|  | /* | 
|  | * This file is part of UBIFS. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Nokia Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|  | * | 
|  | * Authors: Adrian Hunter | 
|  | *          Artem Bityutskiy (Битюцкий Артём) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file implements garbage collection. The procedure for garbage collection | 
|  | * is different depending on whether a LEB as an index LEB (contains index | 
|  | * nodes) or not. For non-index LEBs, garbage collection finds a LEB which | 
|  | * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete | 
|  | * nodes to the journal, at which point the garbage-collected LEB is free to be | 
|  | * reused. For index LEBs, garbage collection marks the non-obsolete index nodes | 
|  | * dirty in the TNC, and after the next commit, the garbage-collected LEB is | 
|  | * to be reused. Garbage collection will cause the number of dirty index nodes | 
|  | * to grow, however sufficient space is reserved for the index to ensure the | 
|  | * commit will never run out of space. | 
|  | * | 
|  | * Notes about dead watermark. At current UBIFS implementation we assume that | 
|  | * LEBs which have less than @c->dead_wm bytes of free + dirty space are full | 
|  | * and not worth garbage-collecting. The dead watermark is one min. I/O unit | 
|  | * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS | 
|  | * Garbage Collector has to synchronize the GC head's write buffer before | 
|  | * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can | 
|  | * actually reclaim even very small pieces of dirty space by garbage collecting | 
|  | * enough dirty LEBs, but we do not bother doing this at this implementation. | 
|  | * | 
|  | * Notes about dark watermark. The results of GC work depends on how big are | 
|  | * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, | 
|  | * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would | 
|  | * have to waste large pieces of free space at the end of LEB B, because nodes | 
|  | * from LEB A would not fit. And the worst situation is when all nodes are of | 
|  | * maximum size. So dark watermark is the amount of free + dirty space in LEB | 
|  | * which are guaranteed to be reclaimable. If LEB has less space, the GC might | 
|  | * be unable to reclaim it. So, LEBs with free + dirty greater than dark | 
|  | * watermark are "good" LEBs from GC's point of few. The other LEBs are not so | 
|  | * good, and GC takes extra care when moving them. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include "ubifs.h" | 
|  |  | 
|  | /* | 
|  | * GC may need to move more than one LEB to make progress. The below constants | 
|  | * define "soft" and "hard" limits on the number of LEBs the garbage collector | 
|  | * may move. | 
|  | */ | 
|  | #define SOFT_LEBS_LIMIT 4 | 
|  | #define HARD_LEBS_LIMIT 32 | 
|  |  | 
|  | /** | 
|  | * switch_gc_head - switch the garbage collection journal head. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: buffer to write | 
|  | * @len: length of the buffer to write | 
|  | * @lnum: LEB number written is returned here | 
|  | * @offs: offset written is returned here | 
|  | * | 
|  | * This function switch the GC head to the next LEB which is reserved in | 
|  | * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, | 
|  | * and other negative error code in case of failures. | 
|  | */ | 
|  | static int switch_gc_head(struct ubifs_info *c) | 
|  | { | 
|  | int err, gc_lnum = c->gc_lnum; | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  |  | 
|  | ubifs_assert(gc_lnum != -1); | 
|  | dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", | 
|  | wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, | 
|  | c->leb_size - wbuf->offs - wbuf->used); | 
|  |  | 
|  | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * The GC write-buffer was synchronized, we may safely unmap | 
|  | * 'c->gc_lnum'. | 
|  | */ | 
