|  | /* | 
|  | * This file is part of UBIFS. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Nokia Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|  | * | 
|  | * Authors: Artem Bityutskiy (Битюцкий Артём) | 
|  | *          Adrian Hunter | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file contains functions for finding LEBs for various purposes e.g. | 
|  | * garbage collection. In general, lprops category heaps and lists are used | 
|  | * for fast access, falling back on scanning the LPT as a last resort. | 
|  | */ | 
|  |  | 
|  | #include <linux/sort.h> | 
|  | #include "ubifs.h" | 
|  |  | 
|  | /** | 
|  | * struct scan_data - data provided to scan callback functions | 
|  | * @min_space: minimum number of bytes for which to scan | 
|  | * @pick_free: whether it is OK to scan for empty LEBs | 
|  | * @lnum: LEB number found is returned here | 
|  | * @exclude_index: whether to exclude index LEBs | 
|  | */ | 
|  | struct scan_data { | 
|  | int min_space; | 
|  | int pick_free; | 
|  | int lnum; | 
|  | int exclude_index; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * valuable - determine whether LEB properties are valuable. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lprops: LEB properties | 
|  | * | 
|  | * This function return %1 if the LEB properties should be added to the LEB | 
|  | * properties tree in memory. Otherwise %0 is returned. | 
|  | */ | 
|  | static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops) | 
|  | { | 
|  | int n, cat = lprops->flags & LPROPS_CAT_MASK; | 
|  | struct ubifs_lpt_heap *heap; | 
|  |  | 
|  | switch (cat) { | 
|  | case LPROPS_DIRTY: | 
|  | case LPROPS_DIRTY_IDX: | 
|  | case LPROPS_FREE: | 
|  | heap = &c->lpt_heap[cat - 1]; | 
|  | if (heap->cnt < heap->max_cnt) | 
|  | return 1; | 
|  | if (lprops->free + lprops->dirty >= c->dark_wm) | 
|  | return 1; | 
|  | return 0; | 
|  | case LPROPS_EMPTY: | 
|  | n = c->lst.empty_lebs + c->freeable_cnt - | 
|  | c->lst.taken_empty_lebs; | 
|  | if (n < c->lsave_cnt) | 
|  | return 1; | 
|  | return 0; | 
|  | case LPROPS_FREEABLE: | 
|  | return 1; | 
|  | case LPROPS_FRDI_IDX: | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_for_dirty_cb - dirty space scan callback. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lprops: LEB properties to scan | 
|  | * @in_tree: whether the LEB properties are in main memory | 
|  | * @data: information passed to and from the caller of the scan | 
|  | * | 
|  | * This function returns a code that indicates whether the scan should continue | 
|  | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree | 
|  | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop | 
|  | * (%LPT_SCAN_STOP). | 
|  | */ | 
|  | static int scan_for_dirty_cb(struct ubifs_info *c, | 
|  | const struct ubifs_lprops *lprops, int in_tree, | 
|  | struct scan_data *data) | 
|  | { | 
|  | int ret = LPT_SCAN_CONTINUE; | 
|  |  | 
|  | /* Exclude LEBs that are currently in use */ | 
|  | if (lprops->flags & LPROPS_TAKEN) | 
|  | return LPT_SCAN_CONTINUE; | 
|  | /* Determine whether to add these LEB properties to the tree */ | 
|  | if (!in_tree && valuable(c, lprops)) | 
|  | ret |= LPT_SCAN_ADD; | 
|  | /* Exclude LEBs with too little space */ | 
|  | if (lprops->free + lprops->dirty < data->min_space) | 
|  | return ret; | 
|  | /* If specified, exclude index LEBs */ | 
|  | if (data->exclude_index && lprops->flags & LPROPS_INDEX) | 
|  | return ret; | 
|  | /* If specified, exclude empty or freeable LEBs */ | 
|  | if (lprops->free + lprops->dirty == c->leb_size) { | 
|  | if (!data->pick_free) | 
|  | return ret; | 
|  | /* Exclude LEBs with too little dirty space (unless it is empty) */ | 
|  | } else if (lprops->dirty < c->dead_wm) | 
|  | return ret; | 
|  | /* Finally we found space */ | 
|  | data->lnum = lprops->lnum; | 
|  | return LPT_SCAN_ADD | LPT_SCAN_STOP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_for_dirty - find a data LEB with free space. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @min_space: minimum amount free plus dirty space the returned LEB has to | 
|  | *             have | 
|  | * @pick_free: if it is OK to return a free or freeable LEB | 
|  | * @exclude_index: whether to exclude index LEBs | 
|  | * | 
|  | * This function returns a pointer to the LEB properties found or a negative | 
