| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <vector> |
| #include "main.h" |
| |
| template <typename Scalar> |
| std::vector<Scalar> special_values() { |
| const Scalar zero = Scalar(0); |
| const Scalar eps = Eigen::NumTraits<Scalar>::epsilon(); |
| const Scalar one = Scalar(1); |
| const Scalar two = Scalar(2); |
| const Scalar three = Scalar(3); |
| const Scalar sqrt_half = Scalar(std::sqrt(0.5)); |
| const Scalar sqrt2 = Scalar(std::sqrt(2)); |
| const Scalar inf = Eigen::NumTraits<Scalar>::infinity(); |
| const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN(); |
| const Scalar denorm_min = std::numeric_limits<Scalar>::denorm_min(); |
| const Scalar min = (std::numeric_limits<Scalar>::min)(); |
| const Scalar max = (std::numeric_limits<Scalar>::max)(); |
| const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps; |
| |
| return {zero, denorm_min, min, eps, sqrt_half, one, sqrt2, two, three, max_exp, max, inf, nan}; |
| } |
| |
| template<typename Scalar> |
| void special_value_pairs(Array<Scalar, Dynamic, Dynamic>& x, |
| Array<Scalar, Dynamic, Dynamic>& y) { |
| std::vector<Scalar> abs_vals = special_values<Scalar>(); |
| const int abs_cases = abs_vals.size(); |
| const int num_cases = 2*abs_cases * 2*abs_cases; |
| // ensure both vectorized and non-vectorized paths taken |
| const int num_repeats = 2 * internal::packet_traits<Scalar>::size + 1; |
| x.resize(num_repeats, num_cases); |
| y.resize(num_repeats, num_cases); |
| int count = 0; |
| for (int i = 0; i < abs_cases; ++i) { |
| const Scalar abs_x = abs_vals[i]; |
| for (int sign_x = 0; sign_x < 2; ++sign_x) { |
| Scalar x_case = sign_x == 0 ? -abs_x : abs_x; |
| for (int j = 0; j < abs_cases; ++j) { |
| const Scalar abs_y = abs_vals[j]; |
| for (int sign_y = 0; sign_y < 2; ++sign_y) { |
| Scalar y_case = sign_y == 0 ? -abs_y : abs_y; |
| for (int repeat = 0; repeat < num_repeats; ++repeat) { |
| x(repeat, count) = x_case; |
| y(repeat, count) = y_case; |
| } |
| ++count; |
| } |
| } |
| } |
| } |
| } |
| |
| template <typename Scalar, typename Fn, typename RefFn> |
| void binary_op_test(std::string name, Fn fun, RefFn ref) { |
| const Scalar tol = test_precision<Scalar>(); |
| Array<Scalar, Dynamic, Dynamic> x; |
| Array<Scalar, Dynamic, Dynamic> y; |
| special_value_pairs(x, y); |
| |
| Array<Scalar, Dynamic, Dynamic> actual = fun(x, y); |
| bool all_pass = true; |
| for (int i = 0; i < x.rows(); ++i) { |
| for (int j = 0; j < x.cols(); ++j) { |
| Scalar e = static_cast<Scalar>(ref(x(i,j), y(i,j))); |
| Scalar a = actual(i, j); |
| bool success = (a==e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e)); |
| all_pass &= success; |
| if (!success) { |
| std::cout << name << "(" << x(i,j) << "," << y(i,j) << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| template <typename Scalar> |
| void binary_ops_test() { |
| binary_op_test<Scalar>("pow", |
| [](auto x, auto y) { return Eigen::pow(x, y); }, |
| [](auto x, auto y) { return std::pow(x, y); }); |
| binary_op_test<Scalar>("atan2", |
| [](auto x, auto y) { return Eigen::atan2(x, y); }, |
| [](auto x, auto y) { return std::atan2(x, y); }); |
| } |
| |
| template <typename Scalar> |
| void pow_scalar_exponent_test() { |
| using Int_t = typename internal::make_integer<Scalar>::type; |
| const Scalar tol = test_precision<Scalar>(); |
| |
| std::vector<Scalar> abs_vals = special_values<Scalar>(); |
| const int num_vals = abs_vals.size(); |
| Map<Array<Scalar, Dynamic, 1>> bases(abs_vals.data(), num_vals); |
| |
| bool all_pass = true; |
| for (Scalar abs_exponent : abs_vals) { |
| for (Scalar exponent : {-abs_exponent, abs_exponent}) { |
| // test integer exponent code path |
| bool exponent_is_integer = (numext::isfinite)(exponent) && (numext::round(exponent) == exponent) && |
| (numext::abs(exponent) < static_cast<Scalar>(NumTraits<Int_t>::highest())); |
| if (exponent_is_integer) { |
| Int_t exponent_as_int = static_cast<Int_t>(exponent); |
| Array<Scalar, Dynamic, 1> eigenPow = bases.pow(exponent_as_int); |