|  | err = ubifs_leb_unmap(c, gc_lnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | c->gc_lnum = -1; | 
|  | err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * data_nodes_cmp - compare 2 data nodes. | 
|  | * @priv: UBIFS file-system description object | 
|  | * @a: first data node | 
|  | * @a: second data node | 
|  | * | 
|  | * This function compares data nodes @a and @b. Returns %1 if @a has greater | 
|  | * inode or block number, and %-1 otherwise. | 
|  | */ | 
|  | int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | ino_t inuma, inumb; | 
|  | struct ubifs_info *c = priv; | 
|  | struct ubifs_scan_node *sa, *sb; | 
|  |  | 
|  | cond_resched(); | 
|  | if (a == b) | 
|  | return 0; | 
|  |  | 
|  | sa = list_entry(a, struct ubifs_scan_node, list); | 
|  | sb = list_entry(b, struct ubifs_scan_node, list); | 
|  |  | 
|  | ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); | 
|  | ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); | 
|  | ubifs_assert(sa->type == UBIFS_DATA_NODE); | 
|  | ubifs_assert(sb->type == UBIFS_DATA_NODE); | 
|  |  | 
|  | inuma = key_inum(c, &sa->key); | 
|  | inumb = key_inum(c, &sb->key); | 
|  |  | 
|  | if (inuma == inumb) { | 
|  | unsigned int blka = key_block(c, &sa->key); | 
|  | unsigned int blkb = key_block(c, &sb->key); | 
|  |  | 
|  | if (blka <= blkb) | 
|  | return -1; | 
|  | } else if (inuma <= inumb) | 
|  | return -1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nondata_nodes_cmp - compare 2 non-data nodes. | 
|  | * @priv: UBIFS file-system description object | 
|  | * @a: first node | 
|  | * @a: second node | 
|  | * | 
|  | * This function compares nodes @a and @b. It makes sure that inode nodes go | 
|  | * first and sorted by length in descending order. Directory entry nodes go | 
|  | * after inode nodes and are sorted in ascending hash valuer order. | 
|  | */ | 
|  | int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | ino_t inuma, inumb; | 
|  | struct ubifs_info *c = priv; | 
|  | struct ubifs_scan_node *sa, *sb; | 
|  |  | 
|  | cond_resched(); | 
|  | if (a == b) | 
|  | return 0; | 
|  |  | 
|  | sa = list_entry(a, struct ubifs_scan_node, list); | 
|  | sb = list_entry(b, struct ubifs_scan_node, list); | 
|  |  | 
|  | ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && | 
|  | key_type(c, &sb->key) != UBIFS_DATA_KEY); | 
|  | ubifs_assert(sa->type != UBIFS_DATA_NODE && | 
|  | sb->type != UBIFS_DATA_NODE); | 
|  |  | 
|  | /* Inodes go before directory entries */ | 
|  | if (sa->type == UBIFS_INO_NODE) { | 
|  | if (sb->type == UBIFS_INO_NODE) | 
|  | return sb->len - sa->len; | 
|  | return -1; | 
|  | } | 
|  | if (sb->type == UBIFS_INO_NODE) | 
|  | return 1; | 
|  |  | 
|  | ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || | 
|  | key_type(c, &sa->key) == UBIFS_XENT_KEY); | 
|  | ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || | 
|  | key_type(c, &sb->key) == UBIFS_XENT_KEY); | 
|  | ubifs_assert(sa->type == UBIFS_DENT_NODE || | 
|  | sa->type == UBIFS_XENT_NODE); | 
|  | ubifs_assert(sb->type == UBIFS_DENT_NODE || | 
|  | sb->type == UBIFS_XENT_NODE); | 
|  |  | 
|  | inuma = key_inum(c, &sa->key); | 
|  | inumb = key_inum(c, &sb->key); | 
|  |  | 
|  | if (inuma == inumb) { | 
|  | uint32_t hasha = key_hash(c, &sa->key); | 
|  | uint32_t hashb = key_hash(c, &sb->key); | 
|  |  | 
|  | if (hasha <= hashb) | 
|  | return -1; | 
|  | } else if (inuma <= inumb) | 
|  | return -1; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sort_nodes - sort nodes for GC. | 
|  | * @c: UBIFS file-system description object | 
|  | * @sleb: describes nodes to sort and contains the result on exit | 
|  | * @nondata: contains non-data nodes on exit | 
|  | * @min: minimum node size is returned here | 
|  | * | 
|  | * This function sorts the list of inodes to garbage collect. First of all, it | 
|  | * kills obsolete nodes and separates data and non-data nodes to the | 
|  | * @sleb->nodes and @nondata lists correspondingly. | 
