| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<bool IsInteger> struct adjoint_specific; |
| |
| template<> struct adjoint_specific<true> { |
| template<typename Vec, typename Mat, typename Scalar> |
| static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { |
| VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); |
| VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0)); |
| |
| // check compatibility of dot and adjoint |
| VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); |
| } |
| }; |
| |
| template<> struct adjoint_specific<false> { |
| template<typename Vec, typename Mat, typename Scalar> |
| static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| using std::abs; |
| |
| RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm()); |
| VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); |
| VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref)); |
| |
| VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); |
| // check normalized() and normalize() |
| VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); |
| v3 = v1; |
| v3.normalize(); |
| VERIFY_IS_APPROX(v1, v1.norm() * v3); |
| VERIFY_IS_APPROX(v3, v1.normalized()); |
| VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); |
| |
| // check null inputs |
| VERIFY_IS_APPROX((v1*0).normalized(), (v1*0)); |
| #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE) |
| RealScalar very_small = (std::numeric_limits<RealScalar>::min)(); |
| VERIFY( numext::is_exactly_zero((v1*very_small).norm()) ); |
| VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small)); |
| v3 = v1*very_small; |
| v3.normalize(); |
| VERIFY_IS_APPROX(v3, (v1*very_small)); |
| #endif |
| |
| // check compatibility of dot and adjoint |
| ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); |
| VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>())); |
| |
| // check that Random().normalized() works: tricky as the random xpr must be evaluated by |
| // normalized() in order to produce a consistent result. |
| VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); |
| } |
| }; |
| |
| template<typename MatrixType, typename Scalar = typename MatrixType::Scalar> |
| MatrixType RandomMatrix(int rows, int cols, Scalar min, Scalar max) { |
| MatrixType M = MatrixType(rows, cols); |
| for (int i=0; i<rows; ++i) { |
| for (int j=0; j<cols; ++j) { |
| M(i, j) = Eigen::internal::random<Scalar>(min, max); |
| } |
| } |
| return M; |
| } |
| |
| template<typename MatrixType> void adjoint(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Transpose.h Conjugate.h Dot.h |
| */ |
| using std::abs; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| const Index PacketSize = internal::packet_traits<Scalar>::size; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // Avoid integer overflow by limiting input values. |
| RealScalar rmin = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? NumTraits<Scalar>::IsSigned ? -100 : 0 : -1); |
| RealScalar rmax = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? 100 : 1); |
| |
| MatrixType m1 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), |
| m2 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), |
| m3(rows, cols), |
| square = RandomMatrix<SquareMatrixType>(rows, rows, rmin, rmax); |
| VectorType v1 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), |
| v2 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), |
| v3 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), |
| vzero = VectorType::Zero(rows); |
| |
| Scalar s1 = internal::random<Scalar>(rmin, rmax), |
| s2 = internal::random<Scalar>(rmin, rmax); |
| |
| // check basic compatibility of adjoint, transpose, conjugate |
| VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); |
| VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); |
| |
| // check multiplicative behavior |
| VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); |
| VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint()); |
| |
| // check basic properties of dot, squaredNorm |
| VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1)); |
| VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm()); |
| |
| adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1)); |
| |
| // like in testBasicStuff, test operator() to check const-qualification |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c))); |
| VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c))); |
| |
| // check inplace transpose |
| m3 = m1; |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1.transpose()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1); |
| |
| if(PacketSize<m3.rows() && PacketSize<m3.cols()) |
| { |
| m3 = m1; |
| Index i = internal::random<Index>(0,m3.rows()-PacketSize); |
| Index j = internal::random<Index>(0,m3.cols()-PacketSize); |
| m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace(); |
| VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) ); |
| m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1); |
| } |
| |
| // check inplace adjoint |
| m3 = m1; |
| m3.adjointInPlace(); |
| VERIFY_IS_APPROX(m3,m1.adjoint()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1.conjugate()); |
| |
| // check mixed dot product |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| RealVectorType rv1 = RandomMatrix<RealVectorType>(rows, 1, rmin, rmax); |
| |
| VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); |
| VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); |
| |
| VERIFY( is_same_type(m1,m1.template conjugateIf<false>()) ); |
| VERIFY( is_same_type(m1.conjugate(),m1.template conjugateIf<true>()) ); |
| } |
| |
| template<int> |
| void adjoint_extra() |
| { |
| MatrixXcf a(10,10), b(10,10); |
| VERIFY_RAISES_ASSERT(a = a.transpose()); |
| VERIFY_RAISES_ASSERT(a = a.transpose() + b); |
| VERIFY_RAISES_ASSERT(a = b + a.transpose()); |
| VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); |
| VERIFY_RAISES_ASSERT(a = a.adjoint()); |
| VERIFY_RAISES_ASSERT(a = a.adjoint() + b); |
| VERIFY_RAISES_ASSERT(a = b + a.adjoint()); |
| |
| // no assertion should be triggered for these cases: |
| a.transpose() = a.transpose(); |
| a.transpose() += a.transpose(); |
| a.transpose() += a.transpose() + b; |
| a.transpose() = a.adjoint(); |
| a.transpose() += a.adjoint(); |
| a.transpose() += a.adjoint() + b; |
| |
| // regression tests for check_for_aliasing |
| MatrixXd c(10,10); |
| c = 1.0 * MatrixXd::Ones(10,10) + c; |
| c = MatrixXd::Ones(10,10) * 1.0 + c; |
| c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) ); |
| c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10); |
| |
| // regression for bug 1646 |
| for (int j = 0; j < 10; ++j) { |
| c.col(j).head(j) = c.row(j).head(j); |
| } |
| |
| for (int j = 0; j < 10; ++j) { |
| c.col(j) = c.row(j); |
| } |
| |
| a.conservativeResize(1,1); |
| a = a.transpose(); |
| |
| a.conservativeResize(0,0); |
| a = a.transpose(); |
| } |
| |
| EIGEN_DECLARE_TEST(adjoint) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( adjoint(Matrix3d()) ); |
| CALL_SUBTEST_3( adjoint(Matrix4f()) ); |
| |
| CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); |
| CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| |
| // Complement for 128 bits vectorization: |
| CALL_SUBTEST_8( adjoint(Matrix2d()) ); |
| CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) ); |
| |
| // 256 bits vectorization: |
| CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) ); |
| CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) ); |
| CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) ); |
| } |
| // test a large static matrix only once |
| CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); |
| |
| CALL_SUBTEST_13( adjoint_extra<0>() ); |
| } |
| |