blob: 81783286cad2f70fb1e13efb4726009bd7ba6096 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <asm/cputime.h>
static void (*pm_idle_old)(void);
static atomic_t active_count = ATOMIC_INIT(0);
struct cpufreq_interactive_cpuinfo {
struct timer_list cpu_timer;
int timer_idlecancel;
u64 time_in_idle;
u64 idle_exit_time;
u64 timer_run_time;
int idling;
u64 freq_change_time;
u64 freq_change_time_in_idle;
struct cpufreq_policy *policy;
struct cpufreq_frequency_table *freq_table;
unsigned int target_freq;
int governor_enabled;
};
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
/* Workqueues handle frequency scaling */
static struct task_struct *up_task;
static struct workqueue_struct *down_wq;
static struct work_struct freq_scale_down_work;
static cpumask_t up_cpumask;
static spinlock_t up_cpumask_lock;
static cpumask_t down_cpumask;
static spinlock_t down_cpumask_lock;
/* Go to max speed when CPU load at or above this value. */
#define DEFAULT_GO_MAXSPEED_LOAD 85
static unsigned long go_maxspeed_load;
/*
* The minimum amount of time to spend at a frequency before we can ramp down.
*/
#define DEFAULT_MIN_SAMPLE_TIME 80000;
static unsigned long min_sample_time;
#define DEBUG 0
#define BUFSZ 128
#if DEBUG
#include <linux/proc_fs.h>
struct dbgln {
int cpu;
unsigned long jiffy;
unsigned long run;
char buf[BUFSZ];
};
#define NDBGLNS 256
static struct dbgln dbgbuf[NDBGLNS];
static int dbgbufs;
static int dbgbufe;
static struct proc_dir_entry *dbg_proc;
static spinlock_t dbgpr_lock;
static u64 up_request_time;
static unsigned int up_max_latency;
static void dbgpr(char *fmt, ...)
{
va_list args;
int n;
unsigned long flags;
spin_lock_irqsave(&dbgpr_lock, flags);
n = dbgbufe;
va_start(args, fmt);
vsnprintf(dbgbuf[n].buf, BUFSZ, fmt, args);
va_end(args);
dbgbuf[n].cpu = smp_processor_id();
dbgbuf[n].run = nr_running();
dbgbuf[n].jiffy = jiffies;
if (++dbgbufe >= NDBGLNS)
dbgbufe = 0;
if (dbgbufe == dbgbufs)
if (++dbgbufs >= NDBGLNS)
dbgbufs = 0;
spin_unlock_irqrestore(&dbgpr_lock, flags);
}
static void dbgdump(void)
{
int i, j;
unsigned long flags;
static struct dbgln prbuf[NDBGLNS];
spin_lock_irqsave(&dbgpr_lock, flags);
i = dbgbufs;
j = dbgbufe;
memcpy(prbuf, dbgbuf, sizeof(dbgbuf));
dbgbufs = 0;
dbgbufe = 0;
spin_unlock_irqrestore(&dbgpr_lock, flags);
while (i != j)
{
printk("%lu %d %lu %s",
prbuf[i].jiffy, prbuf[i].cpu, prbuf[i].run,
prbuf[i].buf);
if (++i == NDBGLNS)
i = 0;
}
}
static int dbg_proc_read(char *buffer, char **start, off_t offset,
int count, int *peof, void *dat)
{
printk("max up_task latency=%uus\n", up_max_latency);
dbgdump();
*peof = 1;
return 0;
}
#else
#define dbgpr(...) do {} while (0)
#endif
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
static
#endif
struct cpufreq_governor cpufreq_gov_interactive = {
.name = "interactive",
.governor = cpufreq_governor_interactive,
.max_transition_latency = 10000000,
.owner = THIS_MODULE,
};
static void cpufreq_interactive_timer(unsigned long data)
{
unsigned int delta_idle;
unsigned int delta_time;
int cpu_load;
int load_since_change;
u64 time_in_idle;
u64 idle_exit_time;
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, data);
u64 now_idle;
unsigned int new_freq;
unsigned int index;
unsigned long flags;
smp_rmb();
if (!pcpu->governor_enabled)
goto exit;
/*
* Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
* this lets idle exit know the current idle time sample has
* been processed, and idle exit can generate a new sample and
* re-arm the timer. This prevents a concurrent idle
* exit on that CPU from writing a new set of info at the same time
* the timer function runs (the timer function can't use that info
* until more time passes).