|  | * | 
|  | * Data nodes are then sorted in block number order - this is important for | 
|  | * bulk-read; data nodes with lower inode number go before data nodes with | 
|  | * higher inode number, and data nodes with lower block number go before data | 
|  | * nodes with higher block number; | 
|  | * | 
|  | * Non-data nodes are sorted as follows. | 
|  | *   o First go inode nodes - they are sorted in descending length order. | 
|  | *   o Then go directory entry nodes - they are sorted in hash order, which | 
|  | *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent | 
|  | *     inode number go before direntry nodes with higher parent inode number, | 
|  | *     and direntry nodes with lower name hash values go before direntry nodes | 
|  | *     with higher name hash values. | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
|  | struct list_head *nondata, int *min) | 
|  | { | 
|  | int err; | 
|  | struct ubifs_scan_node *snod, *tmp; | 
|  |  | 
|  | *min = INT_MAX; | 
|  |  | 
|  | /* Separate data nodes and non-data nodes */ | 
|  | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | 
|  | ubifs_assert(snod->type == UBIFS_INO_NODE  || | 
|  | snod->type == UBIFS_DATA_NODE || | 
|  | snod->type == UBIFS_DENT_NODE || | 
|  | snod->type == UBIFS_XENT_NODE || | 
|  | snod->type == UBIFS_TRUN_NODE); | 
|  |  | 
|  | if (snod->type != UBIFS_INO_NODE  && | 
|  | snod->type != UBIFS_DATA_NODE && | 
|  | snod->type != UBIFS_DENT_NODE && | 
|  | snod->type != UBIFS_XENT_NODE) { | 
|  | /* Probably truncation node, zap it */ | 
|  | list_del(&snod->list); | 
|  | kfree(snod); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || | 
|  | key_type(c, &snod->key) == UBIFS_INO_KEY  || | 
|  | key_type(c, &snod->key) == UBIFS_DENT_KEY || | 
|  | key_type(c, &snod->key) == UBIFS_XENT_KEY); | 
|  |  | 
|  | err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, | 
|  | snod->offs, 0); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (!err) { | 
|  | /* The node is obsolete, remove it from the list */ | 
|  | list_del(&snod->list); | 
|  | kfree(snod); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (snod->len < *min) | 
|  | *min = snod->len; | 
|  |  | 
|  | if (key_type(c, &snod->key) != UBIFS_DATA_KEY) | 
|  | list_move_tail(&snod->list, nondata); | 
|  | } | 
|  |  | 
|  | /* Sort data and non-data nodes */ | 
|  | list_sort(c, &sleb->nodes, &data_nodes_cmp); | 
|  | list_sort(c, nondata, &nondata_nodes_cmp); | 
|  |  | 
|  | err = dbg_check_data_nodes_order(c, &sleb->nodes); | 
|  | if (err) | 
|  | return err; | 
|  | err = dbg_check_nondata_nodes_order(c, nondata); | 
|  | if (err) | 
|  | return err; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * move_node - move a node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @sleb: describes the LEB to move nodes from | 
|  | * @snod: the mode to move | 
|  | * @wbuf: write-buffer to move node to | 
|  | * | 
|  | * This function moves node @snod to @wbuf, changes TNC correspondingly, and | 
|  | * destroys @snod. Returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | 
|  | struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) | 
|  | { | 
|  | int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; | 
|  |  | 
|  | cond_resched(); | 
|  | err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, | 
|  | snod->offs, new_lnum, new_offs, | 
|  | snod->len); | 
|  | list_del(&snod->list); | 
|  | kfree(snod); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * move_nodes - move nodes. | 
|  | * @c: UBIFS file-system description object | 
|  | * @sleb: describes the LEB to move nodes from | 
|  | * | 
|  | * This function moves valid nodes from data LEB described by @sleb to the GC | 
|  | * journal head. This function returns zero in case of success, %-EAGAIN if | 
|  | * commit is required, and other negative error codes in case of other | 
|  | * failures. | 
|  | */ | 
