|  | /* | 
|  | * This file is part of UBIFS. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Nokia Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | 
|  | * | 
|  | * Authors: Artem Bityutskiy (Битюцкий Артём) | 
|  | *          Adrian Hunter | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file implements UBIFS superblock. The superblock is stored at the first | 
|  | * LEB of the volume and is never changed by UBIFS. Only user-space tools may | 
|  | * change it. The superblock node mostly contains geometry information. | 
|  | */ | 
|  |  | 
|  | #include "ubifs.h" | 
|  | #include <linux/slab.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/math64.h> | 
|  |  | 
|  | /* | 
|  | * Default journal size in logical eraseblocks as a percent of total | 
|  | * flash size. | 
|  | */ | 
|  | #define DEFAULT_JNL_PERCENT 5 | 
|  |  | 
|  | /* Default maximum journal size in bytes */ | 
|  | #define DEFAULT_MAX_JNL (32*1024*1024) | 
|  |  | 
|  | /* Default indexing tree fanout */ | 
|  | #define DEFAULT_FANOUT 8 | 
|  |  | 
|  | /* Default number of data journal heads */ | 
|  | #define DEFAULT_JHEADS_CNT 1 | 
|  |  | 
|  | /* Default positions of different LEBs in the main area */ | 
|  | #define DEFAULT_IDX_LEB  0 | 
|  | #define DEFAULT_DATA_LEB 1 | 
|  | #define DEFAULT_GC_LEB   2 | 
|  |  | 
|  | /* Default number of LEB numbers in LPT's save table */ | 
|  | #define DEFAULT_LSAVE_CNT 256 | 
|  |  | 
|  | /* Default reserved pool size as a percent of maximum free space */ | 
|  | #define DEFAULT_RP_PERCENT 5 | 
|  |  | 
|  | /* The default maximum size of reserved pool in bytes */ | 
|  | #define DEFAULT_MAX_RP_SIZE (5*1024*1024) | 
|  |  | 
|  | /* Default time granularity in nanoseconds */ | 
|  | #define DEFAULT_TIME_GRAN 1000000000 | 
|  |  | 
|  | /** | 
|  | * create_default_filesystem - format empty UBI volume. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function creates default empty file-system. Returns zero in case of | 
|  | * success and a negative error code in case of failure. | 
|  | */ | 
|  | static int create_default_filesystem(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_sb_node *sup; | 
|  | struct ubifs_mst_node *mst; | 
|  | struct ubifs_idx_node *idx; | 
|  | struct ubifs_branch *br; | 
|  | struct ubifs_ino_node *ino; | 
|  | struct ubifs_cs_node *cs; | 
|  | union ubifs_key key; | 
|  | int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; | 
|  | int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; | 
|  | int min_leb_cnt = UBIFS_MIN_LEB_CNT; | 
|  | long long tmp64, main_bytes; | 
|  | __le64 tmp_le64; | 
|  |  | 
|  | /* Some functions called from here depend on the @c->key_len filed */ | 
|  | c->key_len = UBIFS_SK_LEN; | 
|  |  | 
|  | /* | 
|  | * First of all, we have to calculate default file-system geometry - | 
|  | * log size, journal size, etc. | 
|  | */ | 
|  | if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) | 
|  | /* We can first multiply then divide and have no overflow */ | 
|  | jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; | 
|  | else | 
|  | jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; | 
|  |  | 
|  | if (jnl_lebs < UBIFS_MIN_JNL_LEBS) | 
|  | jnl_lebs = UBIFS_MIN_JNL_LEBS; | 
|  | if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) | 
|  | jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; | 
|  |  | 
|  | /* | 
|  | * The log should be large enough to fit reference nodes for all bud | 
|  | * LEBs. Because buds do not have to start from the beginning of LEBs | 
|  | * (half of the LEB may contain committed data), the log should | 
|  | * generally be larger, make it twice as large. | 
|  | */ | 
|  | tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; | 
|  | log_lebs = tmp / c->leb_size; | 
|  | /* Plus one LEB reserved for commit */ | 
|  | log_lebs += 1; | 
|  | if (c->leb_cnt - min_leb_cnt > 8) { | 
