| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SELFADJOINTMATRIX_H |
| #define EIGEN_SELFADJOINTMATRIX_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class SelfAdjointView |
| * \ingroup Core_Module |
| * |
| * |
| * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix |
| * |
| * \tparam MatrixType the type of the dense matrix storing the coefficients |
| * \tparam TriangularPart can be either \c #Lower or \c #Upper |
| * |
| * This class is an expression of a sefladjoint matrix from a triangular part of a matrix |
| * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() |
| * and most of the time this is the only way that it is used. |
| * |
| * \sa class TriangularBase, MatrixBase::selfadjointView() |
| */ |
| |
| namespace internal { |
| template<typename MatrixType, unsigned int UpLo> |
| struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType> |
| { |
| typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested; |
| typedef remove_all_t<MatrixTypeNested> MatrixTypeNestedCleaned; |
| typedef MatrixType ExpressionType; |
| typedef typename MatrixType::PlainObject FullMatrixType; |
| enum { |
| Mode = UpLo | SelfAdjoint, |
| FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, |
| Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit) |
| & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved |
| }; |
| }; |
| } |
| |
| |
| template<typename MatrixType_, unsigned int UpLo> class SelfAdjointView |
| : public TriangularBase<SelfAdjointView<MatrixType_, UpLo> > |
| { |
| public: |
| EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY) |
| |
| typedef MatrixType_ MatrixType; |
| typedef TriangularBase<SelfAdjointView> Base; |
| typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested; |
| typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned; |
| typedef MatrixTypeNestedCleaned NestedExpression; |
| |
| /** \brief The type of coefficients in this matrix */ |
| typedef typename internal::traits<SelfAdjointView>::Scalar Scalar; |
| typedef typename MatrixType::StorageIndex StorageIndex; |
| typedef internal::remove_all_t<typename MatrixType::ConjugateReturnType> MatrixConjugateReturnType; |
| typedef SelfAdjointView<std::add_const_t<MatrixType>, UpLo> ConstSelfAdjointView; |
| |
| enum { |
| Mode = internal::traits<SelfAdjointView>::Mode, |
| Flags = internal::traits<SelfAdjointView>::Flags, |
| TransposeMode = ((int(Mode) & int(Upper)) ? Lower : 0) | ((int(Mode) & int(Lower)) ? Upper : 0) |
| }; |
| typedef typename MatrixType::PlainObject PlainObject; |
| |
| EIGEN_DEVICE_FUNC |
| explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix) { } |
| |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index outerStride() const EIGEN_NOEXCEPT { return m_matrix.outerStride(); } |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR |
| inline Index innerStride() const EIGEN_NOEXCEPT { return m_matrix.innerStride(); } |
| |
| /** \sa MatrixBase::coeff() |
| * \warning the coordinates must fit into the referenced triangular part |
| */ |
| EIGEN_DEVICE_FUNC |
| inline Scalar coeff(Index row, Index col) const |
| { |
| Base::check_coordinates_internal(row, col); |
| return m_matrix.coeff(row, col); |
| } |
| |
| /** \sa MatrixBase::coeffRef() |
| * \warning the coordinates must fit into the referenced triangular part |
| */ |
| EIGEN_DEVICE_FUNC |
| inline Scalar& coeffRef(Index row, Index col) |
| { |
| EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView); |
| Base::check_coordinates_internal(row, col); |
| return m_matrix.coeffRef(row, col); |
| } |
| |
| /** \internal */ |
| EIGEN_DEVICE_FUNC |
| const MatrixTypeNestedCleaned& _expression() const { return m_matrix; } |
| |
| EIGEN_DEVICE_FUNC |
| const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; } |
| EIGEN_DEVICE_FUNC |
| MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; } |
| |
| /** Efficient triangular matrix times vector/matrix product */ |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| const Product<SelfAdjointView,OtherDerived> |
| operator*(const MatrixBase<OtherDerived>& rhs) const |
| { |
| return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived()); |
| } |
| |
| /** Efficient vector/matrix times triangular matrix product */ |
| template<typename OtherDerived> friend |
| EIGEN_DEVICE_FUNC |