*/
time_in_idle = pcpu->time_in_idle;
idle_exit_time = pcpu->idle_exit_time;
now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
smp_wmb();
/* If we raced with cancelling a timer, skip. */
if (!idle_exit_time) {
dbgpr("timer %d: no valid idle exit sample\n", (int) data);
goto exit;
}
#if DEBUG
if ((int) jiffies - (int) pcpu->cpu_timer.expires >= 10)
dbgpr("timer %d: late by %d ticks\n",
(int) data, jiffies - pcpu->cpu_timer.expires);
#endif
delta_idle = (unsigned int) cputime64_sub(now_idle, time_in_idle);
delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
idle_exit_time);
/*
* If timer ran less than 1ms after short-term sample started, retry.
*/
if (delta_time < 1000) {
dbgpr("timer %d: time delta %u too short exit=%llu now=%llu\n", (int) data,
delta_time, idle_exit_time, pcpu->timer_run_time);
goto rearm;
}
if (delta_idle > delta_time)
cpu_load = 0;
else
cpu_load = 100 * (delta_time - delta_idle) / delta_time;
delta_idle = (unsigned int) cputime64_sub(now_idle,
pcpu->freq_change_time_in_idle);
delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
pcpu->freq_change_time);
if (delta_idle > delta_time)
load_since_change = 0;
else
load_since_change =
100 * (delta_time - delta_idle) / delta_time;
/*
* Choose greater of short-term load (since last idle timer
* started or timer function re-armed itself) or long-term load
* (since last frequency change).
*/
if (load_since_change > cpu_load)
cpu_load = load_since_change;
if (cpu_load >= go_maxspeed_load)
new_freq = pcpu->policy->max;
else
new_freq = pcpu->policy->max * cpu_load / 100;
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
new_freq, CPUFREQ_RELATION_H,
&index)) {
dbgpr("timer %d: cpufreq_frequency_table_target error\n", (int) data);
goto rearm;
}
new_freq = pcpu->freq_table[index].frequency;
if (pcpu->target_freq == new_freq)
{
dbgpr("timer %d: load=%d, already at %d\n", (int) data, cpu_load, new_freq);
goto rearm_if_notmax;
}
/*
* Do not scale down unless we have been at this frequency for the
* minimum sample time.
*/
if (new_freq < pcpu->target_freq) {
if (cputime64_sub(pcpu->timer_run_time, pcpu->freq_change_time) <
min_sample_time) {
dbgpr("timer %d: load=%d cur=%d tgt=%d not yet\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
goto rearm;
}
}
dbgpr("timer %d: load=%d cur=%d tgt=%d queue\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
if (new_freq < pcpu->target_freq) {
pcpu->target_freq = new_freq;
spin_lock_irqsave(&down_cpumask_lock, flags);
cpumask_set_cpu(data, &down_cpumask);
spin_unlock_irqrestore(&down_cpumask_lock, flags);
queue_work(down_wq, &freq_scale_down_work);
} else {
pcpu->target_freq = new_freq;
#if DEBUG
up_request_time = ktime_to_us(ktime_get());
#endif
spin_lock_irqsave(&up_cpumask_lock, flags);
cpumask_set_cpu(data, &up_cpumask);
spin_unlock_irqrestore(&up_cpumask_lock, flags);
wake_up_process(up_task);
}
rearm_if_notmax:
/*
* Already set max speed and don't see a need to change that,
* wait until next idle to re-evaluate, don't need timer.
*/
if (pcpu->target_freq == pcpu->policy->max)
goto exit;
rearm:
if (!timer_pending(&pcpu->cpu_timer)) {
/*
* If already at min: if that CPU is idle, don't set timer.
* Else cancel the timer if that CPU goes idle. We don't
* need to re-evaluate speed until the next idle exit.
*/
if (pcpu->target_freq == pcpu->policy->min) {
smp_rmb();
if (pcpu->idling) {
dbgpr("timer %d: cpu idle, don't re-arm\n", (int) data);
goto exit;
}
pcpu->timer_idlecancel = 1;
}
pcpu->time_in_idle = get_cpu_idle_time_us(
data, &pcpu->idle_exit_time);
mod_timer(&pcpu->cpu_timer, jiffies + 2);
dbgpr("timer %d: set timer for %lu exit=%llu\n", (int) data, pcpu->cpu_timer.expires, pcpu->idle_exit_time);
}
exit:
return;
}
static void cpufreq_interactive_idle(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
int pending;
if (!pcpu->governor_enabled) {
pm_idle_old();
return;
}
pcpu->idling = 1;
smp_wmb();
pending = timer_pending(&pcpu->cpu_timer);
if (pcpu->target_freq != pcpu->policy->min) {
#ifdef CONFIG_SMP
/*
* Entering idle while not at lowest speed. On some
* platforms this can hold the other CPU(s) at that speed
* even though the CPU is idle. Set a timer to re-evaluate
* speed so this idle CPU doesn't hold the other CPUs above
* min indefinitely. This should probably be a quirk of
* the CPUFreq driver.