| for (int j = 0; j < num_vals; j++) { |
| Scalar e = static_cast<Scalar>(std::pow(bases(j), exponent)); |
| Scalar a = eigenPow(j); |
| bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || |
| ((numext::isnan)(a) && (numext::isnan)(e)); |
| all_pass &= success; |
| if (!success) { |
| std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } else { |
| // test floating point exponent code path |
| Array<Scalar, Dynamic, 1> eigenPow = bases.pow(exponent); |
| for (int j = 0; j < num_vals; j++) { |
| Scalar e = static_cast<Scalar>(std::pow(bases(j), exponent)); |
| Scalar a = eigenPow(j); |
| bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || |
| ((numext::isnan)(a) && (numext::isnan)(e)); |
| all_pass &= success; |
| if (!success) { |
| std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| template <typename Scalar, typename ScalarExponent> |
| Scalar calc_overflow_threshold(const ScalarExponent exponent) { |
| EIGEN_USING_STD(exp2); |
| EIGEN_USING_STD(log2); |
| EIGEN_STATIC_ASSERT((NumTraits<Scalar>::digits() < 2 * NumTraits<double>::digits()), BASE_TYPE_IS_TOO_BIG); |
| |
| if (exponent < 2) |
| return NumTraits<Scalar>::highest(); |
| else { |
| // base^e <= highest ==> base <= 2^(log2(highest)/e) |
| // For floating-point types, consider the bound for integer values that can be reproduced exactly = 2 ^ digits |
| double highest_bits = numext::mini(static_cast<double>(NumTraits<Scalar>::digits()), |
| static_cast<double>(log2(NumTraits<Scalar>::highest()))); |
| return static_cast<Scalar>( |
| numext::floor(exp2(highest_bits / static_cast<double>(exponent)))); |
| } |
| } |
| |
| template <typename Base, typename Exponent, bool ExpIsInteger = NumTraits<Exponent>::IsInteger> |
| struct ref_pow { |
| static Base run(Base base, Exponent exponent) { |
| EIGEN_USING_STD(pow); |
| return pow(base, static_cast<Base>(exponent)); |
| } |
| }; |
| |
| template <typename Base, typename Exponent> |
| struct ref_pow<Base, Exponent, true> { |
| static Base run(Base base, Exponent exponent) { |
| EIGEN_USING_STD(pow); |
| return pow(base, exponent); |
| } |
| }; |
| |
| template <typename Base, typename Exponent> |
| void test_exponent(Exponent exponent) { |
| const Base max_abs_bases = static_cast<Base>(10000); |
| // avoid integer overflow in Base type |
| Base threshold = calc_overflow_threshold<Base, Exponent>(numext::abs(exponent)); |
| // avoid numbers that can't be verified with std::pow |
| double double_threshold = calc_overflow_threshold<double, Exponent>(numext::abs(exponent)); |
| // use the lesser of these two thresholds |
| Base testing_threshold = |
| static_cast<double>(threshold) < double_threshold ? threshold : static_cast<Base>(double_threshold); |
| // test both vectorized and non-vectorized code paths |
| const Index array_size = 2 * internal::packet_traits<Base>::size + 1; |
| |
| Base max_base = numext::mini(testing_threshold, max_abs_bases); |
| Base min_base = NumTraits<Base>::IsSigned ? -max_base : Base(0); |
| |
| ArrayX<Base> x(array_size), y(array_size); |
| bool all_pass = true; |
| for (Base base = min_base; base <= max_base; base++) { |
| if (exponent < 0 && base == 0) continue; |
| x.setConstant(base); |
| y = x.pow(exponent); |
| for (Base a : y) { |
| Base e = ref_pow<Base, Exponent>::run(base, exponent); |
| bool pass = (a == e); |
| if (!NumTraits<Base>::IsInteger) { |
| pass = pass || (((numext::isfinite)(e) && internal::isApprox(a, e)) || |
| ((numext::isnan)(a) && (numext::isnan)(e))); |
| } |
| all_pass &= pass; |
| if (!pass) { |
| std::cout << "pow(" << base << "," << exponent << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| template <typename Base, typename Exponent> |
| void unary_pow_test() { |
| Exponent max_exponent = static_cast<Exponent>(NumTraits<Base>::digits()); |
| Exponent min_exponent = static_cast<Exponent>(NumTraits<Exponent>::IsSigned ? -max_exponent : 0); |
| |
| for (Exponent exponent = min_exponent; exponent < max_exponent; ++exponent) { |