|  | * error code. | 
|  | */ | 
|  | static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c, | 
|  | int min_space, int pick_free, | 
|  | int exclude_index) | 
|  | { | 
|  | const struct ubifs_lprops *lprops; | 
|  | struct ubifs_lpt_heap *heap; | 
|  | struct scan_data data; | 
|  | int err, i; | 
|  |  | 
|  | /* There may be an LEB with enough dirty space on the free heap */ | 
|  | heap = &c->lpt_heap[LPROPS_FREE - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | lprops = heap->arr[i]; | 
|  | if (lprops->free + lprops->dirty < min_space) | 
|  | continue; | 
|  | if (lprops->dirty < c->dead_wm) | 
|  | continue; | 
|  | return lprops; | 
|  | } | 
|  | /* | 
|  | * A LEB may have fallen off of the bottom of the dirty heap, and ended | 
|  | * up as uncategorized even though it has enough dirty space for us now, | 
|  | * so check the uncategorized list. N.B. neither empty nor freeable LEBs | 
|  | * can end up as uncategorized because they are kept on lists not | 
|  | * finite-sized heaps. | 
|  | */ | 
|  | list_for_each_entry(lprops, &c->uncat_list, list) { | 
|  | if (lprops->flags & LPROPS_TAKEN) | 
|  | continue; | 
|  | if (lprops->free + lprops->dirty < min_space) | 
|  | continue; | 
|  | if (exclude_index && (lprops->flags & LPROPS_INDEX)) | 
|  | continue; | 
|  | if (lprops->dirty < c->dead_wm) | 
|  | continue; | 
|  | return lprops; | 
|  | } | 
|  | /* We have looked everywhere in main memory, now scan the flash */ | 
|  | if (c->pnodes_have >= c->pnode_cnt) | 
|  | /* All pnodes are in memory, so skip scan */ | 
|  | return ERR_PTR(-ENOSPC); | 
|  | data.min_space = min_space; | 
|  | data.pick_free = pick_free; | 
|  | data.lnum = -1; | 
|  | data.exclude_index = exclude_index; | 
|  | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, | 
|  | (ubifs_lpt_scan_callback)scan_for_dirty_cb, | 
|  | &data); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); | 
|  | c->lscan_lnum = data.lnum; | 
|  | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); | 
|  | if (IS_ERR(lprops)) | 
|  | return lprops; | 
|  | ubifs_assert(lprops->lnum == data.lnum); | 
|  | ubifs_assert(lprops->free + lprops->dirty >= min_space); | 
|  | ubifs_assert(lprops->dirty >= c->dead_wm || | 
|  | (pick_free && | 
|  | lprops->free + lprops->dirty == c->leb_size)); | 
|  | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert(!exclude_index || !(lprops->flags & LPROPS_INDEX)); | 
|  | return lprops; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @ret_lp: LEB properties are returned here on exit | 
|  | * @min_space: minimum amount free plus dirty space the returned LEB has to | 
|  | *             have | 
|  | * @pick_free: controls whether it is OK to pick empty or index LEBs | 
|  | * | 
|  | * This function tries to find a dirty logical eraseblock which has at least | 
|  | * @min_space free and dirty space. It prefers to take an LEB from the dirty or | 
|  | * dirty index heap, and it falls-back to LPT scanning if the heaps are empty | 
|  | * or do not have an LEB which satisfies the @min_space criteria. | 
|  | * | 
|  | * Note, LEBs which have less than dead watermark of free + dirty space are | 
|  | * never picked by this function. | 
|  | * | 
|  | * The additional @pick_free argument controls if this function has to return a | 
|  | * free or freeable LEB if one is present. For example, GC must to set it to %1, | 
|  | * when called from the journal space reservation function, because the | 
|  | * appearance of free space may coincide with the loss of enough dirty space | 
|  | * for GC to succeed anyway. | 
|  | * | 
|  | * In contrast, if the Garbage Collector is called from budgeting, it should | 
|  | * just make free space, not return LEBs which are already free or freeable. | 
|  | * | 
|  | * In addition @pick_free is set to %2 by the recovery process in order to | 
|  | * recover gc_lnum in which case an index LEB must not be returned. | 
|  | * | 
|  | * This function returns zero and the LEB properties of found dirty LEB in case | 
|  | * of success, %-ENOSPC if no dirty LEB was found and a negative error code in | 
|  | * case of other failures. The returned LEB is marked as "taken". | 
|  | */ | 
|  | int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, | 
|  | int min_space, int pick_free) | 
|  | { | 
