blob: 5729602cbb63a474c5fa2457d37862e5c9cfb9f5 [file] [log] [blame]
/* drivers/input/keyboard/synaptics_i2c_rmi.c
*
* Copyright (C) 2007 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/earlysuspend.h>
#include <linux/hrtimer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/synaptics_i2c_rmi.h>
static struct workqueue_struct *synaptics_wq;
struct synaptics_ts_data {
uint16_t addr;
struct i2c_client *client;
struct input_dev *input_dev;
int use_irq;
bool has_relative_report;
struct hrtimer timer;
struct work_struct work;
uint16_t max[2];
int snap_state[2][2];
int snap_down_on[2];
int snap_down_off[2];
int snap_up_on[2];
int snap_up_off[2];
int snap_down[2];
int snap_up[2];
uint32_t flags;
int reported_finger_count;
int8_t sensitivity_adjust;
int (*power)(int on);
struct early_suspend early_suspend;
};
#ifdef CONFIG_HAS_EARLYSUSPEND
static void synaptics_ts_early_suspend(struct early_suspend *h);
static void synaptics_ts_late_resume(struct early_suspend *h);
#endif
static int synaptics_init_panel(struct synaptics_ts_data *ts)
{
int ret;
ret = i2c_smbus_write_byte_data(ts->client, 0xff, 0x10); /* page select = 0x10 */
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_write_byte_data failed for page select\n");
goto err_page_select_failed;
}
ret = i2c_smbus_write_byte_data(ts->client, 0x41, 0x04); /* Set "No Clip Z" */
if (ret < 0)
printk(KERN_ERR "i2c_smbus_write_byte_data failed for No Clip Z\n");
ret = i2c_smbus_write_byte_data(ts->client, 0x44,
ts->sensitivity_adjust);
if (ret < 0)
pr_err("synaptics_ts: failed to set Sensitivity Adjust\n");
err_page_select_failed:
ret = i2c_smbus_write_byte_data(ts->client, 0xff, 0x04); /* page select = 0x04 */
if (ret < 0)
printk(KERN_ERR "i2c_smbus_write_byte_data failed for page select\n");
ret = i2c_smbus_write_byte_data(ts->client, 0xf0, 0x81); /* normal operation, 80 reports per second */
if (ret < 0)
printk(KERN_ERR "synaptics_ts_resume: i2c_smbus_write_byte_data failed\n");
return ret;
}
static void synaptics_ts_work_func(struct work_struct *work)
{
int i;
int ret;
int bad_data = 0;
struct i2c_msg msg[2];
uint8_t start_reg;
uint8_t buf[15];
struct synaptics_ts_data *ts = container_of(work, struct synaptics_ts_data, work);
int buf_len = ts->has_relative_report ? 15 : 13;
msg[0].addr = ts->client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &start_reg;
start_reg = 0x00;
msg[1].addr = ts->client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = buf_len;
msg[1].buf = buf;
/* printk("synaptics_ts_work_func\n"); */
for (i = 0; i < ((ts->use_irq && !bad_data) ? 1 : 10); i++) {
ret = i2c_transfer(ts->client->adapter, msg, 2);
if (ret < 0) {
printk(KERN_ERR "synaptics_ts_work_func: i2c_transfer failed\n");
bad_data = 1;
} else {
/* printk("synaptics_ts_work_func: %x %x %x %x %x %x" */
/* " %x %x %x %x %x %x %x %x %x, ret %d\n", */
/* buf[0], buf[1], buf[2], buf[3], */
/* buf[4], buf[5], buf[6], buf[7], */
/* buf[8], buf[9], buf[10], buf[11], */
/* buf[12], buf[13], buf[14], ret); */
if ((buf[buf_len - 1] & 0xc0) != 0x40) {
printk(KERN_WARNING "synaptics_ts_work_func:"
" bad read %x %x %x %x %x %x %x %x %x"
" %x %x %x %x %x %x, ret %d\n",
buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7],
buf[8], buf[9], buf[10], buf[11],
buf[12], buf[13], buf[14], ret);
if (bad_data)
synaptics_init_panel(ts);