*/
if (!pending) {
pcpu->time_in_idle = get_cpu_idle_time_us(
smp_processor_id(), &pcpu->idle_exit_time);
pcpu->timer_idlecancel = 0;
mod_timer(&pcpu->cpu_timer, jiffies + 2);
dbgpr("idle: enter at %d, set timer for %lu exit=%llu\n",
pcpu->target_freq, pcpu->cpu_timer.expires,
pcpu->idle_exit_time);
}
#endif
} else {
/*
* If at min speed and entering idle after load has
* already been evaluated, and a timer has been set just in
* case the CPU suddenly goes busy, cancel that timer. The
* CPU didn't go busy; we'll recheck things upon idle exit.
*/
if (pending && pcpu->timer_idlecancel) {
dbgpr("idle: cancel timer for %lu\n", pcpu->cpu_timer.expires);
del_timer(&pcpu->cpu_timer);
/*
* Ensure last timer run time is after current idle
* sample start time, so next idle exit will always
* start a new idle sampling period.
*/
pcpu->idle_exit_time = 0;
pcpu->timer_idlecancel = 0;
}
}
pm_idle_old();
pcpu->idling = 0;
smp_wmb();
/*
* Arm the timer for 1-2 ticks later if not already, and if the timer
* function has already processed the previous load sampling
* interval. (If the timer is not pending but has not processed
* the previous interval, it is probably racing with us on another
* CPU. Let it compute load based on the previous sample and then
* re-arm the timer for another interval when it's done, rather
* than updating the interval start time to be "now", which doesn't
* give the timer function enough time to make a decision on this
* run.)
*/
if (timer_pending(&pcpu->cpu_timer) == 0 &&
pcpu->timer_run_time >= pcpu->idle_exit_time &&
pcpu->governor_enabled) {
pcpu->time_in_idle =
get_cpu_idle_time_us(smp_processor_id(),
&pcpu->idle_exit_time);
pcpu->timer_idlecancel = 0;
mod_timer(&pcpu->cpu_timer, jiffies + 2);
dbgpr("idle: exit, set timer for %lu exit=%llu\n", pcpu->cpu_timer.expires, pcpu->idle_exit_time);
#if DEBUG
} else if (timer_pending(&pcpu->cpu_timer) == 0 &&
pcpu->timer_run_time < pcpu->idle_exit_time) {
dbgpr("idle: timer not run yet: exit=%llu tmrrun=%llu\n",
pcpu->idle_exit_time, pcpu->timer_run_time);
#endif
}
}
static int cpufreq_interactive_up_task(void *data)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
#if DEBUG
u64 now;
u64 then;
unsigned int lat;
#endif
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&up_cpumask_lock, flags);
if (cpumask_empty(&up_cpumask)) {
spin_unlock_irqrestore(&up_cpumask_lock, flags);
schedule();
if (kthread_should_stop())
break;
spin_lock_irqsave(&up_cpumask_lock, flags);
}
set_current_state(TASK_RUNNING);
#if DEBUG
then = up_request_time;
now = ktime_to_us(ktime_get());
if (now > then) {
lat = ktime_to_us(ktime_get()) - then;
if (lat > up_max_latency)
up_max_latency = lat;
}
#endif
tmp_mask = up_cpumask;
cpumask_clear(&up_cpumask);
spin_unlock_irqrestore(&up_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
pcpu = &per_cpu(cpuinfo, cpu);
if (nr_running() == 1) {
dbgpr("up %d: tgt=%d nothing else running\n", cpu,
pcpu->target_freq);
}
smp_rmb();
if (!pcpu->governor_enabled)
continue;
__cpufreq_driver_target(pcpu->policy,
pcpu->target_freq,
CPUFREQ_RELATION_H);
pcpu->freq_change_time_in_idle =
get_cpu_idle_time_us(cpu,
&pcpu->freq_change_time);
dbgpr("up %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
}
}
return 0;
}
static void cpufreq_interactive_freq_down(struct work_struct *work)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
spin_lock_irqsave(&down_cpumask_lock, flags);
tmp_mask = down_cpumask;
cpumask_clear(&down_cpumask);
spin_unlock_irqrestore(&down_cpumask_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
pcpu = &per_cpu(cpuinfo, cpu);
smp_rmb();
if (!pcpu->governor_enabled)
continue;
__cpufreq_driver_target(pcpu->policy,
pcpu->target_freq,
CPUFREQ_RELATION_H);
pcpu->freq_change_time_in_idle =
get_cpu_idle_time_us(cpu,
&pcpu->freq_change_time);
dbgpr("down %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
}
}
static ssize_t show_go_maxspeed_load(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", go_maxspeed_load);
}
static ssize_t store_go_maxspeed_load(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
return strict_strtoul(buf, 0, &go_maxspeed_load);