|  | static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) | 
|  | { | 
|  | int err, min; | 
|  | LIST_HEAD(nondata); | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  |  | 
|  | if (wbuf->lnum == -1) { | 
|  | /* | 
|  | * The GC journal head is not set, because it is the first GC | 
|  | * invocation since mount. | 
|  | */ | 
|  | err = switch_gc_head(c); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = sort_nodes(c, sleb, &nondata, &min); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Write nodes to their new location. Use the first-fit strategy */ | 
|  | while (1) { | 
|  | int avail; | 
|  | struct ubifs_scan_node *snod, *tmp; | 
|  |  | 
|  | /* Move data nodes */ | 
|  | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | 
|  | avail = c->leb_size - wbuf->offs - wbuf->used; | 
|  | if  (snod->len > avail) | 
|  | /* | 
|  | * Do not skip data nodes in order to optimize | 
|  | * bulk-read. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | err = move_node(c, sleb, snod, wbuf); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Move non-data nodes */ | 
|  | list_for_each_entry_safe(snod, tmp, &nondata, list) { | 
|  | avail = c->leb_size - wbuf->offs - wbuf->used; | 
|  | if (avail < min) | 
|  | break; | 
|  |  | 
|  | if  (snod->len > avail) { | 
|  | /* | 
|  | * Keep going only if this is an inode with | 
|  | * some data. Otherwise stop and switch the GC | 
|  | * head. IOW, we assume that data-less inode | 
|  | * nodes and direntry nodes are roughly of the | 
|  | * same size. | 
|  | */ | 
|  | if (key_type(c, &snod->key) == UBIFS_DENT_KEY || | 
|  | snod->len == UBIFS_INO_NODE_SZ) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = move_node(c, sleb, snod, wbuf); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (list_empty(&sleb->nodes) && list_empty(&nondata)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Waste the rest of the space in the LEB and switch to the | 
|  | * next LEB. | 
|  | */ | 
|  | err = switch_gc_head(c); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | list_splice_tail(&nondata, &sleb->nodes); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gc_sync_wbufs - sync write-buffers for GC. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * We must guarantee that obsoleting nodes are on flash. Unfortunately they may | 
|  | * be in a write-buffer instead. That is, a node could be written to a | 
|  | * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is | 
|  | * erased before the write-buffer is sync'd and then there is an unclean | 
|  | * unmount, then an existing node is lost. To avoid this, we sync all | 
|  | * write-buffers. | 
|  | * | 
|  | * This function returns %0 on success or a negative error code on failure. | 
|  | */ | 
|  | static int gc_sync_wbufs(struct ubifs_info *c) | 
|  | { | 
|  | int err, i; | 
|  |  | 
|  | for (i = 0; i < c->jhead_cnt; i++) { | 
|  | if (i == GCHD) | 
|  | continue; | 
|  | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lp: describes the LEB to garbage collect | 
|  | * | 
|  | * This function garbage-collects an LEB and returns one of the @LEB_FREED, | 
|  | * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is | 
|  | * required, and other negative error codes in case of failures. | 
|  | */ | 
|  | int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) | 
|  | { | 
|  | struct ubifs_scan_leb *sleb; | 
|  | struct ubifs_scan_node *snod; | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  | int err = 0, lnum = lp->lnum; | 
|  |  | 
|  | ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || | 
|  | c->need_recovery); | 
|  | ubifs_assert(c->gc_lnum != lnum); | 
|  | ubifs_assert(wbuf->lnum != lnum); | 
|  |  | 
|  | /* | 
|  | * We scan the entire LEB even though we only really need to scan up to | 
|  | * (c->leb_size - lp->free). | 
|  | */ | 
|  | sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); | 
|  | if (IS_ERR(sleb)) | 
|  | return PTR_ERR(sleb); | 
|  |  | 