|  | int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0; | 
|  | const struct ubifs_lprops *lp = NULL, *idx_lp = NULL; | 
|  | struct ubifs_lpt_heap *heap, *idx_heap; | 
|  |  | 
|  | ubifs_get_lprops(c); | 
|  |  | 
|  | if (pick_free) { | 
|  | int lebs, rsvd_idx_lebs = 0; | 
|  |  | 
|  | spin_lock(&c->space_lock); | 
|  | lebs = c->lst.empty_lebs + c->idx_gc_cnt; | 
|  | lebs += c->freeable_cnt - c->lst.taken_empty_lebs; | 
|  |  | 
|  | /* | 
|  | * Note, the index may consume more LEBs than have been reserved | 
|  | * for it. It is OK because it might be consolidated by GC. | 
|  | * But if the index takes fewer LEBs than it is reserved for it, | 
|  | * this function must avoid picking those reserved LEBs. | 
|  | */ | 
|  | if (c->bi.min_idx_lebs >= c->lst.idx_lebs) { | 
|  | rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs; | 
|  | exclude_index = 1; | 
|  | } | 
|  | spin_unlock(&c->space_lock); | 
|  |  | 
|  | /* Check if there are enough free LEBs for the index */ | 
|  | if (rsvd_idx_lebs < lebs) { | 
|  | /* OK, try to find an empty LEB */ | 
|  | lp = ubifs_fast_find_empty(c); | 
|  | if (lp) | 
|  | goto found; | 
|  |  | 
|  | /* Or a freeable LEB */ | 
|  | lp = ubifs_fast_find_freeable(c); | 
|  | if (lp) | 
|  | goto found; | 
|  | } else | 
|  | /* | 
|  | * We cannot pick free/freeable LEBs in the below code. | 
|  | */ | 
|  | pick_free = 0; | 
|  | } else { | 
|  | spin_lock(&c->space_lock); | 
|  | exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs); | 
|  | spin_unlock(&c->space_lock); | 
|  | } | 
|  |  | 
|  | /* Look on the dirty and dirty index heaps */ | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | 
|  | idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | 
|  |  | 
|  | if (idx_heap->cnt && !exclude_index) { | 
|  | idx_lp = idx_heap->arr[0]; | 
|  | sum = idx_lp->free + idx_lp->dirty; | 
|  | /* | 
|  | * Since we reserve thrice as much space for the index than it | 
|  | * actually takes, it does not make sense to pick indexing LEBs | 
|  | * with less than, say, half LEB of dirty space. May be half is | 
|  | * not the optimal boundary - this should be tested and | 
|  | * checked. This boundary should determine how much we use | 
|  | * in-the-gaps to consolidate the index comparing to how much | 
|  | * we use garbage collector to consolidate it. The "half" | 
|  | * criteria just feels to be fine. | 
|  | */ | 
|  | if (sum < min_space || sum < c->half_leb_size) | 
|  | idx_lp = NULL; | 
|  | } | 
|  |  | 
|  | if (heap->cnt) { | 
|  | lp = heap->arr[0]; | 
|  | if (lp->dirty + lp->free < min_space) | 
|  | lp = NULL; | 
|  | } | 
|  |  | 
|  | /* Pick the LEB with most space */ | 
|  | if (idx_lp && lp) { | 
|  | if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty) | 
|  | lp = idx_lp; | 
|  | } else if (idx_lp && !lp) | 
|  | lp = idx_lp; | 
|  |  | 
|  | if (lp) { | 
|  | ubifs_assert(lp->free + lp->dirty >= c->dead_wm); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* Did not find a dirty LEB on the dirty heaps, have to scan */ | 
|  | dbg_find("scanning LPT for a dirty LEB"); | 
|  | lp = scan_for_dirty(c, min_space, pick_free, exclude_index); | 
|  | if (IS_ERR(lp)) { | 
|  | err = PTR_ERR(lp); | 
|  | goto out; | 
|  | } | 
|  | ubifs_assert(lp->dirty >= c->dead_wm || | 
|  | (pick_free && lp->free + lp->dirty == c->leb_size)); | 
|  |  | 
|  | found: | 
|  | dbg_find("found LEB %d, free %d, dirty %d, flags %#x", | 
|  | lp->lnum, lp->free, lp->dirty, lp->flags); | 
|  |  | 
|  | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, | 
|  | lp->flags | LPROPS_TAKEN, 0); | 
|  | if (IS_ERR(lp)) { | 
|  | err = PTR_ERR(lp); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcpy(ret_lp, lp, sizeof(struct ubifs_lprops)); | 
|  |  | 
|  | out: | 
|  | ubifs_release_lprops(c); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_for_free_cb - free space scan callback. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lprops: LEB properties to scan | 
|  | * @in_tree: whether the LEB properties are in main memory | 
|  | * @data: information passed to and from the caller of the scan | 
|  | * | 
|  | * This function returns a code that indicates whether the scan should continue | 
|  | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree | 
|  | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop | 
|  | * (%LPT_SCAN_STOP). | 
