blob: 1a8b6717f9244028e9f6e86ad5aa95dd2a845174 [file] [log] [blame]
/*
* Broadcom SPI over PCI-SPI Host Controller, low-level hardware driver
*
* Copyright (C) 1999-2010, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: bcmpcispi.c,v 1.22.2.4.4.5.6.1 2010/08/13 00:26:05 Exp $
*/
#include <typedefs.h>
#include <bcmutils.h>
#include <sdio.h> /* SDIO Specs */
#include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */
#include <sdiovar.h> /* to get msglevel bit values */
#include <pcicfg.h>
#include <bcmsdspi.h>
#include <bcmspi.h>
#include <bcmpcispi.h> /* BRCM PCI-SPI Host Controller Register definitions */
/* ndis_osl.h needs to do a runtime check of the osh to map
* R_REG/W_REG to bus specific access similar to linux_osl.h.
* Until then...
*/
/* linux */
#define SPIPCI_RREG R_REG
#define SPIPCI_WREG W_REG
#define SPIPCI_ANDREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) & (v)))
#define SPIPCI_ORREG(osh, r, v) SPIPCI_WREG(osh, (r), (SPIPCI_RREG(osh, r) | (v)))
int bcmpcispi_dump = 0; /* Set to dump complete trace of all SPI bus transactions */
typedef struct spih_info_ {
uint bar0; /* BAR0 of PCI Card */
uint bar1; /* BAR1 of PCI Card */
osl_t *osh; /* osh handle */
spih_pciregs_t *pciregs; /* PCI Core Registers */
spih_regs_t *regs; /* SPI Controller Registers */
uint8 rev; /* PCI Card Revision ID */
} spih_info_t;
/* Attach to PCI-SPI Host Controller Hardware */
bool
spi_hw_attach(sdioh_info_t *sd)
{
osl_t *osh;
spih_info_t *si;
sd_trace(("%s: enter\n", __FUNCTION__));
osh = sd->osh;
if ((si = (spih_info_t *)MALLOC(osh, sizeof(spih_info_t))) == NULL) {
sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
return FALSE;
}
bzero(si, sizeof(spih_info_t));
sd->controller = si;
si->osh = sd->osh;
si->rev = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_REV, 4) & 0xFF;
if (si->rev < 3) {
sd_err(("Host controller %d not supported, please upgrade to rev >= 3\n", si->rev));
MFREE(osh, si, sizeof(spih_info_t));
return (FALSE);
}
sd_err(("Attaching to Generic PCI SPI Host Controller Rev %d\n", si->rev));
/* FPGA Revision < 3 not supported by driver anymore. */
ASSERT(si->rev >= 3);
si->bar0 = sd->bar0;
/* Rev < 10 PciSpiHost has 2 BARs:
* BAR0 = PCI Core Registers
* BAR1 = PciSpiHost Registers (all other cores on backplane)
*
* Rev 10 and up use a different PCI core which only has a single
* BAR0 which contains the PciSpiHost Registers.
*/
if (si->rev < 10) {
si->pciregs = (spih_pciregs_t *)spi_reg_map(osh,
(uintptr)si->bar0,
sizeof(spih_pciregs_t));
sd_err(("Mapped PCI Core regs to BAR0 at %p\n", si->pciregs));
si->bar1 = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR1, 4);
si->regs = (spih_regs_t *)spi_reg_map(osh,
(uintptr)si->bar1,
sizeof(spih_regs_t));
sd_err(("Mapped SPI Controller regs to BAR1 at %p\n", si->regs));
} else {
si->regs = (spih_regs_t *)spi_reg_map(osh,
(uintptr)si->bar0,
sizeof(spih_regs_t));
sd_err(("Mapped SPI Controller regs to BAR0 at %p\n", si->regs));
si->pciregs = NULL;
}
/* Enable SPI Controller, 16.67MHz SPI Clock */
SPIPCI_WREG(osh, &si->regs->spih_ctrl, 0x000000d1);
/* Set extended feature register to defaults */