|  | /* And some extra space to allow writes while committing */ | 
|  | log_lebs += 1; | 
|  | min_leb_cnt += 1; | 
|  | } | 
|  |  | 
|  | max_buds = jnl_lebs - log_lebs; | 
|  | if (max_buds < UBIFS_MIN_BUD_LEBS) | 
|  | max_buds = UBIFS_MIN_BUD_LEBS; | 
|  |  | 
|  | /* | 
|  | * Orphan nodes are stored in a separate area. One node can store a lot | 
|  | * of orphan inode numbers, but when new orphan comes we just add a new | 
|  | * orphan node. At some point the nodes are consolidated into one | 
|  | * orphan node. | 
|  | */ | 
|  | orph_lebs = UBIFS_MIN_ORPH_LEBS; | 
|  | #ifdef CONFIG_UBIFS_FS_DEBUG | 
|  | if (c->leb_cnt - min_leb_cnt > 1) | 
|  | /* | 
|  | * For debugging purposes it is better to have at least 2 | 
|  | * orphan LEBs, because the orphan subsystem would need to do | 
|  | * consolidations and would be stressed more. | 
|  | */ | 
|  | orph_lebs += 1; | 
|  | #endif | 
|  |  | 
|  | main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; | 
|  | main_lebs -= orph_lebs; | 
|  |  | 
|  | lpt_first = UBIFS_LOG_LNUM + log_lebs; | 
|  | c->lsave_cnt = DEFAULT_LSAVE_CNT; | 
|  | c->max_leb_cnt = c->leb_cnt; | 
|  | err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, | 
|  | &big_lpt); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, | 
|  | lpt_first + lpt_lebs - 1); | 
|  |  | 
|  | main_first = c->leb_cnt - main_lebs; | 
|  |  | 
|  | /* Create default superblock */ | 
|  | tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); | 
|  | sup = kzalloc(tmp, GFP_KERNEL); | 
|  | if (!sup) | 
|  | return -ENOMEM; | 
|  |  | 
|  | tmp64 = (long long)max_buds * c->leb_size; | 
|  | if (big_lpt) | 
|  | sup_flags |= UBIFS_FLG_BIGLPT; | 
|  |  | 
|  | sup->ch.node_type  = UBIFS_SB_NODE; | 
|  | sup->key_hash      = UBIFS_KEY_HASH_R5; | 
|  | sup->flags         = cpu_to_le32(sup_flags); | 
|  | sup->min_io_size   = cpu_to_le32(c->min_io_size); | 
|  | sup->leb_size      = cpu_to_le32(c->leb_size); | 
|  | sup->leb_cnt       = cpu_to_le32(c->leb_cnt); | 
|  | sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt); | 
|  | sup->max_bud_bytes = cpu_to_le64(tmp64); | 
|  | sup->log_lebs      = cpu_to_le32(log_lebs); | 
|  | sup->lpt_lebs      = cpu_to_le32(lpt_lebs); | 
|  | sup->orph_lebs     = cpu_to_le32(orph_lebs); | 
|  | sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT); | 
|  | sup->fanout        = cpu_to_le32(DEFAULT_FANOUT); | 
|  | sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt); | 
|  | sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION); | 
|  | sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN); | 
|  | if (c->mount_opts.override_compr) | 
|  | sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); | 
|  | else | 
|  | sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO); | 
|  |  | 
|  | generate_random_uuid(sup->uuid); | 
|  |  | 
|  | main_bytes = (long long)main_lebs * c->leb_size; | 
|  | tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); | 
|  | if (tmp64 > DEFAULT_MAX_RP_SIZE) | 
|  | tmp64 = DEFAULT_MAX_RP_SIZE; | 
|  | sup->rp_size = cpu_to_le64(tmp64); | 
|  | sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); | 
|  |  | 
|  | err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0, UBI_LONGTERM); | 
|  | kfree(sup); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dbg_gen("default superblock created at LEB 0:0"); | 
|  |  | 
|  | /* Create default master node */ | 
|  | mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); | 
|  | if (!mst) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mst->ch.node_type = UBIFS_MST_NODE; | 
|  | mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM); | 
|  | mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); | 
|  | mst->cmt_no       = 0; | 
|  | mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB); | 
|  | mst->root_offs    = 0; | 
|  | tmp = ubifs_idx_node_sz(c, 1); | 