|  | ubifs_assert(!list_empty(&sleb->nodes)); | 
|  | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); | 
|  |  | 
|  | if (snod->type == UBIFS_IDX_NODE) { | 
|  | struct ubifs_gced_idx_leb *idx_gc; | 
|  |  | 
|  | dbg_gc("indexing LEB %d (free %d, dirty %d)", | 
|  | lnum, lp->free, lp->dirty); | 
|  | list_for_each_entry(snod, &sleb->nodes, list) { | 
|  | struct ubifs_idx_node *idx = snod->node; | 
|  | int level = le16_to_cpu(idx->level); | 
|  |  | 
|  | ubifs_assert(snod->type == UBIFS_IDX_NODE); | 
|  | key_read(c, ubifs_idx_key(c, idx), &snod->key); | 
|  | err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, | 
|  | snod->offs); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | 
|  | if (!idx_gc) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | idx_gc->lnum = lnum; | 
|  | idx_gc->unmap = 0; | 
|  | list_add(&idx_gc->list, &c->idx_gc); | 
|  |  | 
|  | /* | 
|  | * Don't release the LEB until after the next commit, because | 
|  | * it may contain data which is needed for recovery. So | 
|  | * although we freed this LEB, it will become usable only after | 
|  | * the commit. | 
|  | */ | 
|  | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, | 
|  | LPROPS_INDEX, 1); | 
|  | if (err) | 
|  | goto out; | 
|  | err = LEB_FREED_IDX; | 
|  | } else { | 
|  | dbg_gc("data LEB %d (free %d, dirty %d)", | 
|  | lnum, lp->free, lp->dirty); | 
|  |  | 
|  | err = move_nodes(c, sleb); | 
|  | if (err) | 
|  | goto out_inc_seq; | 
|  |  | 
|  | err = gc_sync_wbufs(c); | 
|  | if (err) | 
|  | goto out_inc_seq; | 
|  |  | 
|  | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); | 
|  | if (err) | 
|  | goto out_inc_seq; | 
|  |  | 
|  | /* Allow for races with TNC */ | 
|  | c->gced_lnum = lnum; | 
|  | smp_wmb(); | 
|  | c->gc_seq += 1; | 
|  | smp_wmb(); | 
|  |  | 
|  | if (c->gc_lnum == -1) { | 
|  | c->gc_lnum = lnum; | 
|  | err = LEB_RETAINED; | 
|  | } else { | 
|  | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = ubifs_leb_unmap(c, lnum); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = LEB_FREED; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | ubifs_scan_destroy(sleb); | 
|  | return err; | 
|  |  | 
|  | out_inc_seq: | 
|  | /* We may have moved at least some nodes so allow for races with TNC */ | 
|  | c->gced_lnum = lnum; | 
|  | smp_wmb(); | 
|  | c->gc_seq += 1; | 
|  | smp_wmb(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_garbage_collect - UBIFS garbage collector. | 
|  | * @c: UBIFS file-system description object | 
|  | * @anyway: do GC even if there are free LEBs | 
|  | * | 
|  | * This function does out-of-place garbage collection. The return codes are: | 
|  | *   o positive LEB number if the LEB has been freed and may be used; | 
|  | *   o %-EAGAIN if the caller has to run commit; | 
|  | *   o %-ENOSPC if GC failed to make any progress; | 
|  | *   o other negative error codes in case of other errors. | 
|  | * | 
|  | * Garbage collector writes data to the journal when GC'ing data LEBs, and just | 
|  | * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point | 
|  | * commit may be required. But commit cannot be run from inside GC, because the | 
|  | * caller might be holding the commit lock, so %-EAGAIN is returned instead; | 
|  | * And this error code means that the caller has to run commit, and re-run GC | 
|  | * if there is still no free space. | 
|  | * | 
|  | * There are many reasons why this function may return %-EAGAIN: | 
|  | * o the log is full and there is no space to write an LEB reference for | 
|  | *   @c->gc_lnum; | 
|  | * o the journal is too large and exceeds size limitations; | 
|  | * o GC moved indexing LEBs, but they can be used only after the commit; | 
|  | * o the shrinker fails to find clean znodes to free and requests the commit; | 
|  | * o etc. | 
|  | * | 
|  | * Note, if the file-system is close to be full, this function may return | 
|  | * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of | 