bad_data = 1;
continue;
}
bad_data = 0;
if ((buf[buf_len - 1] & 1) == 0) {
/* printk("read %d coordinates\n", i); */
break;
} else {
int pos[2][2];
int f, a;
int base;
/* int x = buf[3] | (uint16_t)(buf[2] & 0x1f) << 8; */
/* int y = buf[5] | (uint16_t)(buf[4] & 0x1f) << 8; */
int z = buf[1];
int w = buf[0] >> 4;
int finger = buf[0] & 7;
/* int x2 = buf[3+6] | (uint16_t)(buf[2+6] & 0x1f) << 8; */
/* int y2 = buf[5+6] | (uint16_t)(buf[4+6] & 0x1f) << 8; */
/* int z2 = buf[1+6]; */
/* int w2 = buf[0+6] >> 4; */
/* int finger2 = buf[0+6] & 7; */
/* int dx = (int8_t)buf[12]; */
/* int dy = (int8_t)buf[13]; */
int finger2_pressed;
/* printk("x %4d, y %4d, z %3d, w %2d, F %d, 2nd: x %4d, y %4d, z %3d, w %2d, F %d, dx %4d, dy %4d\n", */
/* x, y, z, w, finger, */
/* x2, y2, z2, w2, finger2, */
/* dx, dy); */
base = 2;
for (f = 0; f < 2; f++) {
uint32_t flip_flag = SYNAPTICS_FLIP_X;
for (a = 0; a < 2; a++) {
int p = buf[base + 1];
p |= (uint16_t)(buf[base] & 0x1f) << 8;
if (ts->flags & flip_flag)
p = ts->max[a] - p;
if (ts->flags & SYNAPTICS_SNAP_TO_INACTIVE_EDGE) {
if (ts->snap_state[f][a]) {
if (p <= ts->snap_down_off[a])
p = ts->snap_down[a];
else if (p >= ts->snap_up_off[a])
p = ts->snap_up[a];
else
ts->snap_state[f][a] = 0;
} else {
if (p <= ts->snap_down_on[a]) {
p = ts->snap_down[a];
ts->snap_state[f][a] = 1;
} else if (p >= ts->snap_up_on[a]) {
p = ts->snap_up[a];
ts->snap_state[f][a] = 1;
}
}
}
pos[f][a] = p;
base += 2;
flip_flag <<= 1;
}
base += 2;
if (ts->flags & SYNAPTICS_SWAP_XY)
swap(pos[f][0], pos[f][1]);
}
if (z) {
input_report_abs(ts->input_dev, ABS_X, pos[0][0]);
input_report_abs(ts->input_dev, ABS_Y, pos[0][1]);
}
input_report_abs(ts->input_dev, ABS_PRESSURE, z);
input_report_abs(ts->input_dev, ABS_TOOL_WIDTH, w);
input_report_key(ts->input_dev, BTN_TOUCH, finger);
finger2_pressed = finger > 1 && finger != 7;
input_report_key(ts->input_dev, BTN_2, finger2_pressed);
if (finger2_pressed) {
input_report_abs(ts->input_dev, ABS_HAT0X, pos[1][0]);
input_report_abs(ts->input_dev, ABS_HAT0Y, pos[1][1]);
}
if (!finger)
z = 0;
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, z);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, pos[0][0]);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, pos[0][1]);
input_mt_sync(ts->input_dev);
if (finger2_pressed) {
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, z);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, w);
input_report_abs(ts->input_dev, ABS_MT_POSITION_X, pos[1][0]);
input_report_abs(ts->input_dev, ABS_MT_POSITION_Y, pos[1][1]);
input_mt_sync(ts->input_dev);
} else if (ts->reported_finger_count > 1) {
input_report_abs(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0);
input_report_abs(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0);
input_mt_sync(ts->input_dev);
}
ts->reported_finger_count = finger;
input_sync(ts->input_dev);
}
}
}
if (ts->use_irq)
enable_irq(ts->client->irq);
}
static enum hrtimer_restart synaptics_ts_timer_func(struct hrtimer *timer)
{
struct synaptics_ts_data *ts = container_of(timer, struct synaptics_ts_data, timer);
/* printk("synaptics_ts_timer_func\n"); */
queue_work(synaptics_wq, &ts->work);
hrtimer_start(&ts->timer, ktime_set(0, 12500000), HRTIMER_MODE_REL);
return HRTIMER_NORESTART;
}
static irqreturn_t synaptics_ts_irq_handler(int irq, void *dev_id)
