| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/Polynomials> |
| #include <iostream> |
| |
| using namespace std; |
| |
| namespace Eigen { |
| namespace internal { |
| template<int Size> |
| struct increment_if_fixed_size |
| { |
| enum { |
| ret = (Size == Dynamic) ? Dynamic : Size+1 |
| }; |
| }; |
| } |
| } |
| |
| template<typename Scalar_, int Deg_> |
| void realRoots_to_monicPolynomial_test(int deg) |
| { |
| typedef internal::increment_if_fixed_size<Deg_> Dim; |
| typedef Matrix<Scalar_,Dim::ret,1> PolynomialType; |
| typedef Matrix<Scalar_,Deg_,1> EvalRootsType; |
| |
| PolynomialType pols(deg+1); |
| EvalRootsType roots = EvalRootsType::Random(deg); |
| roots_to_monicPolynomial( roots, pols ); |
| |
| EvalRootsType evr( deg ); |
| for( int i=0; i<roots.size(); ++i ){ |
| evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } |
| |
| bool evalToZero = evr.isZero( test_precision<Scalar_>() ); |
| if( !evalToZero ){ |
| cerr << evr.transpose() << endl; } |
| VERIFY( evalToZero ); |
| } |
| |
| template<typename Scalar_> void realRoots_to_monicPolynomial_scalar() |
| { |
| CALL_SUBTEST_2( (realRoots_to_monicPolynomial_test<Scalar_,2>(2)) ); |
| CALL_SUBTEST_3( (realRoots_to_monicPolynomial_test<Scalar_,3>(3)) ); |
| CALL_SUBTEST_4( (realRoots_to_monicPolynomial_test<Scalar_,4>(4)) ); |
| CALL_SUBTEST_5( (realRoots_to_monicPolynomial_test<Scalar_,5>(5)) ); |
| CALL_SUBTEST_6( (realRoots_to_monicPolynomial_test<Scalar_,6>(6)) ); |
| CALL_SUBTEST_7( (realRoots_to_monicPolynomial_test<Scalar_,7>(7)) ); |
| CALL_SUBTEST_8( (realRoots_to_monicPolynomial_test<Scalar_,17>(17)) ); |
| |
| CALL_SUBTEST_9( (realRoots_to_monicPolynomial_test<Scalar_,Dynamic>( |
| internal::random<int>(18,26) )) ); |
| } |
| |
| |
| |
| |
| template<typename Scalar_, int Deg_> |
| void CauchyBounds(int deg) |
| { |
| typedef internal::increment_if_fixed_size<Deg_> Dim; |
| typedef Matrix<Scalar_,Dim::ret,1> PolynomialType; |
| typedef Matrix<Scalar_,Deg_,1> EvalRootsType; |
| |
| PolynomialType pols(deg+1); |
| EvalRootsType roots = EvalRootsType::Random(deg); |
| roots_to_monicPolynomial( roots, pols ); |
| Scalar_ M = cauchy_max_bound( pols ); |
| Scalar_ m = cauchy_min_bound( pols ); |
| Scalar_ Max = roots.array().abs().maxCoeff(); |
| Scalar_ min = roots.array().abs().minCoeff(); |
| bool eval = (M >= Max) && (m <= min); |
| if( !eval ) |
| { |
| cerr << "Roots: " << roots << endl; |
| cerr << "Bounds: (" << m << ", " << M << ")" << endl; |
| cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; |
| } |
| VERIFY( eval ); |
| } |
| |
| template<typename Scalar_> void CauchyBounds_scalar() |
| { |
| CALL_SUBTEST_2( (CauchyBounds<Scalar_,2>(2)) ); |
| CALL_SUBTEST_3( (CauchyBounds<Scalar_,3>(3)) ); |
| CALL_SUBTEST_4( (CauchyBounds<Scalar_,4>(4)) ); |
| CALL_SUBTEST_5( (CauchyBounds<Scalar_,5>(5)) ); |
| CALL_SUBTEST_6( (CauchyBounds<Scalar_,6>(6)) ); |
| CALL_SUBTEST_7( (CauchyBounds<Scalar_,7>(7)) ); |
| CALL_SUBTEST_8( (CauchyBounds<Scalar_,17>(17)) ); |
| |
| CALL_SUBTEST_9( (CauchyBounds<Scalar_,Dynamic>( |
| internal::random<int>(18,26) )) ); |
| } |
| |
| EIGEN_DECLARE_TEST(polynomialutils) |
| { |
| for(int i = 0; i < g_repeat; i++) |
| { |
| realRoots_to_monicPolynomial_scalar<double>(); |
| realRoots_to_monicPolynomial_scalar<float>(); |
| CauchyBounds_scalar<double>(); |
| CauchyBounds_scalar<float>(); |
| } |
| } |