| test_exponent<Base, Exponent>(exponent); |
| } |
| }; |
| |
| void mixed_pow_test() { |
| // The following cases will test promoting a smaller exponent type |
| // to a wider base type. |
| unary_pow_test<double, int>(); |
| unary_pow_test<double, float>(); |
| unary_pow_test<float, half>(); |
| unary_pow_test<double, half>(); |
| unary_pow_test<float, bfloat16>(); |
| unary_pow_test<double, bfloat16>(); |
| |
| // Although in the following cases the exponent cannot be represented exactly |
| // in the base type, we do not perform a conversion, but implement |
| // the operation using repeated squaring. |
| unary_pow_test<float, int>(); |
| unary_pow_test<double, long long>(); |
| |
| // The following cases will test promoting a wider exponent type |
| // to a narrower base type. This should compile but generate a |
| // deprecation warning: |
| unary_pow_test<float, double>(); |
| } |
| |
| void int_pow_test() { |
| unary_pow_test<int, int>(); |
| unary_pow_test<unsigned int, unsigned int>(); |
| unary_pow_test<long long, long long>(); |
| unary_pow_test<unsigned long long, unsigned long long>(); |
| |
| // Although in the following cases the exponent cannot be represented exactly |
| // in the base type, we do not perform a conversion, but implement the |
| // operation using repeated squaring. |
| unary_pow_test<long long, int>(); |
| unary_pow_test<int, unsigned int>(); |
| unary_pow_test<unsigned int, int>(); |
| unary_pow_test<long long, unsigned long long>(); |
| unary_pow_test<unsigned long long, long long>(); |
| unary_pow_test<long long, int>(); |
| } |
| |
| template<typename ArrayType> void array(const ArrayType& m) |
| { |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename ArrayType::RealScalar RealScalar; |
| typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols); |
| if (NumTraits<RealScalar>::IsInteger && NumTraits<RealScalar>::IsSigned |
| && !NumTraits<Scalar>::IsComplex) { |
| // Here we cap the size of the values in m1 such that pow(3)/cube() |
| // doesn't overflow and result in undefined behavior. Notice that because |
| // pow(int, int) promotes its inputs and output to double (according to |
| // the C++ standard), we have to make sure that the result fits in 53 bits |
| // for int64, |
| RealScalar max_val = |
| numext::mini(RealScalar(std::cbrt(NumTraits<RealScalar>::highest())), |
| RealScalar(std::cbrt(1LL << 53)))/2; |
| m1.array() = (m1.abs().array() <= max_val).select(m1, Scalar(max_val)); |
| } |
| ArrayType m2 = ArrayType::Random(rows, cols), |
| m3(rows, cols); |
| ArrayType m4 = m1; // copy constructor |
| VERIFY_IS_APPROX(m1, m4); |
| |
| ColVectorType cv1 = ColVectorType::Random(rows); |
| RowVectorType rv1 = RowVectorType::Random(cols); |
| |
| Scalar s1 = internal::random<Scalar>(), |
| s2 = internal::random<Scalar>(); |
| |
| // scalar addition |
| VERIFY_IS_APPROX(m1 + s1, s1 + m1); |
| VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); |
| VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); |
| VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); |
| VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); |
| VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); |
| m3 = m1; |
| m3 += s2; |
| VERIFY_IS_APPROX(m3, m1 + s2); |
| m3 = m1; |
| m3 -= s1; |
| VERIFY_IS_APPROX(m3, m1 - s1); |
| |
| // scalar operators via Maps |
| m3 = m1; m4 = m1; |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 - m2); |
| |
| m3 = m1; m4 = m1; |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 + m2); |
| |
| m3 = m1; m4 = m1; |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 * m2); |
| |
| m3 = m1; m4 = m1; |
| m2 = ArrayType::Random(rows,cols); |
| m2 = (m2==0).select(1,m2); |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 / m2); |
| |
| // reductions |
| VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); |
| VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); |
| using std::abs; |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); |