SPIPCI_WREG(osh, &si->regs->spih_ext, 0x00000000);
/* Set GPIO CS# High (de-asserted) */
SPIPCI_WREG(osh, &si->regs->spih_gpio_data, SPIH_CS);
/* set GPIO[0] to output for CS# */
/* set GPIO[1] to output for power control */
/* set GPIO[2] to input for card detect */
SPIPCI_WREG(osh, &si->regs->spih_gpio_ctrl, (SPIH_CS | SPIH_SLOT_POWER));
/* Clear out the Read FIFO in case there is any stuff left in there from a previous run. */
while ((SPIPCI_RREG(osh, &si->regs->spih_stat) & SPIH_RFEMPTY) == 0) {
SPIPCI_RREG(osh, &si->regs->spih_data);
}
/* Wait for power to stabilize to the SDIO Card (100msec was insufficient) */
OSL_DELAY(250000);
/* Check card detect on FPGA Revision >= 4 */
if (si->rev >= 4) {
if (SPIPCI_RREG(osh, &si->regs->spih_gpio_data) & SPIH_CARD_DETECT) {
sd_err(("%s: no card detected in SD slot\n", __FUNCTION__));
spi_reg_unmap(osh, (uintptr)si->regs, sizeof(spih_regs_t));
if (si->pciregs) {
spi_reg_unmap(osh, (uintptr)si->pciregs, sizeof(spih_pciregs_t));
}
MFREE(osh, si, sizeof(spih_info_t));
return FALSE;
}
}
/* Interrupts are level sensitive */
SPIPCI_WREG(osh, &si->regs->spih_int_edge, 0x80000000);
/* Interrupts are active low. */
SPIPCI_WREG(osh, &si->regs->spih_int_pol, 0x40000004);
/* Enable interrupts through PCI Core. */
if (si->pciregs) {
SPIPCI_WREG(osh, &si->pciregs->ICR, PCI_INT_PROP_EN);
}
sd_trace(("%s: exit\n", __FUNCTION__));
return TRUE;
}
/* Detach and return PCI-SPI Hardware to unconfigured state */
bool
spi_hw_detach(sdioh_info_t *sd)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
spih_pciregs_t *pciregs = si->pciregs;
sd_trace(("%s: enter\n", __FUNCTION__));
SPIPCI_WREG(osh, &regs->spih_ctrl, 0x00000010);
SPIPCI_WREG(osh, &regs->spih_gpio_ctrl, 0x00000000); /* Disable GPIO for CS# */
SPIPCI_WREG(osh, &regs->spih_int_mask, 0x00000000); /* Clear Intmask */
SPIPCI_WREG(osh, &regs->spih_hex_disp, 0x0000DEAF);
SPIPCI_WREG(osh, &regs->spih_int_edge, 0x00000000);
SPIPCI_WREG(osh, &regs->spih_int_pol, 0x00000000);
SPIPCI_WREG(osh, &regs->spih_hex_disp, 0x0000DEAD);
/* Disable interrupts through PCI Core. */
if (si->pciregs) {
SPIPCI_WREG(osh, &pciregs->ICR, 0x00000000);
spi_reg_unmap(osh, (uintptr)pciregs, sizeof(spih_pciregs_t));
}
spi_reg_unmap(osh, (uintptr)regs, sizeof(spih_regs_t));
MFREE(osh, si, sizeof(spih_info_t));
sd->controller = NULL;
sd_trace(("%s: exit\n", __FUNCTION__));
return TRUE;
}
/* Switch between internal (PCI) and external clock oscillator */
static bool
sdspi_switch_clock(sdioh_info_t *sd, bool ext_clk)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
/* Switch to desired clock, and reset the PLL. */
SPIPCI_WREG(osh, &regs->spih_pll_ctrl, ext_clk ? SPIH_EXT_CLK : 0);
SPINWAIT(((SPIPCI_RREG(osh, &regs->spih_pll_status) & SPIH_PLL_LOCKED)
!= SPIH_PLL_LOCKED), 1000);
if ((SPIPCI_RREG(osh, &regs->spih_pll_status) & SPIH_PLL_LOCKED) != SPIH_PLL_LOCKED) {
sd_err(("%s: timeout waiting for PLL to lock\n", __FUNCTION__));
return (FALSE);
}
return (TRUE);
}
/* Configure PCI-SPI Host Controller's SPI Clock rate as a divisor into the
* base clock rate. The base clock is either the PCI Clock (33MHz) or the
* external clock oscillator at U17 on the PciSpiHost.