|  | * the function. E.g., this happens if the limits on the journal size are too | 
|  | * tough and GC writes too much to the journal before an LEB is freed. This | 
|  | * might also mean that the journal is too large, and the TNC becomes to big, | 
|  | * so that the shrinker is constantly called, finds not clean znodes to free, | 
|  | * and requests commit. Well, this may also happen if the journal is all right, | 
|  | * but another kernel process consumes too much memory. Anyway, infinite | 
|  | * %-EAGAIN may happen, but in some extreme/misconfiguration cases. | 
|  | */ | 
|  | int ubifs_garbage_collect(struct ubifs_info *c, int anyway) | 
|  | { | 
|  | int i, err, ret, min_space = c->dead_wm; | 
|  | struct ubifs_lprops lp; | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | 
|  |  | 
|  | ubifs_assert_cmt_locked(c); | 
|  | ubifs_assert(!c->ro_media && !c->ro_mount); | 
|  |  | 
|  | if (ubifs_gc_should_commit(c)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  |  | 
|  | if (c->ro_error) { | 
|  | ret = -EROFS; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* We expect the write-buffer to be empty on entry */ | 
|  | ubifs_assert(!wbuf->used); | 
|  |  | 
|  | for (i = 0; ; i++) { | 
|  | int space_before = c->leb_size - wbuf->offs - wbuf->used; | 
|  | int space_after; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* Give the commit an opportunity to run */ | 
|  | if (ubifs_gc_should_commit(c)) { | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { | 
|  | /* | 
|  | * We've done enough iterations. Indexing LEBs were | 
|  | * moved and will be available after the commit. | 
|  | */ | 
|  | dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); | 
|  | ubifs_commit_required(c); | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i > HARD_LEBS_LIMIT) { | 
|  | /* | 
|  | * We've moved too many LEBs and have not made | 
|  | * progress, give up. | 
|  | */ | 
|  | dbg_gc("hard limit, -ENOSPC"); | 
|  | ret = -ENOSPC; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Empty and freeable LEBs can turn up while we waited for | 
|  | * the wbuf lock, or while we have been running GC. In that | 
|  | * case, we should just return one of those instead of | 
|  | * continuing to GC dirty LEBs. Hence we request | 
|  | * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. | 
|  | */ | 
|  | ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); | 
|  | if (ret) { | 
|  | if (ret == -ENOSPC) | 
|  | dbg_gc("no more dirty LEBs"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | dbg_gc("found LEB %d: free %d, dirty %d, sum %d " | 
|  | "(min. space %d)", lp.lnum, lp.free, lp.dirty, | 
|  | lp.free + lp.dirty, min_space); | 
|  |  | 
|  | if (lp.free + lp.dirty == c->leb_size) { | 
|  | /* An empty LEB was returned */ | 
|  | dbg_gc("LEB %d is free, return it", lp.lnum); | 
|  | /* | 
|  | * ubifs_find_dirty_leb() doesn't return freeable index | 
|  | * LEBs. | 
|  | */ | 
|  | ubifs_assert(!(lp.flags & LPROPS_INDEX)); | 
|  | if (lp.free != c->leb_size) { | 
|  | /* | 
|  | * Write buffers must be sync'd before | 
|  | * unmapping freeable LEBs, because one of them | 
|  | * may contain data which obsoletes something | 
|  | * in 'lp.pnum'. | 
|  | */ | 
|  | ret = gc_sync_wbufs(c); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = ubifs_change_one_lp(c, lp.lnum, | 
|  | c->leb_size, 0, 0, 0, | 
|  | 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | ret = ubifs_leb_unmap(c, lp.lnum); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = lp.lnum; | 
|  | break; | 
|  | } | 
|  |  | 
|  | space_before = c->leb_size - wbuf->offs - wbuf->used; | 
|  | if (wbuf->lnum == -1) | 
|  | space_before = 0; | 
|  |  | 
|  | ret = ubifs_garbage_collect_leb(c, &lp); | 
|  | if (ret < 0) { | 
|  | if (ret == -EAGAIN) { | 
|  | /* | 
|  | * This is not error, so we have to return the | 
|  | * LEB to lprops. But if 'ubifs_return_leb()' | 
|  | * fails, its failure code is propagated to the | 