| if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>())) |
| VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); |
| VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>())); |
| |
| // vector-wise ops |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); |
| |
| // Conversion from scalar |
| VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); |
| VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1)); |
| VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1)); |
| typedef Array<Scalar, |
| ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime, |
| ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime, |
| ArrayType::Options> FixedArrayType; |
| { |
| FixedArrayType f1(s1); |
| VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); |
| FixedArrayType f2(numext::real(s1)); |
| VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); |
| FixedArrayType f3((int)100*numext::real(s1)); |
| VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); |
| f1.setRandom(); |
| FixedArrayType f4(f1.data()); |
| VERIFY_IS_APPROX(f4, f1); |
| } |
| { |
| FixedArrayType f1{s1}; |
| VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); |
| FixedArrayType f2{numext::real(s1)}; |
| VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); |
| FixedArrayType f3{(int)100*numext::real(s1)}; |
| VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); |
| f1.setRandom(); |
| FixedArrayType f4{f1.data()}; |
| VERIFY_IS_APPROX(f4, f1); |
| } |
| |
| // pow |
| VERIFY_IS_APPROX(m1.pow(2), m1.square()); |
| VERIFY_IS_APPROX(pow(m1,2), m1.square()); |
| VERIFY_IS_APPROX(m1.pow(3), m1.cube()); |
| VERIFY_IS_APPROX(pow(m1,3), m1.cube()); |
| VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); |
| VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube()); |
| ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); |
| VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); |
| VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); |
| VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square()); |
| VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); |
| VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); |
| VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); |
| VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); |
| |
| // Check possible conflicts with 1D ctor |
| typedef Array<Scalar, Dynamic, 1> OneDArrayType; |
| { |
| OneDArrayType o1(rows); |
| VERIFY(o1.size()==rows); |
| OneDArrayType o2(static_cast<int>(rows)); |
| VERIFY(o2.size()==rows); |
| } |
| { |
| OneDArrayType o1{rows}; |
| VERIFY(o1.size()==rows); |
| OneDArrayType o4{int(rows)}; |
| VERIFY(o4.size()==rows); |
| } |
| // Check possible conflicts with 2D ctor |
| typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType; |
| typedef Array<Scalar, 2, 1> ArrayType2; |
| { |
| TwoDArrayType o1(rows,cols); |
| VERIFY(o1.rows()==rows); |
| VERIFY(o1.cols()==cols); |
| TwoDArrayType o2(static_cast<int>(rows),static_cast<int>(cols)); |
| VERIFY(o2.rows()==rows); |
| VERIFY(o2.cols()==cols); |
| |
| ArrayType2 o3(rows,cols); |
| VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols)); |
| ArrayType2 o4(static_cast<int>(rows),static_cast<int>(cols)); |
| VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols)); |
| } |
| { |
| TwoDArrayType o1{rows,cols}; |
| VERIFY(o1.rows()==rows); |
| VERIFY(o1.cols()==cols); |
| TwoDArrayType o2{int(rows),int(cols)}; |
| VERIFY(o2.rows()==rows); |
| VERIFY(o2.cols()==cols); |
| |
| ArrayType2 o3{rows,cols}; |
| VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols)); |
| ArrayType2 o4{int(rows),int(cols)}; |
| VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols)); |
| } |
| } |
| |
| template<typename ArrayType> void comparisons(const ArrayType& m) |
| { |
| using std::abs; |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), |
| m2 = ArrayType::Random(rows, cols), |
| m3(rows, cols), |
| m4 = m1; |
| |