*/
bool
spi_start_clock(sdioh_info_t *sd, uint16 div)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
uint32 t, espr, disp;
uint32 disp_xtal_freq;
bool ext_clock = FALSE;
char disp_string[5];
if (div > 2048) {
sd_err(("%s: divisor %d too large; using max of 2048\n", __FUNCTION__, div));
div = 2048;
} else if (div & (div - 1)) { /* Not a power of 2? */
/* Round up to a power of 2 */
while ((div + 1) & div)
div |= div >> 1;
div++;
}
/* For FPGA Rev >= 5, the use of an external clock oscillator is supported.
* If the oscillator is populated, use it to provide the SPI base clock,
* otherwise, default to the PCI clock as the SPI base clock.
*/
if (si->rev >= 5) {
uint32 clk_tick;
/* Enable the External Clock Oscillator as PLL clock source. */
if (!sdspi_switch_clock(sd, TRUE)) {
sd_err(("%s: error switching to external clock\n", __FUNCTION__));
}
/* Check to make sure the external clock is running. If not, then it
* is not populated on the card, so we will default to the PCI clock.
*/
clk_tick = SPIPCI_RREG(osh, &regs->spih_clk_count);
if (clk_tick == SPIPCI_RREG(osh, &regs->spih_clk_count)) {
/* Switch back to the PCI clock as the clock source. */
if (!sdspi_switch_clock(sd, FALSE)) {
sd_err(("%s: error switching to external clock\n", __FUNCTION__));
}
} else {
ext_clock = TRUE;
}
}
/* Hack to allow hot-swapping oscillators:
* 1. Force PCI clock as clock source, using sd_divisor of 0.
* 2. Swap oscillator
* 3. Set desired sd_divisor (will switch to external oscillator as clock source.
*/
if (div == 0) {
ext_clock = FALSE;
div = 2;
/* Select PCI clock as the clock source. */
if (!sdspi_switch_clock(sd, FALSE)) {
sd_err(("%s: error switching to external clock\n", __FUNCTION__));
}
sd_err(("%s: Ok to hot-swap oscillators.\n", __FUNCTION__));
}
/* If using the external oscillator, read the clock frequency from the controller
* The value read is in units of 10000Hz, and it's not a nice round number because
* it is calculated by the FPGA. So to make up for that, we round it off.
*/
if (ext_clock == TRUE) {
uint32 xtal_freq;
OSL_DELAY(1000);
xtal_freq = SPIPCI_RREG(osh, &regs->spih_xtal_freq) * 10000;
sd_info(("%s: Oscillator is %dHz\n", __FUNCTION__, xtal_freq));
disp_xtal_freq = xtal_freq / 10000;
/* Round it off to a nice number. */
if ((disp_xtal_freq % 100) > 50) {
disp_xtal_freq += 100;
}
disp_xtal_freq = (disp_xtal_freq / 100) * 100;
} else {
sd_err(("%s: no external oscillator installed, using PCI clock.\n", __FUNCTION__));
disp_xtal_freq = 3333;
}
/* Convert the SPI Clock frequency to BCD format. */
sprintf(disp_string, "%04d", disp_xtal_freq / div);
disp = (disp_string[0] - '0') << 12;
disp |= (disp_string[1] - '0') << 8;
disp |= (disp_string[2] - '0') << 4;
disp |= (disp_string[3] - '0');
/* Select the correct ESPR register value based on the divisor. */
switch (div) {
case 1: espr = 0x0; break;
case 2: espr = 0x1; break;
case 4: espr = 0x2; break;
case 8: espr = 0x5; break;
case 16: espr = 0x3; break;
case 32: espr = 0x4; break;
case 64: espr = 0x6; break;
case 128: espr = 0x7; break;
case 256: espr = 0x8; break;
case 512: espr = 0x9; break;
case 1024: espr = 0xa; break;
case 2048: espr = 0xb; break;
default: espr = 0x0; ASSERT(0); break;
}
t = SPIPCI_RREG(osh, &regs->spih_ctrl);
t &= ~3;
t |= espr & 3;
SPIPCI_WREG(osh, &regs->spih_ctrl, t);
t = SPIPCI_RREG(osh, &regs->spih_ext);
t &= ~3;
t |= (espr >> 2) & 3;
SPIPCI_WREG(osh, &regs->spih_ext, t);
SPIPCI_WREG(osh, &regs->spih_hex_disp, disp);
/* For Rev 8, writing to the PLL_CTRL register resets
* the PLL, and it can re-acquire in 200uS. For
* Rev 7 and older, we use a software delay to allow
* the PLL to re-acquire, which takes more than 2mS.