|  | mst->root_len     = cpu_to_le32(tmp); | 
|  | mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB); | 
|  | mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB); | 
|  | mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size)); | 
|  | mst->index_size   = cpu_to_le64(ALIGN(tmp, 8)); | 
|  | mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum); | 
|  | mst->lpt_offs     = cpu_to_le32(c->lpt_offs); | 
|  | mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum); | 
|  | mst->nhead_offs   = cpu_to_le32(c->nhead_offs); | 
|  | mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum); | 
|  | mst->ltab_offs    = cpu_to_le32(c->ltab_offs); | 
|  | mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum); | 
|  | mst->lsave_offs   = cpu_to_le32(c->lsave_offs); | 
|  | mst->lscan_lnum   = cpu_to_le32(main_first); | 
|  | mst->empty_lebs   = cpu_to_le32(main_lebs - 2); | 
|  | mst->idx_lebs     = cpu_to_le32(1); | 
|  | mst->leb_cnt      = cpu_to_le32(c->leb_cnt); | 
|  |  | 
|  | /* Calculate lprops statistics */ | 
|  | tmp64 = main_bytes; | 
|  | tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); | 
|  | tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); | 
|  | mst->total_free = cpu_to_le64(tmp64); | 
|  |  | 
|  | tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); | 
|  | ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - | 
|  | UBIFS_INO_NODE_SZ; | 
|  | tmp64 += ino_waste; | 
|  | tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); | 
|  | mst->total_dirty = cpu_to_le64(tmp64); | 
|  |  | 
|  | /*  The indexing LEB does not contribute to dark space */ | 
|  | tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); | 
|  | mst->total_dark = cpu_to_le64(tmp64); | 
|  |  | 
|  | mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); | 
|  |  | 
|  | err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0, | 
|  | UBI_UNKNOWN); | 
|  | if (err) { | 
|  | kfree(mst); | 
|  | return err; | 
|  | } | 
|  | err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 0, | 
|  | UBI_UNKNOWN); | 
|  | kfree(mst); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); | 
|  |  | 
|  | /* Create the root indexing node */ | 
|  | tmp = ubifs_idx_node_sz(c, 1); | 
|  | idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL); | 
|  | if (!idx) | 
|  | return -ENOMEM; | 
|  |  | 
|  | c->key_fmt = UBIFS_SIMPLE_KEY_FMT; | 
|  | c->key_hash = key_r5_hash; | 
|  |  | 
|  | idx->ch.node_type = UBIFS_IDX_NODE; | 
|  | idx->child_cnt = cpu_to_le16(1); | 
|  | ino_key_init(c, &key, UBIFS_ROOT_INO); | 
|  | br = ubifs_idx_branch(c, idx, 0); | 
|  | key_write_idx(c, &key, &br->key); | 
|  | br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); | 
|  | br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ); | 
|  | err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0, | 
|  | UBI_UNKNOWN); | 
|  | kfree(idx); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dbg_gen("default root indexing node created LEB %d:0", | 
|  | main_first + DEFAULT_IDX_LEB); | 
|  |  | 
|  | /* Create default root inode */ | 
|  | tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); | 
|  | ino = kzalloc(tmp, GFP_KERNEL); | 
|  | if (!ino) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); | 
|  | ino->ch.node_type = UBIFS_INO_NODE; | 
|  | ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); | 
|  | ino->nlink = cpu_to_le32(2); | 
|  | tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec); | 
|  | ino->atime_sec   = tmp_le64; | 
|  | ino->ctime_sec   = tmp_le64; | 
|  | ino->mtime_sec   = tmp_le64; | 
|  | ino->atime_nsec  = 0; | 
|  | ino->ctime_nsec  = 0; | 
|  | ino->mtime_nsec  = 0; | 
|  | ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); | 
|  | ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); | 
|  |  | 
|  | /* Set compression enabled by default */ | 
|  | ino->flags = cpu_to_le32(UBIFS_COMPR_FL); | 