|  | */ | 
|  | static int scan_for_free_cb(struct ubifs_info *c, | 
|  | const struct ubifs_lprops *lprops, int in_tree, | 
|  | struct scan_data *data) | 
|  | { | 
|  | int ret = LPT_SCAN_CONTINUE; | 
|  |  | 
|  | /* Exclude LEBs that are currently in use */ | 
|  | if (lprops->flags & LPROPS_TAKEN) | 
|  | return LPT_SCAN_CONTINUE; | 
|  | /* Determine whether to add these LEB properties to the tree */ | 
|  | if (!in_tree && valuable(c, lprops)) | 
|  | ret |= LPT_SCAN_ADD; | 
|  | /* Exclude index LEBs */ | 
|  | if (lprops->flags & LPROPS_INDEX) | 
|  | return ret; | 
|  | /* Exclude LEBs with too little space */ | 
|  | if (lprops->free < data->min_space) | 
|  | return ret; | 
|  | /* If specified, exclude empty LEBs */ | 
|  | if (!data->pick_free && lprops->free == c->leb_size) | 
|  | return ret; | 
|  | /* | 
|  | * LEBs that have only free and dirty space must not be allocated | 
|  | * because they may have been unmapped already or they may have data | 
|  | * that is obsolete only because of nodes that are still sitting in a | 
|  | * wbuf. | 
|  | */ | 
|  | if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0) | 
|  | return ret; | 
|  | /* Finally we found space */ | 
|  | data->lnum = lprops->lnum; | 
|  | return LPT_SCAN_ADD | LPT_SCAN_STOP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_find_free_space - find a data LEB with free space. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @min_space: minimum amount of free space required | 
|  | * @pick_free: whether it is OK to scan for empty LEBs | 
|  | * @squeeze: whether to try to find space in a non-empty LEB first | 
|  | * | 
|  | * This function returns a pointer to the LEB properties found or a negative | 
|  | * error code. | 
|  | */ | 
|  | static | 
|  | const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c, | 
|  | int min_space, int pick_free, | 
|  | int squeeze) | 
|  | { | 
|  | const struct ubifs_lprops *lprops; | 
|  | struct ubifs_lpt_heap *heap; | 
|  | struct scan_data data; | 
|  | int err, i; | 
|  |  | 
|  | if (squeeze) { | 
|  | lprops = ubifs_fast_find_free(c); | 
|  | if (lprops && lprops->free >= min_space) | 
|  | return lprops; | 
|  | } | 
|  | if (pick_free) { | 
|  | lprops = ubifs_fast_find_empty(c); | 
|  | if (lprops) | 
|  | return lprops; | 
|  | } | 
|  | if (!squeeze) { | 
|  | lprops = ubifs_fast_find_free(c); | 
|  | if (lprops && lprops->free >= min_space) | 
|  | return lprops; | 
|  | } | 
|  | /* There may be an LEB with enough free space on the dirty heap */ | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | lprops = heap->arr[i]; | 
|  | if (lprops->free >= min_space) | 
|  | return lprops; | 
|  | } | 
|  | /* | 
|  | * A LEB may have fallen off of the bottom of the free heap, and ended | 
|  | * up as uncategorized even though it has enough free space for us now, | 
|  | * so check the uncategorized list. N.B. neither empty nor freeable LEBs | 
|  | * can end up as uncategorized because they are kept on lists not | 
|  | * finite-sized heaps. | 
|  | */ | 
|  | list_for_each_entry(lprops, &c->uncat_list, list) { | 
|  | if (lprops->flags & LPROPS_TAKEN) | 
|  | continue; | 
|  | if (lprops->flags & LPROPS_INDEX) | 
|  | continue; | 
|  | if (lprops->free >= min_space) | 
|  | return lprops; | 
|  | } | 
|  | /* We have looked everywhere in main memory, now scan the flash */ | 
|  | if (c->pnodes_have >= c->pnode_cnt) | 
|  | /* All pnodes are in memory, so skip scan */ | 
|  | return ERR_PTR(-ENOSPC); | 
|  | data.min_space = min_space; | 
|  | data.pick_free = pick_free; | 
|  | data.lnum = -1; | 
|  | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, | 
|  | (ubifs_lpt_scan_callback)scan_for_free_cb, | 
|  | &data); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); | 
|  | c->lscan_lnum = data.lnum; | 
|  | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); | 
|  | if (IS_ERR(lprops)) | 
|  | return lprops; | 
|  | ubifs_assert(lprops->lnum == data.lnum); | 
|  | ubifs_assert(lprops->free >= min_space); | 
|  | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); | 
|  | return lprops; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_find_free_space - find a data LEB with free space. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @min_space: minimum amount of required free space | 
