blob: a78c8cb5cdea36e990ef9f974b89c11b7316c8a5 [file] [log] [blame] [edit]
/*
* Copyright (C) 2008, 2009 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Artem Bityutskiy
*
* MTD library.
*/
#ifndef __LIBMTD_H__
#define __LIBMTD_H__
#ifdef __cplusplus
extern "C" {
#endif
/* Maximum MTD device name length */
#define MTD_NAME_MAX 127
/* Maximum MTD device type string length */
#define MTD_TYPE_MAX 64
/* MTD library descriptor */
typedef void * libmtd_t;
/* Forward decls */
struct region_info_user;
/**
* @mtd_dev_cnt: count of MTD devices in system
* @lowest_mtd_num: lowest MTD device number in system
* @highest_mtd_num: highest MTD device number in system
* @sysfs_supported: non-zero if sysfs is supported by MTD
*/
struct mtd_info
{
int mtd_dev_cnt;
int lowest_mtd_num;
int highest_mtd_num;
unsigned int sysfs_supported:1;
};
/**
* struct mtd_dev_info - information about an MTD device.
* @mtd_num: MTD device number
* @major: major number of corresponding character device
* @minor: minor number of corresponding character device
* @type: flash type (constants like %MTD_NANDFLASH defined in mtd-abi.h)
* @type_str: static R/O flash type string
* @name: device name
* @size: device size in bytes
* @eb_cnt: count of eraseblocks
* @eb_size: eraseblock size
* @min_io_size: minimum input/output unit size
* @subpage_size: sub-page size
* @oob_size: OOB size (zero if the device does not have OOB area)
* @region_cnt: count of additional erase regions
* @writable: zero if the device is read-only
* @bb_allowed: non-zero if the MTD device may have bad eraseblocks
*/
struct mtd_dev_info
{
int mtd_num;
int major;
int minor;
int type;
const char type_str[MTD_TYPE_MAX + 1];
const char name[MTD_NAME_MAX + 1];
long long size;
int eb_cnt;
int eb_size;
int min_io_size;
int subpage_size;
int oob_size;
int region_cnt;
unsigned int writable:1;
unsigned int bb_allowed:1;
};
/**
* libmtd_open - open MTD library.
*
* This function initializes and opens the MTD library and returns MTD library
* descriptor in case of success and %NULL in case of failure. In case of
* failure, errno contains zero if MTD is not present in the system, or
* contains the error code if a real error happened.
*/
libmtd_t libmtd_open(void);
/**
* libmtd_close - close MTD library.
* @desc: MTD library descriptor
*/
void libmtd_close(libmtd_t desc);
/**
* mtd_dev_present - check whether a MTD device is present.
* @desc: MTD library descriptor
* @mtd_num: MTD device number to check
*
* This function returns %1 if MTD device is present and %0 if not.
*/
int mtd_dev_present(libmtd_t desc, int mtd_num);
/**
* mtd_get_info - get general MTD information.
* @desc: MTD library descriptor
* @info: the MTD device information is returned here
*
* This function fills the passed @info object with general MTD information and
* returns %0 in case of success and %-1 in case of failure. If MTD subsystem is
* not present in the system, errno is set to @ENODEV.
*/
int mtd_get_info(libmtd_t desc, struct mtd_info *info);
/**
* mtd_get_dev_info - get information about an MTD device.
* @desc: MTD library descriptor
* @node: name of the MTD device node
* @mtd: the MTD device information is returned here
*
* This function gets information about MTD device defined by the @node device
* node file and saves this information in the @mtd object. Returns %0 in case
* of success and %-1 in case of failure. If MTD subsystem is not present in the
* system, or the MTD device does not exist, errno is set to @ENODEV.
*/
int mtd_get_dev_info(libmtd_t desc, const char *node, struct mtd_dev_info *mtd);
/**
* mtd_get_dev_info1 - get information about an MTD device.
* @desc: MTD library descriptor
* @mtd_num: MTD device number to fetch information about
* @mtd: the MTD device information is returned here
*
* This function is identical to 'mtd_get_dev_info()' except that it accepts
* MTD device number, not MTD character device.
*/
int mtd_get_dev_info1(libmtd_t desc, int mtd_num, struct mtd_dev_info *mtd);
/**
* mtd_lock - lock eraseblocks.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to lock
*
* This function locks eraseblock @eb. Returns %0 in case of success and %-1
* in case of failure.
*/
int mtd_lock(const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_unlock - unlock eraseblocks.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to lock
*
* This function unlocks eraseblock @eb. Returns %0 in case of success and %-1
* in case of failure.
*/
int mtd_unlock(const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_erase - erase an eraseblock.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to erase
*
* This function erases eraseblock @eb of MTD device described by @fd. Returns
* %0 in case of success and %-1 in case of failure.
*/
int mtd_erase(libmtd_t desc, const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_regioninfo - get information about an erase region.