|  |  | 
|  | err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, | 
|  | main_first + DEFAULT_DATA_LEB, 0, | 
|  | UBI_UNKNOWN); | 
|  | kfree(ino); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dbg_gen("root inode created at LEB %d:0", | 
|  | main_first + DEFAULT_DATA_LEB); | 
|  |  | 
|  | /* | 
|  | * The first node in the log has to be the commit start node. This is | 
|  | * always the case during normal file-system operation. Write a fake | 
|  | * commit start node to the log. | 
|  | */ | 
|  | tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size); | 
|  | cs = kzalloc(tmp, GFP_KERNEL); | 
|  | if (!cs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cs->ch.node_type = UBIFS_CS_NODE; | 
|  | err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, | 
|  | 0, UBI_UNKNOWN); | 
|  | kfree(cs); | 
|  |  | 
|  | ubifs_msg("default file-system created"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * validate_sb - validate superblock node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @sup: superblock node | 
|  | * | 
|  | * This function validates superblock node @sup. Since most of data was read | 
|  | * from the superblock and stored in @c, the function validates fields in @c | 
|  | * instead. Returns zero in case of success and %-EINVAL in case of validation | 
|  | * failure. | 
|  | */ | 
|  | static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) | 
|  | { | 
|  | long long max_bytes; | 
|  | int err = 1, min_leb_cnt; | 
|  |  | 
|  | if (!c->key_hash) { | 
|  | err = 2; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) { | 
|  | err = 3; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (le32_to_cpu(sup->min_io_size) != c->min_io_size) { | 
|  | ubifs_err("min. I/O unit mismatch: %d in superblock, %d real", | 
|  | le32_to_cpu(sup->min_io_size), c->min_io_size); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (le32_to_cpu(sup->leb_size) != c->leb_size) { | 
|  | ubifs_err("LEB size mismatch: %d in superblock, %d real", | 
|  | le32_to_cpu(sup->leb_size), c->leb_size); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->log_lebs < UBIFS_MIN_LOG_LEBS || | 
|  | c->lpt_lebs < UBIFS_MIN_LPT_LEBS || | 
|  | c->orph_lebs < UBIFS_MIN_ORPH_LEBS || | 
|  | c->main_lebs < UBIFS_MIN_MAIN_LEBS) { | 
|  | err = 4; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate minimum allowed amount of main area LEBs. This is very | 
|  | * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we | 
|  | * have just read from the superblock. | 
|  | */ | 
|  | min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs; | 
|  | min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; | 
|  |  | 
|  | if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { | 
|  | ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, " | 
|  | "%d minimum required", c->leb_cnt, c->vi.size, | 
|  | min_leb_cnt); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->max_leb_cnt < c->leb_cnt) { | 
|  | ubifs_err("max. LEB count %d less than LEB count %d", | 
|  | c->max_leb_cnt, c->leb_cnt); | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { | 
|  | err = 7; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->max_bud_bytes < (long long)c->leb_size * UBIFS_MIN_BUD_LEBS || | 
|  | c->max_bud_bytes > (long long)c->leb_size * c->main_lebs) { | 
|  | err = 8; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 || | 
|  | c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) { | 
|  | err = 9; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->fanout < UBIFS_MIN_FANOUT || | 
|  | ubifs_idx_node_sz(c, c->fanout) > c->leb_size) { | 
|  | err = 10; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT && | 
|  | c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - | 
|  | c->log_lebs - c->lpt_lebs - c->orph_lebs)) { | 
|  | err = 11; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs + | 