}
static struct global_attr go_maxspeed_load_attr = __ATTR(go_maxspeed_load, 0644,
show_go_maxspeed_load, store_go_maxspeed_load);
static ssize_t show_min_sample_time(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", min_sample_time);
}
static ssize_t store_min_sample_time(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
return strict_strtoul(buf, 0, &min_sample_time);
}
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
show_min_sample_time, store_min_sample_time);
static struct attribute *interactive_attributes[] = {
&go_maxspeed_load_attr.attr,
&min_sample_time_attr.attr,
NULL,
};
static struct attribute_group interactive_attr_group = {
.attrs = interactive_attributes,
.name = "interactive",
};
static int cpufreq_governor_interactive(struct cpufreq_policy *new_policy,
unsigned int event)
{
int rc;
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, new_policy->cpu);
switch (event) {
case CPUFREQ_GOV_START:
if (!cpu_online(new_policy->cpu))
return -EINVAL;
pcpu->policy = new_policy;
pcpu->freq_table = cpufreq_frequency_get_table(new_policy->cpu);
pcpu->target_freq = new_policy->cur;
pcpu->freq_change_time_in_idle =
get_cpu_idle_time_us(new_policy->cpu,
&pcpu->freq_change_time);
pcpu->governor_enabled = 1;
smp_wmb();
/*
* Do not register the idle hook and create sysfs
* entries if we have already done so.
*/
if (atomic_inc_return(&active_count) > 1)
return 0;
rc = sysfs_create_group(cpufreq_global_kobject,
&interactive_attr_group);
if (rc)
return rc;
pm_idle_old = pm_idle;
pm_idle = cpufreq_interactive_idle;
break;
case CPUFREQ_GOV_STOP:
pcpu->governor_enabled = 0;
smp_wmb();
del_timer_sync(&pcpu->cpu_timer);
flush_work(&freq_scale_down_work);
/*
* Reset idle exit time since we may cancel the timer
* before it can run after the last idle exit time,
* to avoid tripping the check in idle exit for a timer
* that is trying to run.
*/
pcpu->idle_exit_time = 0;
if (atomic_dec_return(&active_count) > 0)
return 0;
sysfs_remove_group(cpufreq_global_kobject,
&interactive_attr_group);
pm_idle = pm_idle_old;
break;
case CPUFREQ_GOV_LIMITS:
if (new_policy->max < new_policy->cur)
__cpufreq_driver_target(new_policy,
new_policy->max, CPUFREQ_RELATION_H);
else if (new_policy->min > new_policy->cur)
__cpufreq_driver_target(new_policy,
new_policy->min, CPUFREQ_RELATION_L);
break;
}
return 0;
}
static int __init cpufreq_interactive_init(void)
{
unsigned int i;
struct cpufreq_interactive_cpuinfo *pcpu;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
go_maxspeed_load = DEFAULT_GO_MAXSPEED_LOAD;
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
/* Initalize per-cpu timers */
for_each_possible_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
init_timer(&pcpu->cpu_timer);
pcpu->cpu_timer.function = cpufreq_interactive_timer;
pcpu->cpu_timer.data = i;
}
up_task = kthread_create(cpufreq_interactive_up_task, NULL,
"kinteractiveup");
if (IS_ERR(up_task))
return PTR_ERR(up_task);
sched_setscheduler_nocheck(up_task, SCHED_FIFO, &param);
get_task_struct(up_task);
/* No rescuer thread, bind to CPU queuing the work for possibly
warm cache (probably doesn't matter much). */
down_wq = alloc_workqueue("knteractive_down", 0, 1);
if (! down_wq)
goto err_freeuptask;
INIT_WORK(&freq_scale_down_work,
cpufreq_interactive_freq_down);
spin_lock_init(&up_cpumask_lock);
spin_lock_init(&down_cpumask_lock);
#if DEBUG
spin_lock_init(&dbgpr_lock);
dbg_proc = create_proc_entry("igov", S_IWUSR | S_IRUGO, NULL);
dbg_proc->read_proc = dbg_proc_read;
#endif
return cpufreq_register_governor(&cpufreq_gov_interactive);
err_freeuptask:
put_task_struct(up_task);
return -ENOMEM;
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
fs_initcall(cpufreq_interactive_init);
#else
module_init(cpufreq_interactive_init);
#endif
static void __exit cpufreq_interactive_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_interactive);
kthread_stop(up_task);
put_task_struct(up_task);
destroy_workqueue(down_wq);
}
module_exit(cpufreq_interactive_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
"Latency sensitive workloads");
MODULE_LICENSE("GPL");