| const Product<OtherDerived,SelfAdjointView> |
| operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs) |
| { |
| return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs); |
| } |
| |
| friend EIGEN_DEVICE_FUNC |
| const SelfAdjointView<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,MatrixType,product),UpLo> |
| operator*(const Scalar& s, const SelfAdjointView& mat) |
| { |
| return (s*mat.nestedExpression()).template selfadjointView<UpLo>(); |
| } |
| |
| /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this: |
| * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$ |
| * \returns a reference to \c *this |
| * |
| * The vectors \a u and \c v \b must be column vectors, however they can be |
| * a adjoint expression without any overhead. Only the meaningful triangular |
| * part of the matrix is updated, the rest is left unchanged. |
| * |
| * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar) |
| */ |
| template<typename DerivedU, typename DerivedV> |
| EIGEN_DEVICE_FUNC |
| SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1)); |
| |
| /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: |
| * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. |
| * |
| * \returns a reference to \c *this |
| * |
| * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply |
| * call this function with u.adjoint(). |
| * |
| * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar) |
| */ |
| template<typename DerivedU> |
| EIGEN_DEVICE_FUNC |
| SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); |
| |
| /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part |
| * |
| * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, |
| * \c #Lower, \c #StrictlyLower, \c #UnitLower. |
| * |
| * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression, |
| * otherwise, the nested expression is first transposed, thus returning a \c TriangularView<Transpose<MatrixType>> object. |
| * |
| * \sa MatrixBase::triangularView(), class TriangularView |
| */ |
| template<unsigned int TriMode> |
| EIGEN_DEVICE_FUNC |
| std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), |
| TriangularView<MatrixType,TriMode>, |
| TriangularView<typename MatrixType::AdjointReturnType,TriMode> > |
| triangularView() const |
| { |
| std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType> tmp1(m_matrix); |
| std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType> tmp2(tmp1); |
| return std::conditional_t<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), |
| TriangularView<MatrixType,TriMode>, |
| TriangularView<typename MatrixType::AdjointReturnType,TriMode> >(tmp2); |
| } |
| |
| typedef SelfAdjointView<const MatrixConjugateReturnType,UpLo> ConjugateReturnType; |
| /** \sa MatrixBase::conjugate() const */ |
| EIGEN_DEVICE_FUNC |
| inline const ConjugateReturnType conjugate() const |
| { return ConjugateReturnType(m_matrix.conjugate()); } |
| |
| /** \returns an expression of the complex conjugate of \c *this if Cond==true, |
| * returns \c *this otherwise. |
| */ |
| template<bool Cond> |
| EIGEN_DEVICE_FUNC |
| inline std::conditional_t<Cond,ConjugateReturnType,ConstSelfAdjointView> |
| conjugateIf() const |
| { |
| typedef std::conditional_t<Cond,ConjugateReturnType,ConstSelfAdjointView> ReturnType; |
| return ReturnType(m_matrix.template conjugateIf<Cond>()); |
| } |
| |
| typedef SelfAdjointView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType; |
| /** \sa MatrixBase::adjoint() const */ |
| EIGEN_DEVICE_FUNC |
| inline const AdjointReturnType adjoint() const |
| { return AdjointReturnType(m_matrix.adjoint()); } |
| |
| typedef SelfAdjointView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType; |
| /** \sa MatrixBase::transpose() */ |
| template<class Dummy=int> |
| EIGEN_DEVICE_FUNC |
| inline TransposeReturnType transpose(std::enable_if_t<Eigen::internal::is_lvalue<MatrixType>::value, Dummy*> = nullptr) |
| { |
| typename MatrixType::TransposeReturnType tmp(m_matrix); |
| return TransposeReturnType(tmp); |
| } |
| |
| typedef SelfAdjointView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType; |
| /** \sa MatrixBase::transpose() const */ |
| EIGEN_DEVICE_FUNC |
| inline const ConstTransposeReturnType transpose() const |
| { |
| return ConstTransposeReturnType(m_matrix.transpose()); |
| } |