|  | c->orph_lebs + c->main_lebs != c->leb_cnt) { | 
|  | err = 12; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) { | 
|  | err = 13; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | max_bytes = c->main_lebs * (long long)c->leb_size; | 
|  | if (c->rp_size < 0 || max_bytes < c->rp_size) { | 
|  | err = 14; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | if (le32_to_cpu(sup->time_gran) > 1000000000 || | 
|  | le32_to_cpu(sup->time_gran) < 1) { | 
|  | err = 15; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | ubifs_err("bad superblock, error %d", err); | 
|  | dbg_dump_node(c, sup); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_read_sb_node - read superblock node. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function returns a pointer to the superblock node or a negative error | 
|  | * code. Note, the user of this function is responsible of kfree()'ing the | 
|  | * returned superblock buffer. | 
|  | */ | 
|  | struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) | 
|  | { | 
|  | struct ubifs_sb_node *sup; | 
|  | int err; | 
|  |  | 
|  | sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS); | 
|  | if (!sup) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ, | 
|  | UBIFS_SB_LNUM, 0); | 
|  | if (err) { | 
|  | kfree(sup); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | return sup; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_write_sb_node - write superblock node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @sup: superblock node read with 'ubifs_read_sb_node()' | 
|  | * | 
|  | * This function returns %0 on success and a negative error code on failure. | 
|  | */ | 
|  | int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) | 
|  | { | 
|  | int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); | 
|  |  | 
|  | ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1); | 
|  | return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len, UBI_LONGTERM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_read_superblock - read superblock. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function finds, reads and checks the superblock. If an empty UBI volume | 
|  | * is being mounted, this function creates default superblock. Returns zero in | 
|  | * case of success, and a negative error code in case of failure. | 
|  | */ | 
|  | int ubifs_read_superblock(struct ubifs_info *c) | 
|  | { | 
|  | int err, sup_flags; | 
|  | struct ubifs_sb_node *sup; | 
|  |  | 
|  | if (c->empty) { | 
|  | err = create_default_filesystem(c); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | sup = ubifs_read_sb_node(c); | 
|  | if (IS_ERR(sup)) | 
|  | return PTR_ERR(sup); | 
|  |  | 
|  | c->fmt_version = le32_to_cpu(sup->fmt_version); | 
|  | c->ro_compat_version = le32_to_cpu(sup->ro_compat_version); | 
|  |  | 
|  | /* | 
|  | * The software supports all previous versions but not future versions, | 
|  | * due to the unavailability of time-travelling equipment. | 
|  | */ | 
|  | if (c->fmt_version > UBIFS_FORMAT_VERSION) { | 
|  | ubifs_assert(!c->ro_media || c->ro_mount); | 
|  | if (!c->ro_mount || | 
|  | c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { | 
|  | ubifs_err("on-flash format version is w%d/r%d, but " | 
|  | "software only supports up to version " | 
|  | "w%d/r%d", c->fmt_version, | 
|  | c->ro_compat_version, UBIFS_FORMAT_VERSION, | 
|  | UBIFS_RO_COMPAT_VERSION); | 
|  | if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { | 
|  | ubifs_msg("only R/O mounting is possible"); | 
|  | err = -EROFS; | 
|  | } else | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The FS is mounted R/O, and the media format is | 
|  | * R/O-compatible with the UBIFS implementation, so we can | 
|  | * mount. | 
|  | */ | 
|  | c->rw_incompat = 1; | 
|  | } | 
|  |  | 
|  | if (c->fmt_version < 3) { | 
|  | ubifs_err("on-flash format version %d is not supported", | 