|  | * caller instead of the original '-EAGAIN'. | 
|  | */ | 
|  | err = ubifs_return_leb(c, lp.lnum); | 
|  | if (err) | 
|  | ret = err; | 
|  | break; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret == LEB_FREED) { | 
|  | /* An LEB has been freed and is ready for use */ | 
|  | dbg_gc("LEB %d freed, return", lp.lnum); | 
|  | ret = lp.lnum; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret == LEB_FREED_IDX) { | 
|  | /* | 
|  | * This was an indexing LEB and it cannot be | 
|  | * immediately used. And instead of requesting the | 
|  | * commit straight away, we try to garbage collect some | 
|  | * more. | 
|  | */ | 
|  | dbg_gc("indexing LEB %d freed, continue", lp.lnum); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ubifs_assert(ret == LEB_RETAINED); | 
|  | space_after = c->leb_size - wbuf->offs - wbuf->used; | 
|  | dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, | 
|  | space_after - space_before); | 
|  |  | 
|  | if (space_after > space_before) { | 
|  | /* GC makes progress, keep working */ | 
|  | min_space >>= 1; | 
|  | if (min_space < c->dead_wm) | 
|  | min_space = c->dead_wm; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dbg_gc("did not make progress"); | 
|  |  | 
|  | /* | 
|  | * GC moved an LEB bud have not done any progress. This means | 
|  | * that the previous GC head LEB contained too few free space | 
|  | * and the LEB which was GC'ed contained only large nodes which | 
|  | * did not fit that space. | 
|  | * | 
|  | * We can do 2 things: | 
|  | * 1. pick another LEB in a hope it'll contain a small node | 
|  | *    which will fit the space we have at the end of current GC | 
|  | *    head LEB, but there is no guarantee, so we try this out | 
|  | *    unless we have already been working for too long; | 
|  | * 2. request an LEB with more dirty space, which will force | 
|  | *    'ubifs_find_dirty_leb()' to start scanning the lprops | 
|  | *    table, instead of just picking one from the heap | 
|  | *    (previously it already picked the dirtiest LEB). | 
|  | */ | 
|  | if (i < SOFT_LEBS_LIMIT) { | 
|  | dbg_gc("try again"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | min_space <<= 1; | 
|  | if (min_space > c->dark_wm) | 
|  | min_space = c->dark_wm; | 
|  | dbg_gc("set min. space to %d", min_space); | 
|  | } | 
|  |  | 
|  | if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { | 
|  | dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); | 
|  | ubifs_commit_required(c); | 
|  | ret = -EAGAIN; | 
|  | } | 
|  |  | 
|  | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | if (!err) | 
|  | err = ubifs_leb_unmap(c, c->gc_lnum); | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto out; | 
|  | } | 
|  | out_unlock: | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  | return ret; | 
|  |  | 
|  | out: | 
|  | ubifs_assert(ret < 0); | 
|  | ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); | 
|  | ubifs_wbuf_sync_nolock(wbuf); | 
|  | ubifs_ro_mode(c, ret); | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  | ubifs_return_leb(c, lp.lnum); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_gc_start_commit - garbage collection at start of commit. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * If a LEB has only dirty and free space, then we may safely unmap it and make | 
|  | * it free.  Note, we cannot do this with indexing LEBs because dirty space may | 
|  | * correspond index nodes that are required for recovery.  In that case, the | 
|  | * LEB cannot be unmapped until after the next commit. | 
|  | * | 
|  | * This function returns %0 upon success and a negative error code upon failure. | 
|  | */ | 
|  | int ubifs_gc_start_commit(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_gced_idx_leb *idx_gc; | 
|  | const struct ubifs_lprops *lp; | 
|  | int err = 0, flags; | 
|  |  | 
|  | ubifs_get_lprops(c); | 
|  |  | 
|  | /* | 
