
| |
| if (l1norm < 4.1968497232266989671e-003L) { |
| matrix_exp_pade3(arg, U, V); |
| } else if (l1norm < 1.1848116734693823091e-001L) { |
| matrix_exp_pade5(arg, U, V); |
| } else if (l1norm < 5.5170388480686700274e-001L) { |
| matrix_exp_pade7(arg, U, V); |
| } else if (l1norm < 1.3759868875587845383e+000L) { |
| matrix_exp_pade9(arg, U, V); |
| } else { |
| const long double maxnorm = 4.0246098906697353063L; |
| frexp(l1norm / maxnorm, &squarings); |
| if (squarings < 0) squarings = 0; |
| MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); |
| matrix_exp_pade13(A, U, V); |
| } |
| |
| #elif LDBL_MANT_DIG <= 106 // double-double |
| |
| if (l1norm < 3.2787892205607026992947488108213e-005L) { |
| matrix_exp_pade3(arg, U, V); |
| } else if (l1norm < 6.4467025060072760084130906076332e-003L) { |
| matrix_exp_pade5(arg, U, V); |
| } else if (l1norm < 6.8988028496595374751374122881143e-002L) { |
| matrix_exp_pade7(arg, U, V); |
| } else if (l1norm < 2.7339737518502231741495857201670e-001L) { |
| matrix_exp_pade9(arg, U, V); |
| } else if (l1norm < 1.3203382096514474905666448850278e+000L) { |
| matrix_exp_pade13(arg, U, V); |
| } else { |
| const long double maxnorm = 3.2579440895405400856599663723517L; |
| frexp(l1norm / maxnorm, &squarings); |
| if (squarings < 0) squarings = 0; |
| MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); |
| matrix_exp_pade17(A, U, V); |
| } |
| |
| #elif LDBL_MANT_DIG <= 113 // quadruple precision |
| |
| if (l1norm < 1.639394610288918690547467954466970e-005L) { |
| matrix_exp_pade3(arg, U, V); |
| } else if (l1norm < 4.253237712165275566025884344433009e-003L) { |
| matrix_exp_pade5(arg, U, V); |
| } else if (l1norm < 5.125804063165764409885122032933142e-002L) { |
| matrix_exp_pade7(arg, U, V); |
| } else if (l1norm < 2.170000765161155195453205651889853e-001L) { |
| matrix_exp_pade9(arg, U, V); |
| } else if (l1norm < 1.125358383453143065081397882891878e+000L) { |
| matrix_exp_pade13(arg, U, V); |
| } else { |
| const long double maxnorm = 2.884233277829519311757165057717815L; |
| frexp(l1norm / maxnorm, &squarings); |
| if (squarings < 0) squarings = 0; |
| MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); |
| matrix_exp_pade17(A, U, V); |
| } |
| |
| #else |
| |
| // this case should be handled in compute() |
| eigen_assert(false && "Bug in MatrixExponential"); |
| |
| #endif |
| #endif // LDBL_MANT_DIG |
| } |
| }; |
| |
| template<typename T> struct is_exp_known_type : false_type {}; |
| template<> struct is_exp_known_type<float> : true_type {}; |
| template<> struct is_exp_known_type<double> : true_type {}; |
| #if LDBL_MANT_DIG <= 113 |
| template<> struct is_exp_known_type<long double> : true_type {}; |
| #endif |
| |
| template <typename ArgType, typename ResultType> |
| void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type |
| { |
| typedef typename ArgType::PlainObject MatrixType; |
| MatrixType U, V; |
| int squarings; |
| matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V) |
| MatrixType numer = U + V; |
| MatrixType denom = -U + V; |
| result = denom.partialPivLu().solve(numer); |
| for (int i=0; i<squarings; i++) |
| result *= result; // undo scaling by repeated squaring |
| } |
| |
| |
| /* Computes the matrix exponential |
| * |
| * \param arg argument of matrix exponential (should be plain object) |
| * \param result variable in which result will be stored |
| */ |
| template <typename ArgType, typename ResultType> |
| void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default |
| { |
| typedef typename ArgType::PlainObject MatrixType; |
| typedef typename traits<MatrixType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename std::complex<RealScalar> ComplexScalar; |
| result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>); |
| } |
| |
| } // end namespace Eigen::internal |
| |
| /** \ingroup MatrixFunctions_Module |
| * |
| * \brief Proxy for the matrix exponential of some matrix (expression). |
| * |
| * \tparam Derived Type of the argument to the matrix exponential. |
| * |
| * This class holds the argument to the matrix exponential until it is assigned or evaluated for |
| * some other reason (so the argument should not be changed in the meantime). It is the return type |
| * of MatrixBase::exp() and most of the time this is the only way it is used. |
| */ |
| template<typename Derived> struct MatrixExponentialReturnValue |
| : public ReturnByValue<MatrixExponentialReturnValue<Derived> > |
| { |
| public: |
| /** \brief Constructor. |
| * |
| * \param src %Matrix (expression) forming the argument of the matrix exponential. |
| */ |
| MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } |
| |
| /** \brief Compute the matrix exponential. |
| * |
| * \param result the matrix exponential of \p src in the constructor. |
| */ |
| template <typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| const typename internal::nested_eval<Derived, 10>::type tmp(m_src); |
| internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::RealScalar>()); |
| } |
| |
| Index rows() const { return m_src.rows(); } |
| Index cols() const { return m_src.cols(); } |
| |
| protected: |
| const typename internal::ref_selector<Derived>::type m_src; |
| }; |
| |
| namespace internal { |
| template<typename Derived> |
| struct traits<MatrixExponentialReturnValue<Derived> > |
| { |
| typedef typename Derived::PlainObject ReturnType; |
| }; |
| } |
| |
| template <typename Derived> |
| const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const |
| { |
| eigen_assert(rows() == cols()); |
| return MatrixExponentialReturnValue<Derived>(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATRIX_EXPONENTIAL |