| m4 = (m4.abs()==Scalar(0)).select(1,m4); |
| |
| VERIFY(((m1 + Scalar(1)) > m1).all()); |
| VERIFY(((m1 - Scalar(1)) < m1).all()); |
| if (rows*cols>1) |
| { |
| m3 = m1; |
| m3(r,c) += 1; |
| VERIFY(! (m1 < m3).all() ); |
| VERIFY(! (m1 > m3).all() ); |
| } |
| VERIFY(!(m1 > m2 && m1 < m2).any()); |
| VERIFY((m1 <= m2 || m1 >= m2).all()); |
| |
| // comparisons array to scalar |
| VERIFY( (m1 != (m1(r,c)+1) ).any() ); |
| VERIFY( (m1 > (m1(r,c)-1) ).any() ); |
| VERIFY( (m1 < (m1(r,c)+1) ).any() ); |
| VERIFY( (m1 == m1(r,c) ).any() ); |
| |
| // comparisons scalar to array |
| VERIFY( ( (m1(r,c)+1) != m1).any() ); |
| VERIFY( ( (m1(r,c)-1) < m1).any() ); |
| VERIFY( ( (m1(r,c)+1) > m1).any() ); |
| VERIFY( ( m1(r,c) == m1).any() ); |
| |
| // test Select |
| VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) ); |
| VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) ); |
| Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); |
| for (int j=0; j<cols; ++j) |
| for (int i=0; i<rows; ++i) |
| m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j); |
| VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) |
| .select(ArrayType::Zero(rows,cols),m1), m3); |
| // shorter versions: |
| VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) |
| .select(0,m1), m3); |
| VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid)) |
| .select(m1,0), m3); |
| // even shorter version: |
| VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3); |
| |
| // count |
| VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols); |
| |
| // and/or |
| VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0); |
| VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols); |
| RealScalar a = m1.abs().mean(); |
| VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count()); |
| |
| typedef Array<Index, Dynamic, 1> ArrayOfIndices; |
| |
| // TODO allows colwise/rowwise for array |
| VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); |
| VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); |
| } |
| |
| template<typename ArrayType> void array_real(const ArrayType& m) |
| { |
| using std::abs; |
| using std::sqrt; |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), |
| m2 = ArrayType::Random(rows, cols), |
| m3(rows, cols), |
| m4 = m1; |
| |
| m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| // these tests are mostly to check possible compilation issues with free-functions. |
| VERIFY_IS_APPROX(m1.sin(), sin(m1)); |
| VERIFY_IS_APPROX(m1.cos(), cos(m1)); |
| VERIFY_IS_APPROX(m1.tan(), tan(m1)); |
| VERIFY_IS_APPROX(m1.asin(), asin(m1)); |
| VERIFY_IS_APPROX(m1.acos(), acos(m1)); |
| VERIFY_IS_APPROX(m1.atan(), atan(m1)); |
| VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); |
| VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); |
| VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); |
| VERIFY_IS_APPROX(m1.atan2(m2), atan2(m1,m2)); |
| |
| VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); |
| VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); |
| VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); |
| VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); |
| |
| VERIFY_IS_APPROX(m1.arg(), arg(m1)); |
| VERIFY_IS_APPROX(m1.round(), round(m1)); |
| VERIFY_IS_APPROX(m1.rint(), rint(m1)); |
| VERIFY_IS_APPROX(m1.floor(), floor(m1)); |
| VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); |
| VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); |
| VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); |
| VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); |
| VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); |
| VERIFY_IS_APPROX(m1.abs(), abs(m1)); |
| VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); |
| VERIFY_IS_APPROX(m1.square(), square(m1)); |
| VERIFY_IS_APPROX(m1.cube(), cube(m1)); |
| VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); |
| VERIFY_IS_APPROX(m1.sign(), sign(m1)); |
| VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); |