{
struct synaptics_ts_data *ts = dev_id;
/* printk("synaptics_ts_irq_handler\n"); */
disable_irq_nosync(ts->client->irq);
queue_work(synaptics_wq, &ts->work);
return IRQ_HANDLED;
}
static int synaptics_ts_probe(
struct i2c_client *client, const struct i2c_device_id *id)
{
struct synaptics_ts_data *ts;
uint8_t buf0[4];
uint8_t buf1[8];
struct i2c_msg msg[2];
int ret = 0;
uint16_t max_x, max_y;
int fuzz_x, fuzz_y, fuzz_p, fuzz_w;
struct synaptics_i2c_rmi_platform_data *pdata;
unsigned long irqflags;
int inactive_area_left;
int inactive_area_right;
int inactive_area_top;
int inactive_area_bottom;
int snap_left_on;
int snap_left_off;
int snap_right_on;
int snap_right_off;
int snap_top_on;
int snap_top_off;
int snap_bottom_on;
int snap_bottom_off;
uint32_t panel_version;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
printk(KERN_ERR "synaptics_ts_probe: need I2C_FUNC_I2C\n");
ret = -ENODEV;
goto err_check_functionality_failed;
}
ts = kzalloc(sizeof(*ts), GFP_KERNEL);
if (ts == NULL) {
ret = -ENOMEM;
goto err_alloc_data_failed;
}
INIT_WORK(&ts->work, synaptics_ts_work_func);
ts->client = client;
i2c_set_clientdata(client, ts);
pdata = client->dev.platform_data;
if (pdata)
ts->power = pdata->power;
if (ts->power) {
ret = ts->power(1);
if (ret < 0) {
printk(KERN_ERR "synaptics_ts_probe power on failed\n");
goto err_power_failed;
}
}
ret = i2c_smbus_write_byte_data(ts->client, 0xf4, 0x01); /* device command = reset */
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_write_byte_data failed\n");
/* fail? */
}
{
int retry = 10;
while (retry-- > 0) {
ret = i2c_smbus_read_byte_data(ts->client, 0xe4);
if (ret >= 0)
break;
msleep(100);
}
}
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_byte_data failed\n");
goto err_detect_failed;
}
printk(KERN_INFO "synaptics_ts_probe: Product Major Version %x\n", ret);
panel_version = ret << 8;
ret = i2c_smbus_read_byte_data(ts->client, 0xe5);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_byte_data failed\n");
goto err_detect_failed;
}
printk(KERN_INFO "synaptics_ts_probe: Product Minor Version %x\n", ret);
panel_version |= ret;
ret = i2c_smbus_read_byte_data(ts->client, 0xe3);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_byte_data failed\n");
goto err_detect_failed;
}
printk(KERN_INFO "synaptics_ts_probe: product property %x\n", ret);
if (pdata) {
while (pdata->version > panel_version)
pdata++;
ts->flags = pdata->flags;
ts->sensitivity_adjust = pdata->sensitivity_adjust;
irqflags = pdata->irqflags;
inactive_area_left = pdata->inactive_left;
inactive_area_right = pdata->inactive_right;
inactive_area_top = pdata->inactive_top;
inactive_area_bottom = pdata->inactive_bottom;
snap_left_on = pdata->snap_left_on;
snap_left_off = pdata->snap_left_off;
snap_right_on = pdata->snap_right_on;
snap_right_off = pdata->snap_right_off;
snap_top_on = pdata->snap_top_on;
snap_top_off = pdata->snap_top_off;
snap_bottom_on = pdata->snap_bottom_on;
snap_bottom_off = pdata->snap_bottom_off;
fuzz_x = pdata->fuzz_x;
fuzz_y = pdata->fuzz_y;
fuzz_p = pdata->fuzz_p;
fuzz_w = pdata->fuzz_w;
} else {
irqflags = 0;
inactive_area_left = 0;
inactive_area_right = 0;
inactive_area_top = 0;
inactive_area_bottom = 0;
snap_left_on = 0;
snap_left_off = 0;
snap_right_on = 0;
snap_right_off = 0;
snap_top_on = 0;
snap_top_off = 0;