|  | c->fmt_version); | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (sup->key_hash) { | 
|  | case UBIFS_KEY_HASH_R5: | 
|  | c->key_hash = key_r5_hash; | 
|  | c->key_hash_type = UBIFS_KEY_HASH_R5; | 
|  | break; | 
|  |  | 
|  | case UBIFS_KEY_HASH_TEST: | 
|  | c->key_hash = key_test_hash; | 
|  | c->key_hash_type = UBIFS_KEY_HASH_TEST; | 
|  | break; | 
|  | }; | 
|  |  | 
|  | c->key_fmt = sup->key_fmt; | 
|  |  | 
|  | switch (c->key_fmt) { | 
|  | case UBIFS_SIMPLE_KEY_FMT: | 
|  | c->key_len = UBIFS_SK_LEN; | 
|  | break; | 
|  | default: | 
|  | ubifs_err("unsupported key format"); | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | c->leb_cnt       = le32_to_cpu(sup->leb_cnt); | 
|  | c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt); | 
|  | c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes); | 
|  | c->log_lebs      = le32_to_cpu(sup->log_lebs); | 
|  | c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs); | 
|  | c->orph_lebs     = le32_to_cpu(sup->orph_lebs); | 
|  | c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; | 
|  | c->fanout        = le32_to_cpu(sup->fanout); | 
|  | c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt); | 
|  | c->rp_size       = le64_to_cpu(sup->rp_size); | 
|  | c->rp_uid        = le32_to_cpu(sup->rp_uid); | 
|  | c->rp_gid        = le32_to_cpu(sup->rp_gid); | 
|  | sup_flags        = le32_to_cpu(sup->flags); | 
|  | if (!c->mount_opts.override_compr) | 
|  | c->default_compr = le16_to_cpu(sup->default_compr); | 
|  |  | 
|  | c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); | 
|  | memcpy(&c->uuid, &sup->uuid, 16); | 
|  | c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); | 
|  | c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); | 
|  |  | 
|  | /* Automatically increase file system size to the maximum size */ | 
|  | c->old_leb_cnt = c->leb_cnt; | 
|  | if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { | 
|  | c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); | 
|  | if (c->ro_mount) | 
|  | dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", | 
|  | c->old_leb_cnt,	c->leb_cnt); | 
|  | else { | 
|  | dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs", | 
|  | c->old_leb_cnt, c->leb_cnt); | 
|  | sup->leb_cnt = cpu_to_le32(c->leb_cnt); | 
|  | err = ubifs_write_sb_node(c, sup); | 
|  | if (err) | 
|  | goto out; | 
|  | c->old_leb_cnt = c->leb_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | c->log_bytes = (long long)c->log_lebs * c->leb_size; | 
|  | c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1; | 
|  | c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs; | 
|  | c->lpt_last = c->lpt_first + c->lpt_lebs - 1; | 
|  | c->orph_first = c->lpt_last + 1; | 
|  | c->orph_last = c->orph_first + c->orph_lebs - 1; | 
|  | c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; | 
|  | c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; | 
|  | c->main_first = c->leb_cnt - c->main_lebs; | 
|  |  | 
|  | err = validate_sb(c, sup); | 
|  | out: | 
|  | kfree(sup); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fixup_leb - fixup/unmap an LEB containing free space. | 
|  | * @c: UBIFS file-system description object | 
|  | * @lnum: the LEB number to fix up | 
|  | * @len: number of used bytes in LEB (starting at offset 0) | 
|  | * | 
|  | * This function reads the contents of the given LEB number @lnum, then fixes | 
|  | * it up, so that empty min. I/O units in the end of LEB are actually erased on | 
|  | * flash (rather than being just all-0xff real data). If the LEB is completely | 
|  | * empty, it is simply unmapped. | 
|  | */ | 
|  | static int fixup_leb(struct ubifs_info *c, int lnum, int len) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_assert(len >= 0); | 
|  | ubifs_assert(len % c->min_io_size == 0); | 
|  | ubifs_assert(len < c->leb_size); | 
|  |  | 