*/
if (si->rev < 8) {
/* Wait for clock to settle. */
OSL_DELAY(5000);
}
sd_info(("%s: SPI_CTRL=0x%08x SPI_EXT=0x%08x\n",
__FUNCTION__,
SPIPCI_RREG(osh, &regs->spih_ctrl),
SPIPCI_RREG(osh, &regs->spih_ext)));
return TRUE;
}
/* Configure PCI-SPI Host Controller High-Speed Clocking mode setting */
bool
spi_controller_highspeed_mode(sdioh_info_t *sd, bool hsmode)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
if (si->rev >= 10) {
if (hsmode) {
SPIPCI_ORREG(osh, &regs->spih_ext, 0x10);
} else {
SPIPCI_ANDREG(osh, &regs->spih_ext, ~0x10);
}
}
return TRUE;
}
/* Disable device interrupt */
void
spi_devintr_off(sdioh_info_t *sd)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints));
if (sd->use_client_ints) {
sd->intmask &= ~SPIH_DEV_INTR;
SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask); /* Clear Intmask */
}
}
/* Enable device interrupt */
void
spi_devintr_on(sdioh_info_t *sd)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
ASSERT(sd->lockcount == 0);
sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints));
if (sd->use_client_ints) {
if (SPIPCI_RREG(osh, &regs->spih_ctrl) & 0x02) {
/* Ack in case one was pending but is no longer... */
SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_DEV_INTR);
}
sd->intmask |= SPIH_DEV_INTR;
/* Set device intr in Intmask */
SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);
}
}
/* Check to see if an interrupt belongs to the PCI-SPI Host or a SPI Device */
bool
spi_check_client_intr(sdioh_info_t *sd, int *is_dev_intr)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
bool ours = FALSE;
uint32 raw_int, cur_int;
ASSERT(sd);
if (is_dev_intr)
*is_dev_intr = FALSE;
raw_int = SPIPCI_RREG(osh, &regs->spih_int_status);
cur_int = raw_int & sd->intmask;
if (cur_int & SPIH_DEV_INTR) {
if (sd->client_intr_enabled && sd->use_client_ints) {
sd->intrcount++;
ASSERT(sd->intr_handler);
ASSERT(sd->intr_handler_arg);
(sd->intr_handler)(sd->intr_handler_arg);
if (is_dev_intr)
*is_dev_intr = TRUE;
} else {
sd_trace(("%s: Not ready for intr: enabled %d, handler 0x%p\n",
__FUNCTION__, sd->client_intr_enabled, sd->intr_handler));
}
SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_DEV_INTR);
SPIPCI_RREG(osh, &regs->spih_int_status);
ours = TRUE;
} else if (cur_int & SPIH_CTLR_INTR) {
/* Interrupt is from SPI FIFO... just clear and ack it... */
sd_trace(("%s: SPI CTLR interrupt: raw_int 0x%08x cur_int 0x%08x\n",
__FUNCTION__, raw_int, cur_int));
/* Clear the interrupt in the SPI_STAT register */
SPIPCI_WREG(osh, &regs->spih_stat, 0x00000080);
/* Ack the interrupt in the interrupt controller */
SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_CTLR_INTR);
SPIPCI_RREG(osh, &regs->spih_int_status);
ours = TRUE;
} else if (cur_int & SPIH_WFIFO_INTR) {
sd_trace(("%s: SPI WR FIFO Empty interrupt: raw_int 0x%08x cur_int 0x%08x\n",
__FUNCTION__, raw_int, cur_int));
/* Disable the FIFO Empty Interrupt */
sd->intmask &= ~SPIH_WFIFO_INTR;
SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);
sd->local_intrcount++;
sd->got_hcint = TRUE;
ours = TRUE;
} else {
/* Not an error: can share interrupts... */