| |
| // avoid inf and NaNs so verification doesn't fail |
| m3 = m4.abs(); |
| VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); |
| VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3))); |
| VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3))); |
| VERIFY_IS_APPROX(m3.log(), log(m3)); |
| VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); |
| VERIFY_IS_APPROX(m3.log10(), log10(m3)); |
| VERIFY_IS_APPROX(m3.log2(), log2(m3)); |
| |
| |
| VERIFY((!(m1>m2) == (m1<=m2)).all()); |
| |
| VERIFY_IS_APPROX(sin(m1.asin()), m1); |
| VERIFY_IS_APPROX(cos(m1.acos()), m1); |
| VERIFY_IS_APPROX(tan(m1.atan()), m1); |
| VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1))); |
| VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1))); |
| VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1)))); |
| VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1)))); |
| VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1)))); |
| VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); |
| VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); |
| VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all()); |
| VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all()); |
| VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all()); |
| VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all()); |
| VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all()); |
| VERIFY((Eigen::isinf)(m4/Scalar(0)).all()); |
| VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all()); |
| VERIFY_IS_APPROX(inverse(inverse(m4)),m4); |
| VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); |
| VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); |
| VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); |
| VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); |
| VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); |
| VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); |
| |
| ArrayType tmp = m1.atan2(m2); |
| for (Index i = 0; i < tmp.size(); ++i) { |
| Scalar actual = tmp.array()(i); |
| Scalar expected = atan2(m1.array()(i), m2.array()(i)); |
| VERIFY_IS_APPROX(actual, expected); |
| } |
| |
| VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); |
| VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); |
| if(!NumTraits<Scalar>::IsComplex) |
| VERIFY_IS_APPROX(numext::real(m1), m1); |
| |
| // shift argument of logarithm so that it is not zero |
| Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); |
| VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber)); |
| VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber)); |
| |
| VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); |
| VERIFY_IS_APPROX(m1.exp(), exp(m1)); |
| VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); |
| |
| VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); |
| VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); |
| |
| VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); |
| VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); |
| |
| VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); |
| VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt()); |
| |
| // Avoid inf and NaN. |
| m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3); |
| VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); |
| |
| // Test pow and atan2 on special IEEE values. |
| binary_ops_test<Scalar>(); |
| pow_scalar_exponent_test<Scalar>(); |
| |
| VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10))); |
| VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2))); |
| |
| // scalar by array division |
| const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); |
| s1 += Scalar(tiny); |
| m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); |
| VERIFY_IS_CWISE_APPROX(s1/m1, s1 * m1.inverse()); |
| |
| // check inplace transpose |
| m3 = m1; |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1.transpose()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1); |