|  | * @offs: contains offset of where free space starts on exit | 
|  | * @squeeze: whether to try to find space in a non-empty LEB first | 
|  | * | 
|  | * This function looks for an LEB with at least @min_space bytes of free space. | 
|  | * It tries to find an empty LEB if possible. If no empty LEBs are available, | 
|  | * this function searches for a non-empty data LEB. The returned LEB is marked | 
|  | * as "taken". | 
|  | * | 
|  | * This function returns found LEB number in case of success, %-ENOSPC if it | 
|  | * failed to find a LEB with @min_space bytes of free space and other a negative | 
|  | * error codes in case of failure. | 
|  | */ | 
|  | int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs, | 
|  | int squeeze) | 
|  | { | 
|  | const struct ubifs_lprops *lprops; | 
|  | int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags; | 
|  |  | 
|  | dbg_find("min_space %d", min_space); | 
|  | ubifs_get_lprops(c); | 
|  |  | 
|  | /* Check if there are enough empty LEBs for commit */ | 
|  | spin_lock(&c->space_lock); | 
|  | if (c->bi.min_idx_lebs > c->lst.idx_lebs) | 
|  | rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs; | 
|  | else | 
|  | rsvd_idx_lebs = 0; | 
|  | lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - | 
|  | c->lst.taken_empty_lebs; | 
|  | if (rsvd_idx_lebs < lebs) | 
|  | /* | 
|  | * OK to allocate an empty LEB, but we still don't want to go | 
|  | * looking for one if there aren't any. | 
|  | */ | 
|  | if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { | 
|  | pick_free = 1; | 
|  | /* | 
|  | * Because we release the space lock, we must account | 
|  | * for this allocation here. After the LEB properties | 
|  | * flags have been updated, we subtract one. Note, the | 
|  | * result of this is that lprops also decreases | 
|  | * @taken_empty_lebs in 'ubifs_change_lp()', so it is | 
|  | * off by one for a short period of time which may | 
|  | * introduce a small disturbance to budgeting | 
|  | * calculations, but this is harmless because at the | 
|  | * worst case this would make the budgeting subsystem | 
|  | * be more pessimistic than needed. | 
|  | * | 
|  | * Fundamentally, this is about serialization of the | 
|  | * budgeting and lprops subsystems. We could make the | 
|  | * @space_lock a mutex and avoid dropping it before | 
|  | * calling 'ubifs_change_lp()', but mutex is more | 
|  | * heavy-weight, and we want budgeting to be as fast as | 
|  | * possible. | 
|  | */ | 
|  | c->lst.taken_empty_lebs += 1; | 
|  | } | 
|  | spin_unlock(&c->space_lock); | 
|  |  | 
|  | lprops = do_find_free_space(c, min_space, pick_free, squeeze); | 
|  | if (IS_ERR(lprops)) { | 
|  | err = PTR_ERR(lprops); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | lnum = lprops->lnum; | 
|  | flags = lprops->flags | LPROPS_TAKEN; | 
|  |  | 
|  | lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0); | 
|  | if (IS_ERR(lprops)) { | 
|  | err = PTR_ERR(lprops); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (pick_free) { | 
|  | spin_lock(&c->space_lock); | 
|  | c->lst.taken_empty_lebs -= 1; | 
|  | spin_unlock(&c->space_lock); | 
|  | } | 
|  |  | 
|  | *offs = c->leb_size - lprops->free; | 
|  | ubifs_release_lprops(c); | 
|  |  | 
|  | if (*offs == 0) { | 
|  | /* | 
|  | * Ensure that empty LEBs have been unmapped. They may not have | 
|  | * been, for example, because of an unclean unmount.  Also | 
|  | * LEBs that were freeable LEBs (free + dirty == leb_size) will | 
|  | * not have been unmapped. | 
|  | */ | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs); | 
|  | ubifs_assert(*offs <= c->leb_size - min_space); | 
|  | return lnum; | 
|  |  | 
|  | out: | 
|  | if (pick_free) { | 
|  | spin_lock(&c->space_lock); | 
|  | c->lst.taken_empty_lebs -= 1; | 
|  | spin_unlock(&c->space_lock); | 
|  | } | 
|  | ubifs_release_lprops(c); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_for_idx_cb - callback used by the scan for a free LEB for the index. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lprops: LEB properties to scan | 
|  | * @in_tree: whether the LEB properties are in main memory | 
|  | * @data: information passed to and from the caller of the scan | 
|  | * | 
|  | * This function returns a code that indicates whether the scan should continue | 
|  | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree | 