snap_bottom_on = 0;
snap_bottom_off = 0;
fuzz_x = 0;
fuzz_y = 0;
fuzz_p = 0;
fuzz_w = 0;
}
ret = i2c_smbus_read_byte_data(ts->client, 0xf0);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_byte_data failed\n");
goto err_detect_failed;
}
printk(KERN_INFO "synaptics_ts_probe: device control %x\n", ret);
ret = i2c_smbus_read_byte_data(ts->client, 0xf1);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_byte_data failed\n");
goto err_detect_failed;
}
printk(KERN_INFO "synaptics_ts_probe: interrupt enable %x\n", ret);
ret = i2c_smbus_write_byte_data(ts->client, 0xf1, 0); /* disable interrupt */
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_write_byte_data failed\n");
goto err_detect_failed;
}
msg[0].addr = ts->client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = buf0;
buf0[0] = 0xe0;
msg[1].addr = ts->client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 8;
msg[1].buf = buf1;
ret = i2c_transfer(ts->client->adapter, msg, 2);
if (ret < 0) {
printk(KERN_ERR "i2c_transfer failed\n");
goto err_detect_failed;
}
printk(KERN_INFO "synaptics_ts_probe: 0xe0: %x %x %x %x %x %x %x %x\n",
buf1[0], buf1[1], buf1[2], buf1[3],
buf1[4], buf1[5], buf1[6], buf1[7]);
ret = i2c_smbus_write_byte_data(ts->client, 0xff, 0x10); /* page select = 0x10 */
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_write_byte_data failed for page select\n");
goto err_detect_failed;
}
ret = i2c_smbus_read_word_data(ts->client, 0x02);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_word_data failed\n");
goto err_detect_failed;
}
ts->has_relative_report = !(ret & 0x100);
printk(KERN_INFO "synaptics_ts_probe: Sensor properties %x\n", ret);
ret = i2c_smbus_read_word_data(ts->client, 0x04);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_word_data failed\n");
goto err_detect_failed;
}
ts->max[0] = max_x = (ret >> 8 & 0xff) | ((ret & 0x1f) << 8);
ret = i2c_smbus_read_word_data(ts->client, 0x06);
if (ret < 0) {
printk(KERN_ERR "i2c_smbus_read_word_data failed\n");
goto err_detect_failed;
}
ts->max[1] = max_y = (ret >> 8 & 0xff) | ((ret & 0x1f) << 8);
if (ts->flags & SYNAPTICS_SWAP_XY)
swap(max_x, max_y);
ret = synaptics_init_panel(ts); /* will also switch back to page 0x04 */
if (ret < 0) {
printk(KERN_ERR "synaptics_init_panel failed\n");
goto err_detect_failed;
}
ts->input_dev = input_allocate_device();
if (ts->input_dev == NULL) {
ret = -ENOMEM;
printk(KERN_ERR "synaptics_ts_probe: Failed to allocate input device\n");
goto err_input_dev_alloc_failed;
}
ts->input_dev->name = "synaptics-rmi-touchscreen";
set_bit(EV_SYN, ts->input_dev->evbit);
set_bit(EV_KEY, ts->input_dev->evbit);
set_bit(BTN_TOUCH, ts->input_dev->keybit);
set_bit(BTN_2, ts->input_dev->keybit);
set_bit(EV_ABS, ts->input_dev->evbit);
inactive_area_left = inactive_area_left * max_x / 0x10000;
inactive_area_right = inactive_area_right * max_x / 0x10000;
inactive_area_top = inactive_area_top * max_y / 0x10000;
inactive_area_bottom = inactive_area_bottom * max_y / 0x10000;
snap_left_on = snap_left_on * max_x / 0x10000;
snap_left_off = snap_left_off * max_x / 0x10000;
snap_right_on = snap_right_on * max_x / 0x10000;
snap_right_off = snap_right_off * max_x / 0x10000;
snap_top_on = snap_top_on * max_y / 0x10000;
snap_top_off = snap_top_off * max_y / 0x10000;
snap_bottom_on = snap_bottom_on * max_y / 0x10000;