| } |
| |
| |
| template<typename ArrayType> void array_complex(const ArrayType& m) |
| { |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), |
| m2(rows, cols), |
| m4 = m1; |
| |
| m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); |
| m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag()); |
| |
| Array<RealScalar, -1, -1> m3(rows, cols); |
| |
| for (Index i = 0; i < m.rows(); ++i) |
| for (Index j = 0; j < m.cols(); ++j) |
| m2(i,j) = sqrt(m1(i,j)); |
| |
| // these tests are mostly to check possible compilation issues with free-functions. |
| VERIFY_IS_APPROX(m1.sin(), sin(m1)); |
| VERIFY_IS_APPROX(m1.cos(), cos(m1)); |
| VERIFY_IS_APPROX(m1.tan(), tan(m1)); |
| VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); |
| VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); |
| VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); |
| VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); |
| VERIFY_IS_APPROX(m1.arg(), arg(m1)); |
| VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); |
| VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); |
| VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); |
| VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); |
| VERIFY_IS_APPROX(m1.log(), log(m1)); |
| VERIFY_IS_APPROX(m1.log10(), log10(m1)); |
| VERIFY_IS_APPROX(m1.log2(), log2(m1)); |
| VERIFY_IS_APPROX(m1.abs(), abs(m1)); |
| VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); |
| VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); |
| VERIFY_IS_APPROX(m1.square(), square(m1)); |
| VERIFY_IS_APPROX(m1.cube(), cube(m1)); |
| VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); |
| VERIFY_IS_APPROX(m1.sign(), sign(m1)); |
| |
| VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); |
| VERIFY_IS_APPROX(m1.exp(), exp(m1)); |
| VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); |
| |
| VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); |
| VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); |
| // Check for larger magnitude complex numbers that expm1 matches exp - 1. |
| VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); |
| |
| VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); |
| VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); |
| VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); |
| VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1)))); |
| |
| for (Index i = 0; i < m.rows(); ++i) |
| for (Index j = 0; j < m.cols(); ++j) |
| m3(i,j) = std::atan2(m1(i,j).imag(), m1(i,j).real()); |
| VERIFY_IS_APPROX(arg(m1), m3); |
| |
| std::complex<RealScalar> zero(0.0,0.0); |
| VERIFY((Eigen::isnan)(m1*zero/zero).all()); |
| #if EIGEN_COMP_MSVC |
| // msvc complex division is not robust |
| VERIFY((Eigen::isinf)(m4/RealScalar(0)).all()); |
| #else |
| #if EIGEN_COMP_CLANG |
| // clang's complex division is notoriously broken too |
| if((numext::isinf)(m4(0,0)/RealScalar(0))) { |
| #endif |
| VERIFY((Eigen::isinf)(m4/zero).all()); |
| #if EIGEN_COMP_CLANG |
| } |
| else |
| { |
| VERIFY((Eigen::isinf)(m4.real()/zero.real()).all()); |
| } |
| #endif |
| #endif // MSVC |
| |
| VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all()); |
| |
| VERIFY_IS_APPROX(inverse(inverse(m4)),m4); |
| VERIFY_IS_APPROX(conj(m1.conjugate()), m1); |
| VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag()))); |
| VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); |
| VERIFY_IS_APPROX(log10(m1), log(m1)/log(10)); |
| VERIFY_IS_APPROX(log2(m1), log(m1)/log(2)); |
| |
| VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); |
| VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1); |
| |
| // scalar by array division |
| Scalar s1 = internal::random<Scalar>(); |
| const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon()); |
| s1 += Scalar(tiny); |
| m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); |
| VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); |
| |
| // check inplace transpose |
| m2 = m1; |