|  | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop | 
|  | * (%LPT_SCAN_STOP). | 
|  | */ | 
|  | static int scan_for_idx_cb(struct ubifs_info *c, | 
|  | const struct ubifs_lprops *lprops, int in_tree, | 
|  | struct scan_data *data) | 
|  | { | 
|  | int ret = LPT_SCAN_CONTINUE; | 
|  |  | 
|  | /* Exclude LEBs that are currently in use */ | 
|  | if (lprops->flags & LPROPS_TAKEN) | 
|  | return LPT_SCAN_CONTINUE; | 
|  | /* Determine whether to add these LEB properties to the tree */ | 
|  | if (!in_tree && valuable(c, lprops)) | 
|  | ret |= LPT_SCAN_ADD; | 
|  | /* Exclude index LEBS */ | 
|  | if (lprops->flags & LPROPS_INDEX) | 
|  | return ret; | 
|  | /* Exclude LEBs that cannot be made empty */ | 
|  | if (lprops->free + lprops->dirty != c->leb_size) | 
|  | return ret; | 
|  | /* | 
|  | * We are allocating for the index so it is safe to allocate LEBs with | 
|  | * only free and dirty space, because write buffers are sync'd at commit | 
|  | * start. | 
|  | */ | 
|  | data->lnum = lprops->lnum; | 
|  | return LPT_SCAN_ADD | LPT_SCAN_STOP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_for_leb_for_idx - scan for a free LEB for the index. | 
|  | * @c: the UBIFS file-system description object | 
|  | */ | 
|  | static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_lprops *lprops; | 
|  | struct scan_data data; | 
|  | int err; | 
|  |  | 
|  | data.lnum = -1; | 
|  | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, | 
|  | (ubifs_lpt_scan_callback)scan_for_idx_cb, | 
|  | &data); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); | 
|  | c->lscan_lnum = data.lnum; | 
|  | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); | 
|  | if (IS_ERR(lprops)) | 
|  | return lprops; | 
|  | ubifs_assert(lprops->lnum == data.lnum); | 
|  | ubifs_assert(lprops->free + lprops->dirty == c->leb_size); | 
|  | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); | 
|  | return lprops; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_find_free_leb_for_idx - find a free LEB for the index. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function looks for a free LEB and returns that LEB number. The returned | 
|  | * LEB is marked as "taken", "index". | 
|  | * | 
|  | * Only empty LEBs are allocated. This is for two reasons. First, the commit | 
|  | * calculates the number of LEBs to allocate based on the assumption that they | 
|  | * will be empty. Secondly, free space at the end of an index LEB is not | 
|  | * guaranteed to be empty because it may have been used by the in-the-gaps | 
|  | * method prior to an unclean unmount. | 
|  | * | 
|  | * If no LEB is found %-ENOSPC is returned. For other failures another negative | 
|  | * error code is returned. | 
|  | */ | 
|  | int ubifs_find_free_leb_for_idx(struct ubifs_info *c) | 
|  | { | 
|  | const struct ubifs_lprops *lprops; | 
|  | int lnum = -1, err, flags; | 
|  |  | 
|  | ubifs_get_lprops(c); | 
|  |  | 
|  | lprops = ubifs_fast_find_empty(c); | 
|  | if (!lprops) { | 
|  | lprops = ubifs_fast_find_freeable(c); | 
|  | if (!lprops) { | 
|  | ubifs_assert(c->freeable_cnt == 0); | 
|  | if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { | 
|  | lprops = scan_for_leb_for_idx(c); | 
|  | if (IS_ERR(lprops)) { | 
|  | err = PTR_ERR(lprops); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!lprops) { | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | lnum = lprops->lnum; | 
|  |  | 
|  | dbg_find("found LEB %d, free %d, dirty %d, flags %#x", | 
|  | lnum, lprops->free, lprops->dirty, lprops->flags); | 
|  |  | 
|  | flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX; | 
|  | lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0); | 
|  | if (IS_ERR(lprops)) { | 
|  | err = PTR_ERR(lprops); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ubifs_release_lprops(c); | 
|  |  | 
|  | /* | 
|  | * Ensure that empty LEBs have been unmapped. They may not have been, | 
|  | * for example, because of an unclean unmount. Also LEBs that were | 
|  | * freeable LEBs (free + dirty == leb_size) will not have been unmapped. | 
|  | */ | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) { | 
|  | ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, | 
|  | LPROPS_TAKEN | LPROPS_INDEX, 0); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return lnum; | 
|  |  | 