snap_bottom_off = snap_bottom_off * max_y / 0x10000;
fuzz_x = fuzz_x * max_x / 0x10000;
fuzz_y = fuzz_y * max_y / 0x10000;
ts->snap_down[!!(ts->flags & SYNAPTICS_SWAP_XY)] = -inactive_area_left;
ts->snap_up[!!(ts->flags & SYNAPTICS_SWAP_XY)] = max_x + inactive_area_right;
ts->snap_down[!(ts->flags & SYNAPTICS_SWAP_XY)] = -inactive_area_top;
ts->snap_up[!(ts->flags & SYNAPTICS_SWAP_XY)] = max_y + inactive_area_bottom;
ts->snap_down_on[!!(ts->flags & SYNAPTICS_SWAP_XY)] = snap_left_on;
ts->snap_down_off[!!(ts->flags & SYNAPTICS_SWAP_XY)] = snap_left_off;
ts->snap_up_on[!!(ts->flags & SYNAPTICS_SWAP_XY)] = max_x - snap_right_on;
ts->snap_up_off[!!(ts->flags & SYNAPTICS_SWAP_XY)] = max_x - snap_right_off;
ts->snap_down_on[!(ts->flags & SYNAPTICS_SWAP_XY)] = snap_top_on;
ts->snap_down_off[!(ts->flags & SYNAPTICS_SWAP_XY)] = snap_top_off;
ts->snap_up_on[!(ts->flags & SYNAPTICS_SWAP_XY)] = max_y - snap_bottom_on;
ts->snap_up_off[!(ts->flags & SYNAPTICS_SWAP_XY)] = max_y - snap_bottom_off;
printk(KERN_INFO "synaptics_ts_probe: max_x %d, max_y %d\n", max_x, max_y);
printk(KERN_INFO "synaptics_ts_probe: inactive_x %d %d, inactive_y %d %d\n",
inactive_area_left, inactive_area_right,
inactive_area_top, inactive_area_bottom);
printk(KERN_INFO "synaptics_ts_probe: snap_x %d-%d %d-%d, snap_y %d-%d %d-%d\n",
snap_left_on, snap_left_off, snap_right_on, snap_right_off,
snap_top_on, snap_top_off, snap_bottom_on, snap_bottom_off);
input_set_abs_params(ts->input_dev, ABS_X, -inactive_area_left, max_x + inactive_area_right, fuzz_x, 0);
input_set_abs_params(ts->input_dev, ABS_Y, -inactive_area_top, max_y + inactive_area_bottom, fuzz_y, 0);
input_set_abs_params(ts->input_dev, ABS_PRESSURE, 0, 255, fuzz_p, 0);
input_set_abs_params(ts->input_dev, ABS_TOOL_WIDTH, 0, 15, fuzz_w, 0);
input_set_abs_params(ts->input_dev, ABS_HAT0X, -inactive_area_left, max_x + inactive_area_right, fuzz_x, 0);
input_set_abs_params(ts->input_dev, ABS_HAT0Y, -inactive_area_top, max_y + inactive_area_bottom, fuzz_y, 0);
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_X, -inactive_area_left, max_x + inactive_area_right, fuzz_x, 0);
input_set_abs_params(ts->input_dev, ABS_MT_POSITION_Y, -inactive_area_top, max_y + inactive_area_bottom, fuzz_y, 0);
input_set_abs_params(ts->input_dev, ABS_MT_TOUCH_MAJOR, 0, 255, fuzz_p, 0);
input_set_abs_params(ts->input_dev, ABS_MT_WIDTH_MAJOR, 0, 15, fuzz_w, 0);
/* ts->input_dev->name = ts->keypad_info->name; */
ret = input_register_device(ts->input_dev);
if (ret) {
printk(KERN_ERR "synaptics_ts_probe: Unable to register %s input device\n", ts->input_dev->name);
goto err_input_register_device_failed;
}
if (client->irq) {
ret = request_irq(client->irq, synaptics_ts_irq_handler, irqflags, client->name, ts);
if (ret == 0) {
ret = i2c_smbus_write_byte_data(ts->client, 0xf1, 0x01); /* enable abs int */
if (ret)
free_irq(client->irq, ts);
}
if (ret == 0)
ts->use_irq = 1;
else
dev_err(&client->dev, "request_irq failed\n");
}
if (!ts->use_irq) {
hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ts->timer.function = synaptics_ts_timer_func;
hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
}
#ifdef CONFIG_HAS_EARLYSUSPEND
ts->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
ts->early_suspend.suspend = synaptics_ts_early_suspend;