|  | if (len == 0) { | 
|  | dbg_mnt("unmap empty LEB %d", lnum); | 
|  | return ubi_leb_unmap(c->ubi, lnum); | 
|  | } | 
|  |  | 
|  | dbg_mnt("fixup LEB %d, data len %d", lnum, len); | 
|  | err = ubi_read(c->ubi, lnum, c->sbuf, 0, len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fixup_free_space - find & remap all LEBs containing free space. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function walks through all LEBs in the filesystem and fiexes up those | 
|  | * containing free/empty space. | 
|  | */ | 
|  | static int fixup_free_space(struct ubifs_info *c) | 
|  | { | 
|  | int lnum, err = 0; | 
|  | struct ubifs_lprops *lprops; | 
|  |  | 
|  | ubifs_get_lprops(c); | 
|  |  | 
|  | /* Fixup LEBs in the master area */ | 
|  | for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { | 
|  | err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Unmap unused log LEBs */ | 
|  | lnum = ubifs_next_log_lnum(c, c->lhead_lnum); | 
|  | while (lnum != c->ltail_lnum) { | 
|  | err = fixup_leb(c, lnum, 0); | 
|  | if (err) | 
|  | goto out; | 
|  | lnum = ubifs_next_log_lnum(c, lnum); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fixup the log head which contains the only a CS node at the | 
|  | * beginning. | 
|  | */ | 
|  | err = fixup_leb(c, c->lhead_lnum, | 
|  | ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size)); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | /* Fixup LEBs in the LPT area */ | 
|  | for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { | 
|  | int free = c->ltab[lnum - c->lpt_first].free; | 
|  |  | 
|  | if (free > 0) { | 
|  | err = fixup_leb(c, lnum, c->leb_size - free); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unmap LEBs in the orphans area */ | 
|  | for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { | 
|  | err = fixup_leb(c, lnum, 0); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Fixup LEBs in the main area */ | 
|  | for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { | 
|  | lprops = ubifs_lpt_lookup(c, lnum); | 
|  | if (IS_ERR(lprops)) { | 
|  | err = PTR_ERR(lprops); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (lprops->free > 0) { | 
|  | err = fixup_leb(c, lnum, c->leb_size - lprops->free); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | ubifs_release_lprops(c); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_fixup_free_space - find & fix all LEBs with free space. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function fixes up LEBs containing free space on first mount, if the | 
|  | * appropriate flag was set when the FS was created. Each LEB with one or more | 
|  | * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure | 
|  | * the free space is actually erased. E.g., this is necessary for some NAND | 
|  | * chips, since the free space may have been programmed like real "0xff" data | 
|  | * (generating a non-0xff ECC), causing future writes to the not-really-erased | 
|  | * NAND pages to behave badly. After the space is fixed up, the superblock flag | 
|  | * is cleared, so that this is skipped for all future mounts. | 
|  | */ | 
|  | int ubifs_fixup_free_space(struct ubifs_info *c) | 
|  | { | 
|  | int err; | 
|  | struct ubifs_sb_node *sup; | 
|  |  | 
|  | ubifs_assert(c->space_fixup); | 
|  | ubifs_assert(!c->ro_mount); | 
|  |  | 
|  | ubifs_msg("start fixing up free space"); | 
|  |  | 
|  | err = fixup_free_space(c); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | sup = ubifs_read_sb_node(c); | 
|  | if (IS_ERR(sup)) | 
|  | return PTR_ERR(sup); | 
|  |  | 
|  | /* Free-space fixup is no longer required */ | 
|  | c->space_fixup = 0; | 
|  | sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); | 
|  |  | 
|  | err = ubifs_write_sb_node(c, sup); | 
|  | kfree(sup); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | ubifs_msg("free space fixup complete"); | 
|  | return err; | 
|  | } |