blob: 273b94df892df8c39354e909bec68ddc2216b0f5 [file] [log] [blame]
 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2009 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include template void jacobi(const MatrixType& m = MatrixType()) { Index rows = m.rows(); Index cols = m.cols(); enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; typedef Matrix JacobiVector; const MatrixType a(MatrixType::Random(rows, cols)); JacobiVector v = JacobiVector::Random().normalized(); JacobiScalar c = v.x(), s = v.y(); JacobiRotation rot(c, s); { Index p = internal::random(0, rows-1); Index q; do { q = internal::random(0, rows-1); } while (q == p); MatrixType b = a; b.applyOnTheLeft(p, q, rot); VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q)); VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q)); } { Index p = internal::random(0, cols-1); Index q; do { q = internal::random(0, cols-1); } while (q == p); MatrixType b = a; b.applyOnTheRight(p, q, rot); VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q)); VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q)); } } EIGEN_DECLARE_TEST(jacobi) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( jacobi() )); CALL_SUBTEST_2(( jacobi() )); CALL_SUBTEST_3(( jacobi() )); CALL_SUBTEST_3(( jacobi >() )); CALL_SUBTEST_1(( jacobi, float>() )); CALL_SUBTEST_2(( jacobi, double>() )); CALL_SUBTEST_3(( jacobi, 4, 4, RowMajor>, float>() )); CALL_SUBTEST_3(( jacobi, 4, 4, RowMajor>, std::complex >() )); int r = internal::random(2, internal::random(1,EIGEN_TEST_MAX_SIZE)/2), c = internal::random(2, internal::random(1,EIGEN_TEST_MAX_SIZE)/2); CALL_SUBTEST_4(( jacobi(MatrixXf(r,c)) )); CALL_SUBTEST_5(( jacobi(MatrixXcd(r,c)) )); CALL_SUBTEST_5(( jacobi >(MatrixXcd(r,c)) )); // complex is really important to test as it is the only way to cover conjugation issues in certain unaligned paths CALL_SUBTEST_6(( jacobi(MatrixXcf(r,c)) )); CALL_SUBTEST_6(( jacobi >(MatrixXcf(r,c)) )); TEST_SET_BUT_UNUSED_VARIABLE(r); TEST_SET_BUT_UNUSED_VARIABLE(c); } }