sd_trace(("%s: Not my interrupt: raw_int 0x%08x cur_int 0x%08x\n",
__FUNCTION__, raw_int, cur_int));
ours = FALSE;
}
return ours;
}
static void
hexdump(char *pfx, unsigned char *msg, int msglen)
{
int i, col;
char buf[80];
ASSERT(strlen(pfx) + 49 <= sizeof(buf));
col = 0;
for (i = 0; i < msglen; i++, col++) {
if (col % 16 == 0)
strcpy(buf, pfx);
sprintf(buf + strlen(buf), "%02x", msg[i]);
if ((col + 1) % 16 == 0)
printf("%s\n", buf);
else
sprintf(buf + strlen(buf), " ");
}
if (col % 16 != 0)
printf("%s\n", buf);
}
/* Send/Receive an SPI Packet */
void
spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
uint32 count;
uint32 spi_data_out;
uint32 spi_data_in;
bool yield;
sd_trace(("%s: enter\n", __FUNCTION__));
if (bcmpcispi_dump) {
printf("SENDRECV(len=%d)\n", msglen);
hexdump(" OUT: ", msg_out, msglen);
}
#ifdef BCMSDYIELD
/* Only yield the CPU and wait for interrupt on Rev 8 and newer FPGA images. */
yield = ((msglen > 500) && (si->rev >= 8));
#else
yield = FALSE;
#endif /* BCMSDYIELD */
ASSERT(msglen % 4 == 0);
SPIPCI_ANDREG(osh, &regs->spih_gpio_data, ~SPIH_CS); /* Set GPIO CS# Low (asserted) */
for (count = 0; count < (uint32)msglen/4; count++) {
spi_data_out = ((uint32)((uint32 *)msg_out)[count]);
SPIPCI_WREG(osh, &regs->spih_data, spi_data_out);
}
#ifdef BCMSDYIELD
if (yield) {
/* Ack the interrupt in the interrupt controller */
SPIPCI_WREG(osh, &regs->spih_int_status, SPIH_WFIFO_INTR);
SPIPCI_RREG(osh, &regs->spih_int_status);
/* Enable the FIFO Empty Interrupt */
sd->intmask |= SPIH_WFIFO_INTR;
sd->got_hcint = FALSE;
SPIPCI_WREG(osh, &regs->spih_int_mask, sd->intmask);
}
#endif /* BCMSDYIELD */
/* Wait for write fifo to empty... */
SPIPCI_ANDREG(osh, &regs->spih_gpio_data, ~0x00000020); /* Set GPIO 5 Low */
if (yield) {
ASSERT((SPIPCI_RREG(sd->osh, &regs->spih_stat) & SPIH_WFEMPTY) == 0);
}
spi_waitbits(sd, yield);
SPIPCI_ORREG(osh, &regs->spih_gpio_data, 0x00000020); /* Set GPIO 5 High (de-asserted) */
for (count = 0; count < (uint32)msglen/4; count++) {
spi_data_in = SPIPCI_RREG(osh, &regs->spih_data);
((uint32 *)msg_in)[count] = spi_data_in;
}
/* Set GPIO CS# High (de-asserted) */
SPIPCI_ORREG(osh, &regs->spih_gpio_data, SPIH_CS);
if (bcmpcispi_dump) {
hexdump(" IN : ", msg_in, msglen);
}
}
void
spi_spinbits(sdioh_info_t *sd)
{
spih_info_t *si = (spih_info_t *)sd->controller;
osl_t *osh = si->osh;
spih_regs_t *regs = si->regs;
uint spin_count; /* Spin loop bound check */
spin_count = 0;
while ((SPIPCI_RREG(sd->osh, &regs->spih_stat) & SPIH_WFEMPTY) == 0) {
if (spin_count > SPI_SPIN_BOUND) {
sd_err(("%s: SPIH_WFEMPTY spin bits out of bound %u times \n",
__FUNCTION__, spin_count));
ASSERT(FALSE);
}
spin_count++;
}
/* Wait for SPI Transfer state machine to return to IDLE state.
* The state bits are only implemented in Rev >= 5 FPGA. These
* bits are hardwired to 00 for Rev < 5, so this check doesn't cause
* any problems.
*/
spin_count = 0;
while ((SPIPCI_RREG(osh, &regs->spih_stat) & SPIH_STATE_MASK) != 0) {
if (spin_count > SPI_SPIN_BOUND) {
sd_err(("%s: SPIH_STATE_MASK spin bits out of bound %u times \n",
__FUNCTION__, spin_count));
ASSERT(FALSE);
}
spin_count++;
}
}