|  | * Unmap (non-index) freeable LEBs. Note that recovery requires that all | 
|  | * wbufs are sync'd before this, which is done in 'do_commit()'. | 
|  | */ | 
|  | while (1) { | 
|  | lp = ubifs_fast_find_freeable(c); | 
|  | if (IS_ERR(lp)) { | 
|  | err = PTR_ERR(lp); | 
|  | goto out; | 
|  | } | 
|  | if (!lp) | 
|  | break; | 
|  | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | 
|  | err = ubifs_leb_unmap(c, lp->lnum); | 
|  | if (err) | 
|  | goto out; | 
|  | lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); | 
|  | if (IS_ERR(lp)) { | 
|  | err = PTR_ERR(lp); | 
|  | goto out; | 
|  | } | 
|  | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | 
|  | } | 
|  |  | 
|  | /* Mark GC'd index LEBs OK to unmap after this commit finishes */ | 
|  | list_for_each_entry(idx_gc, &c->idx_gc, list) | 
|  | idx_gc->unmap = 1; | 
|  |  | 
|  | /* Record index freeable LEBs for unmapping after commit */ | 
|  | while (1) { | 
|  | lp = ubifs_fast_find_frdi_idx(c); | 
|  | if (IS_ERR(lp)) { | 
|  | err = PTR_ERR(lp); | 
|  | goto out; | 
|  | } | 
|  | if (!lp) | 
|  | break; | 
|  | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | 
|  | if (!idx_gc) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | 
|  | ubifs_assert(lp->flags & LPROPS_INDEX); | 
|  | /* Don't release the LEB until after the next commit */ | 
|  | flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; | 
|  | lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); | 
|  | if (IS_ERR(lp)) { | 
|  | err = PTR_ERR(lp); | 
|  | kfree(idx_gc); | 
|  | goto out; | 
|  | } | 
|  | ubifs_assert(lp->flags & LPROPS_TAKEN); | 
|  | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | 
|  | idx_gc->lnum = lp->lnum; | 
|  | idx_gc->unmap = 1; | 
|  | list_add(&idx_gc->list, &c->idx_gc); | 
|  | } | 
|  | out: | 
|  | ubifs_release_lprops(c); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_gc_end_commit - garbage collection at end of commit. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function completes out-of-place garbage collection of index LEBs. | 
|  | */ | 
|  | int ubifs_gc_end_commit(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_gced_idx_leb *idx_gc, *tmp; | 
|  | struct ubifs_wbuf *wbuf; | 
|  | int err = 0; | 
|  |  | 
|  | wbuf = &c->jheads[GCHD].wbuf; | 
|  | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  | list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) | 
|  | if (idx_gc->unmap) { | 
|  | dbg_gc("LEB %d", idx_gc->lnum); | 
|  | err = ubifs_leb_unmap(c, idx_gc->lnum); | 
|  | if (err) | 
|  | goto out; | 
|  | err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, | 
|  | LPROPS_NC, 0, LPROPS_TAKEN, -1); | 
|  | if (err) | 
|  | goto out; | 
|  | list_del(&idx_gc->list); | 
|  | kfree(idx_gc); | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_destroy_idx_gc - destroy idx_gc list. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function destroys the @c->idx_gc list. It is called when unmounting | 
|  | * so locks are not needed. Returns zero in case of success and a negative | 
|  | * error code in case of failure. | 
|  | */ | 
|  | void ubifs_destroy_idx_gc(struct ubifs_info *c) | 
|  | { | 
|  | while (!list_empty(&c->idx_gc)) { | 
|  | struct ubifs_gced_idx_leb *idx_gc; | 
|  |  | 
|  | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, | 
|  | list); | 
|  | c->idx_gc_cnt -= 1; | 
|  | list_del(&idx_gc->list); | 
|  | kfree(idx_gc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * Called during start commit so locks are not needed. | 
|  | */ | 
|  | int ubifs_get_idx_gc_leb(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_gced_idx_leb *idx_gc; | 
|  | int lnum; | 
|  |  | 
|  | if (list_empty(&c->idx_gc)) | 
|  | return -ENOSPC; | 
|  | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); | 
|  | lnum = idx_gc->lnum; | 
|  | /* c->idx_gc_cnt is updated by the caller when lprops are updated */ | 
|  | list_del(&idx_gc->list); | 
|  | kfree(idx_gc); | 
|  | return lnum; | 
|  | } |