|  | out: | 
|  | ubifs_release_lprops(c); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cmp_dirty_idx(const struct ubifs_lprops **a, | 
|  | const struct ubifs_lprops **b) | 
|  | { | 
|  | const struct ubifs_lprops *lpa = *a; | 
|  | const struct ubifs_lprops *lpb = *b; | 
|  |  | 
|  | return lpa->dirty + lpa->free - lpb->dirty - lpb->free; | 
|  | } | 
|  |  | 
|  | static void swap_dirty_idx(struct ubifs_lprops **a, struct ubifs_lprops **b, | 
|  | int size) | 
|  | { | 
|  | struct ubifs_lprops *t = *a; | 
|  |  | 
|  | *a = *b; | 
|  | *b = t; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function is called each commit to create an array of LEB numbers of | 
|  | * dirty index LEBs sorted in order of dirty and free space.  This is used by | 
|  | * the in-the-gaps method of TNC commit. | 
|  | */ | 
|  | int ubifs_save_dirty_idx_lnums(struct ubifs_info *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | ubifs_get_lprops(c); | 
|  | /* Copy the LPROPS_DIRTY_IDX heap */ | 
|  | c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt; | 
|  | memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr, | 
|  | sizeof(void *) * c->dirty_idx.cnt); | 
|  | /* Sort it so that the dirtiest is now at the end */ | 
|  | sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *), | 
|  | (int (*)(const void *, const void *))cmp_dirty_idx, | 
|  | (void (*)(void *, void *, int))swap_dirty_idx); | 
|  | dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt); | 
|  | if (c->dirty_idx.cnt) | 
|  | dbg_find("dirtiest index LEB is %d with dirty %d and free %d", | 
|  | c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum, | 
|  | c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty, | 
|  | c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free); | 
|  | /* Replace the lprops pointers with LEB numbers */ | 
|  | for (i = 0; i < c->dirty_idx.cnt; i++) | 
|  | c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum; | 
|  | ubifs_release_lprops(c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB. | 
|  | * @c: the UBIFS file-system description object | 
|  | * @lprops: LEB properties to scan | 
|  | * @in_tree: whether the LEB properties are in main memory | 
|  | * @data: information passed to and from the caller of the scan | 
|  | * | 
|  | * This function returns a code that indicates whether the scan should continue | 
|  | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree | 
|  | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop | 
|  | * (%LPT_SCAN_STOP). | 
|  | */ | 
|  | static int scan_dirty_idx_cb(struct ubifs_info *c, | 
|  | const struct ubifs_lprops *lprops, int in_tree, | 
|  | struct scan_data *data) | 
|  | { | 
|  | int ret = LPT_SCAN_CONTINUE; | 
|  |  | 
|  | /* Exclude LEBs that are currently in use */ | 
|  | if (lprops->flags & LPROPS_TAKEN) | 
|  | return LPT_SCAN_CONTINUE; | 
|  | /* Determine whether to add these LEB properties to the tree */ | 
|  | if (!in_tree && valuable(c, lprops)) | 
|  | ret |= LPT_SCAN_ADD; | 
|  | /* Exclude non-index LEBs */ | 
|  | if (!(lprops->flags & LPROPS_INDEX)) | 
|  | return ret; | 
|  | /* Exclude LEBs with too little space */ | 
|  | if (lprops->free + lprops->dirty < c->min_idx_node_sz) | 
|  | return ret; | 
|  | /* Finally we found space */ | 
|  | data->lnum = lprops->lnum; | 
|  | return LPT_SCAN_ADD | LPT_SCAN_STOP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_dirty_idx_leb - find a dirty index LEB. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function returns LEB number upon success and a negative error code upon | 
|  | * failure.  In particular, -ENOSPC is returned if a dirty index LEB is not | 
|  | * found. | 
|  | * | 
|  | * Note that this function scans the entire LPT but it is called very rarely. | 
|  | */ | 
|  | static int find_dirty_idx_leb(struct ubifs_info *c) | 
|  | { | 
|  | const struct ubifs_lprops *lprops; | 
|  | struct ubifs_lpt_heap *heap; | 
|  | struct scan_data data; | 
|  | int err, i, ret; | 
|  |  | 
|  | /* Check all structures in memory first */ | 
|  | data.lnum = -1; | 
|  | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | 
|  | for (i = 0; i < heap->cnt; i++) { | 
|  | lprops = heap->arr[i]; | 
|  | ret = scan_dirty_idx_cb(c, lprops, 1, &data); | 
|  | if (ret & LPT_SCAN_STOP) | 
|  | goto found; | 
|  | } | 