ts->early_suspend.resume = synaptics_ts_late_resume;
register_early_suspend(&ts->early_suspend);
#endif
printk(KERN_INFO "synaptics_ts_probe: Start touchscreen %s in %s mode\n", ts->input_dev->name, ts->use_irq ? "interrupt" : "polling");
return 0;
err_input_register_device_failed:
input_free_device(ts->input_dev);
err_input_dev_alloc_failed:
err_detect_failed:
err_power_failed:
kfree(ts);
err_alloc_data_failed:
err_check_functionality_failed:
return ret;
}
static int synaptics_ts_remove(struct i2c_client *client)
{
struct synaptics_ts_data *ts = i2c_get_clientdata(client);
unregister_early_suspend(&ts->early_suspend);
if (ts->use_irq)
free_irq(client->irq, ts);
else
hrtimer_cancel(&ts->timer);
input_unregister_device(ts->input_dev);
kfree(ts);
return 0;
}
static int synaptics_ts_suspend(struct i2c_client *client, pm_message_t mesg)
{
int ret;
struct synaptics_ts_data *ts = i2c_get_clientdata(client);
if (ts->use_irq)
disable_irq(client->irq);
else
hrtimer_cancel(&ts->timer);
ret = cancel_work_sync(&ts->work);
if (ret && ts->use_irq) /* if work was pending disable-count is now 2 */
enable_irq(client->irq);
ret = i2c_smbus_write_byte_data(ts->client, 0xf1, 0); /* disable interrupt */
if (ret < 0)
printk(KERN_ERR "synaptics_ts_suspend: i2c_smbus_write_byte_data failed\n");
ret = i2c_smbus_write_byte_data(client, 0xf0, 0x86); /* deep sleep */
if (ret < 0)
printk(KERN_ERR "synaptics_ts_suspend: i2c_smbus_write_byte_data failed\n");
if (ts->power) {
ret = ts->power(0);
if (ret < 0)
printk(KERN_ERR "synaptics_ts_resume power off failed\n");
}
return 0;
}
static int synaptics_ts_resume(struct i2c_client *client)
{
int ret;
struct synaptics_ts_data *ts = i2c_get_clientdata(client);
if (ts->power) {
ret = ts->power(1);
if (ret < 0)
printk(KERN_ERR "synaptics_ts_resume power on failed\n");
}
synaptics_init_panel(ts);
if (ts->use_irq)
enable_irq(client->irq);
if (!ts->use_irq)
hrtimer_start(&ts->timer, ktime_set(1, 0), HRTIMER_MODE_REL);
else
i2c_smbus_write_byte_data(ts->client, 0xf1, 0x01); /* enable abs int */
return 0;
}
#ifdef CONFIG_HAS_EARLYSUSPEND
static void synaptics_ts_early_suspend(struct early_suspend *h)
{
struct synaptics_ts_data *ts;
ts = container_of(h, struct synaptics_ts_data, early_suspend);
synaptics_ts_suspend(ts->client, PMSG_SUSPEND);
}
static void synaptics_ts_late_resume(struct early_suspend *h)
{
struct synaptics_ts_data *ts;
ts = container_of(h, struct synaptics_ts_data, early_suspend);
synaptics_ts_resume(ts->client);
}
#endif
static const struct i2c_device_id synaptics_ts_id[] = {
{ SYNAPTICS_I2C_RMI_NAME, 0 },
{ }
};
static struct i2c_driver synaptics_ts_driver = {
.probe = synaptics_ts_probe,
.remove = synaptics_ts_remove,
#ifndef CONFIG_HAS_EARLYSUSPEND
.suspend = synaptics_ts_suspend,
.resume = synaptics_ts_resume,
#endif
.id_table = synaptics_ts_id,
.driver = {
.name = SYNAPTICS_I2C_RMI_NAME,
},
};
static int __devinit synaptics_ts_init(void)
{
synaptics_wq = create_singlethread_workqueue("synaptics_wq");
if (!synaptics_wq)
return -ENOMEM;
return i2c_add_driver(&synaptics_ts_driver);
}
static void __exit synaptics_ts_exit(void)
{
i2c_del_driver(&synaptics_ts_driver);
if (synaptics_wq)
destroy_workqueue(synaptics_wq);
}
module_init(synaptics_ts_init);
module_exit(synaptics_ts_exit);
MODULE_DESCRIPTION("Synaptics Touchscreen Driver");
MODULE_LICENSE("GPL");