| |
| /** \returns a const expression of the main diagonal of the matrix \c *this |
| * |
| * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator. |
| * |
| * \sa MatrixBase::diagonal(), class Diagonal */ |
| EIGEN_DEVICE_FUNC |
| typename MatrixType::ConstDiagonalReturnType diagonal() const |
| { |
| return typename MatrixType::ConstDiagonalReturnType(m_matrix); |
| } |
| |
| /////////// Cholesky module /////////// |
| |
| const LLT<PlainObject, UpLo> llt() const; |
| const LDLT<PlainObject, UpLo> ldlt() const; |
| |
| /////////// Eigenvalue module /////////// |
| |
| /** Real part of #Scalar */ |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| /** Return type of eigenvalues() */ |
| typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType; |
| |
| EIGEN_DEVICE_FUNC |
| EigenvaluesReturnType eigenvalues() const; |
| EIGEN_DEVICE_FUNC |
| RealScalar operatorNorm() const; |
| |
| protected: |
| MatrixTypeNested m_matrix; |
| }; |
| |
| |
| // template<typename OtherDerived, typename MatrixType, unsigned int UpLo> |
| // internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> > |
| // operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs) |
| // { |
| // return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs); |
| // } |
| |
| // selfadjoint to dense matrix |
| |
| namespace internal { |
| |
| // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> |
| // in the future selfadjoint-ness should be defined by the expression traits |
| // such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) |
| template<typename MatrixType, unsigned int Mode> |
| struct evaluator_traits<SelfAdjointView<MatrixType,Mode> > |
| { |
| typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; |
| typedef SelfAdjointShape Shape; |
| }; |
| |
| template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version> |
| class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version> |
| : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> |
| { |
| protected: |
| typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base; |
| typedef typename Base::DstXprType DstXprType; |
| typedef typename Base::SrcXprType SrcXprType; |
| using Base::m_dst; |
| using Base::m_src; |
| using Base::m_functor; |
| public: |
| |
| typedef typename Base::DstEvaluatorType DstEvaluatorType; |
| typedef typename Base::SrcEvaluatorType SrcEvaluatorType; |
| typedef typename Base::Scalar Scalar; |
| typedef typename Base::AssignmentTraits AssignmentTraits; |
| |
| |
| EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) |
| : Base(dst, src, func, dstExpr) |
| {} |
| |
| EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) |
| { |
| eigen_internal_assert(row!=col); |
| Scalar tmp = m_src.coeff(row,col); |
| m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp); |
| m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp)); |
| } |
| |
| EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) |
| { |
| Base::assignCoeff(id,id); |
| } |
| |
| EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index) |
| { eigen_internal_assert(false && "should never be called"); } |
| }; |
| |
| } // end namespace internal |
| |
| /*************************************************************************** |
| * Implementation of MatrixBase methods |
| ***************************************************************************/ |
| |
| /** This is the const version of MatrixBase::selfadjointView() */ |
| template<typename Derived> |
| template<unsigned int UpLo> |
| EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type |
| MatrixBase<Derived>::selfadjointView() const |
| { |
| return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived()); |
| } |
| |
| /** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix |
| * |
| * The parameter \a UpLo can be either \c #Upper or \c #Lower |
| * |
| * Example: \include MatrixBase_selfadjointView.cpp |
| * Output: \verbinclude MatrixBase_selfadjointView.out |
| * |
| * \sa class SelfAdjointView |
| */ |
| template<typename Derived> |
| template<unsigned int UpLo> |
| EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type |
| MatrixBase<Derived>::selfadjointView() |
| { |
| return typename SelfAdjointViewReturnType<UpLo>::Type(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SELFADJOINTMATRIX_H |