| m2.transposeInPlace(); |
| VERIFY_IS_APPROX(m2, m1.transpose()); |
| m2.transposeInPlace(); |
| VERIFY_IS_APPROX(m2, m1); |
| // Check vectorized inplace transpose. |
| ArrayType m5 = ArrayType::Random(131, 131); |
| ArrayType m6 = m5; |
| m6.transposeInPlace(); |
| VERIFY_IS_APPROX(m6, m5.transpose()); |
| } |
| |
| template<typename ArrayType> void min_max(const ArrayType& m) |
| { |
| typedef typename ArrayType::Scalar Scalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols); |
| |
| // min/max with array |
| Scalar maxM1 = m1.maxCoeff(); |
| Scalar minM1 = m1.minCoeff(); |
| |
| VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1))); |
| VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1))); |
| |
| VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1))); |
| VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1))); |
| |
| // min/max with scalar input |
| VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1)); |
| VERIFY_IS_APPROX(m1, (m1.min)( maxM1)); |
| |
| VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1)); |
| VERIFY_IS_APPROX(m1, (m1.max)( minM1)); |
| |
| |
| // min/max with various NaN propagation options. |
| if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) { |
| m1(0,0) = NumTraits<Scalar>::quiet_NaN(); |
| maxM1 = m1.template maxCoeff<PropagateNaN>(); |
| minM1 = m1.template minCoeff<PropagateNaN>(); |
| VERIFY((numext::isnan)(maxM1)); |
| VERIFY((numext::isnan)(minM1)); |
| |
| maxM1 = m1.template maxCoeff<PropagateNumbers>(); |
| minM1 = m1.template minCoeff<PropagateNumbers>(); |
| VERIFY(!(numext::isnan)(maxM1)); |
| VERIFY(!(numext::isnan)(minM1)); |
| } |
| } |
| |
| template<int N> |
| struct shift_left { |
| template<typename Scalar> |
| Scalar operator()(const Scalar& v) const { |
| return v << N; |
| } |
| }; |
| |
| template<int N> |
| struct arithmetic_shift_right { |
| template<typename Scalar> |
| Scalar operator()(const Scalar& v) const { |
| return v >> N; |
| } |
| }; |
| |
| template<typename ArrayType> void array_integer(const ArrayType& m) |
| { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), |
| m2(rows, cols); |
| |
| m2 = m1.template shiftLeft<2>(); |
| VERIFY( (m2 == m1.unaryExpr(shift_left<2>())).all() ); |
| m2 = m1.template shiftLeft<9>(); |
| VERIFY( (m2 == m1.unaryExpr(shift_left<9>())).all() ); |
| |
| m2 = m1.template shiftRight<2>(); |
| VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<2>())).all() ); |
| m2 = m1.template shiftRight<9>(); |
| VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<9>())).all() ); |
| } |
| |
| EIGEN_DECLARE_TEST(array_cwise) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( array(Array<float, 1, 1>()) ); |
| CALL_SUBTEST_2( array(Array22f()) ); |
| CALL_SUBTEST_3( array(Array44d()) ); |
| CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( array(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( array_integer(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( array_integer(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) ); |
| CALL_SUBTEST_2( comparisons(Array22f()) ); |
| CALL_SUBTEST_3( comparisons(Array44d()) ); |
| CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) ); |
| CALL_SUBTEST_2( min_max(Array22f()) ); |
| CALL_SUBTEST_3( min_max(Array44d()) ); |
| CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) ); |
| CALL_SUBTEST_2( array_real(Array22f()) ); |
| CALL_SUBTEST_3( array_real(Array44d()) ); |
| CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) ); |
| CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_6( int_pow_test() ); |
| CALL_SUBTEST_7( mixed_pow_test() ); |
| } |
| |
| VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value)); |
| VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value)); |
| VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value)); |
| typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr; |
| VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type, |
| ArrayBase<Xpr> |
| >::value)); |
| } |