|  | list_for_each_entry(lprops, &c->frdi_idx_list, list) { | 
|  | ret = scan_dirty_idx_cb(c, lprops, 1, &data); | 
|  | if (ret & LPT_SCAN_STOP) | 
|  | goto found; | 
|  | } | 
|  | list_for_each_entry(lprops, &c->uncat_list, list) { | 
|  | ret = scan_dirty_idx_cb(c, lprops, 1, &data); | 
|  | if (ret & LPT_SCAN_STOP) | 
|  | goto found; | 
|  | } | 
|  | if (c->pnodes_have >= c->pnode_cnt) | 
|  | /* All pnodes are in memory, so skip scan */ | 
|  | return -ENOSPC; | 
|  | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, | 
|  | (ubifs_lpt_scan_callback)scan_dirty_idx_cb, | 
|  | &data); | 
|  | if (err) | 
|  | return err; | 
|  | found: | 
|  | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); | 
|  | c->lscan_lnum = data.lnum; | 
|  | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); | 
|  | if (IS_ERR(lprops)) | 
|  | return PTR_ERR(lprops); | 
|  | ubifs_assert(lprops->lnum == data.lnum); | 
|  | ubifs_assert(lprops->free + lprops->dirty >= c->min_idx_node_sz); | 
|  | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert((lprops->flags & LPROPS_INDEX)); | 
|  |  | 
|  | dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x", | 
|  | lprops->lnum, lprops->free, lprops->dirty, lprops->flags); | 
|  |  | 
|  | lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, | 
|  | lprops->flags | LPROPS_TAKEN, 0); | 
|  | if (IS_ERR(lprops)) | 
|  | return PTR_ERR(lprops); | 
|  |  | 
|  | return lprops->lnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_idx_gc_leb - try to get a LEB number from trivial GC. | 
|  | * @c: the UBIFS file-system description object | 
|  | */ | 
|  | static int get_idx_gc_leb(struct ubifs_info *c) | 
|  | { | 
|  | const struct ubifs_lprops *lp; | 
|  | int err, lnum; | 
|  |  | 
|  | err = ubifs_get_idx_gc_leb(c); | 
|  | if (err < 0) | 
|  | return err; | 
|  | lnum = err; | 
|  | /* | 
|  | * The LEB was due to be unmapped after the commit but | 
|  | * it is needed now for this commit. | 
|  | */ | 
|  | lp = ubifs_lpt_lookup_dirty(c, lnum); | 
|  | if (IS_ERR(lp)) | 
|  | return PTR_ERR(lp); | 
|  | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, | 
|  | lp->flags | LPROPS_INDEX, -1); | 
|  | if (IS_ERR(lp)) | 
|  | return PTR_ERR(lp); | 
|  | dbg_find("LEB %d, dirty %d and free %d flags %#x", | 
|  | lp->lnum, lp->dirty, lp->free, lp->flags); | 
|  | return lnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array. | 
|  | * @c: the UBIFS file-system description object | 
|  | */ | 
|  | static int find_dirtiest_idx_leb(struct ubifs_info *c) | 
|  | { | 
|  | const struct ubifs_lprops *lp; | 
|  | int lnum; | 
|  |  | 
|  | while (1) { | 
|  | if (!c->dirty_idx.cnt) | 
|  | return -ENOSPC; | 
|  | /* The lprops pointers were replaced by LEB numbers */ | 
|  | lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt]; | 
|  | lp = ubifs_lpt_lookup(c, lnum); | 
|  | if (IS_ERR(lp)) | 
|  | return PTR_ERR(lp); | 
|  | if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX)) | 
|  | continue; | 
|  | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, | 
|  | lp->flags | LPROPS_TAKEN, 0); | 
|  | if (IS_ERR(lp)) | 
|  | return PTR_ERR(lp); | 
|  | break; | 
|  | } | 
|  | dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty, | 
|  | lp->free, lp->flags); | 
|  | ubifs_assert(lp->flags | LPROPS_TAKEN); | 
|  | ubifs_assert(lp->flags | LPROPS_INDEX); | 
|  | return lnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit. | 
|  | * @c: the UBIFS file-system description object | 
|  | * | 
|  | * This function attempts to find an untaken index LEB with the most free and | 
|  | * dirty space that can be used without overwriting index nodes that were in the | 
|  | * last index committed. | 
|  | */ | 
|  | int ubifs_find_dirty_idx_leb(struct ubifs_info *c) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_get_lprops(c); | 
|  |  | 
|  | /* | 
|  | * We made an array of the dirtiest index LEB numbers as at the start of | 
|  | * last commit.  Try that array first. | 
|  | */ | 
|  | err = find_dirtiest_idx_leb(c); | 
|  |  | 
|  | /* Next try scanning the entire LPT */ | 
|  | if (err == -ENOSPC) | 
|  | err = find_dirty_idx_leb(c); | 
|  |  | 
|  | /* Finally take any index LEBs awaiting trivial GC */ | 
|  | if (err == -ENOSPC) | 
|  | err = get_idx_gc_leb(c); | 
|  |  | 
|  | ubifs_release_lprops(c); | 
|  | return err; | 
|  | } |