* @fd: MTD device node file descriptor
* @regidx: index of region to look up
* @reginfo: the region information is returned here
*
* This function gets information about an erase region defined by the
* @regidx index and saves this information in the @reginfo object.
* Returns %0 in case of success and %-1 in case of failure. If the
* @regidx is not valid or unavailable, errno is set to @ENODEV.
*/
int mtd_regioninfo(int fd, int regidx, struct region_info_user *reginfo);
/**
* mtd_is_locked - see if the specified eraseblock is locked.
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to check
*
* This function checks to see if eraseblock @eb of MTD device described
* by @fd is locked. Returns %0 if it is unlocked, %1 if it is locked, and
* %-1 in case of failure. If the ioctl is not supported (support was added in
* Linux kernel 2.6.36) or this particular device does not support it, errno is
* set to @ENOTSUPP.
*/
int mtd_is_locked(const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_torture - torture an eraseblock.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to torture
*
* This function tortures eraseblock @eb. Returns %0 in case of success and %-1
* in case of failure.
*/
int mtd_torture(libmtd_t desc, const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_is_bad - check if eraseblock is bad.
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to check
*
* This function checks if eraseblock @eb is bad. Returns %0 if not, %1 if yes,
* and %-1 in case of failure.
*/
int mtd_is_bad(const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_mark_bad - mark an eraseblock as bad.
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to mark as bad
*
* This function marks eraseblock @eb as bad. Returns %0 in case of success and
* %-1 in case of failure.
*/
int mtd_mark_bad(const struct mtd_dev_info *mtd, int fd, int eb);
/**
* mtd_read - read data from an MTD device.
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to read from
* @offs: offset withing the eraseblock to read from
* @buf: buffer to read data to
* @len: how many bytes to read
*
* This function reads @len bytes of data from eraseblock @eb and offset @offs
* of the MTD device defined by @mtd and stores the read data at buffer @buf.
* Returns %0 in case of success and %-1 in case of failure.
*/
int mtd_read(const struct mtd_dev_info *mtd, int fd, int eb, int offs,
void *buf, int len);
/**
* mtd_write - write data to an MTD device.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to write to
* @offs: offset withing the eraseblock to write to
* @data: data buffer to write
* @len: how many data bytes to write
* @oob: OOB buffer to write
* @ooblen: how many OOB bytes to write
* @mode: write mode (e.g., %MTD_OOB_PLACE, %MTD_OOB_RAW)
*
* This function writes @len bytes of data to eraseblock @eb and offset @offs
* of the MTD device defined by @mtd. Returns %0 in case of success and %-1 in
* case of failure.
*
* Can only write to a single page at a time if writing to OOB.
*/
int mtd_write(libmtd_t desc, const struct mtd_dev_info *mtd, int fd, int eb,
int offs, void *data, int len, void *oob, int ooblen,
uint8_t mode);
/**
* mtd_read_oob - read out-of-band area.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @start: page-aligned start address
* @length: number of OOB bytes to read
* @data: read buffer
*
* This function reads @length OOB bytes starting from address @start on
* MTD device described by @fd. The address is specified as page byte offset
* from the beginning of the MTD device. This function returns %0 in case of
* success and %-1 in case of failure.
*/
int mtd_read_oob(libmtd_t desc, const struct mtd_dev_info *mtd, int fd,
uint64_t start, uint64_t length, void *data);
/**
* mtd_write_oob - write out-of-band area.
* @desc: MTD library descriptor
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @start: page-aligned start address
* @length: number of OOB bytes to write
* @data: write buffer
*
* This function writes @length OOB bytes starting from address @start on
* MTD device described by @fd. The address is specified as page byte offset
* from the beginning of the MTD device. Returns %0 in case of success and %-1
* in case of failure.
*/
int mtd_write_oob(libmtd_t desc, const struct mtd_dev_info *mtd, int fd,
uint64_t start, uint64_t length, void *data);
/**
* mtd_write_img - write a file to MTD device.
* @mtd: MTD device description object
* @fd: MTD device node file descriptor
* @eb: eraseblock to write to
* @offs: offset withing the eraseblock to write to
* @img_name: the file to write
*
* This function writes an image @img_name the MTD device defined by @mtd. @eb
* and @offs are the starting eraseblock and offset on the MTD device. Returns
* %0 in case of success and %-1 in case of failure.
*/
int mtd_write_img(const struct mtd_dev_info *mtd, int fd, int eb, int offs,
const char *img_name);
/**
* mtd_probe_node - test MTD node.
* @desc: MTD library descriptor
* @node: the node to test
*
* This function tests whether @node is an MTD device node and returns %1 if it
* is, and %-1 if it is not (errno is %ENODEV in this case) or if an error
* occurred.
*/
int mtd_probe_node(libmtd_t desc, const char *node);
#ifdef __cplusplus
}
#endif
#endif /* __LIBMTD_H__ */