| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| #include "solverbase.h" |
| using namespace std; |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { |
| return m.cwiseAbs().colwise().sum().maxCoeff(); |
| } |
| |
| template<typename MatrixType> void lu_non_invertible() |
| { |
| STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value )); |
| |
| typedef typename MatrixType::RealScalar RealScalar; |
| /* this test covers the following files: |
| LU.h |
| */ |
| Index rows, cols, cols2; |
| if(MatrixType::RowsAtCompileTime==Dynamic) |
| { |
| rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); |
| } |
| else |
| { |
| rows = MatrixType::RowsAtCompileTime; |
| } |
| if(MatrixType::ColsAtCompileTime==Dynamic) |
| { |
| cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); |
| cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE); |
| } |
| else |
| { |
| cols2 = cols = MatrixType::ColsAtCompileTime; |
| } |
| |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| }; |
| typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType; |
| typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType; |
| typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> |
| CMatrixType; |
| typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> |
| RMatrixType; |
| |
| Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); |
| |
| // The image of the zero matrix should consist of a single (zero) column vector |
| VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1)); |
| |
| // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols. |
| KernelMatrixType kernel = MatrixType::Zero(rows,cols).fullPivLu().kernel(); |
| VERIFY((kernel.fullPivLu().isInvertible())); |
| |
| MatrixType m1(rows, cols), m3(rows, cols2); |
| CMatrixType m2(cols, cols2); |
| createRandomPIMatrixOfRank(rank, rows, cols, m1); |
| |
| FullPivLU<MatrixType> lu; |
| |
| // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank |
| // of singular values are either 0 or 1. |
| // So it's not clear at all that the epsilon should play any role there. |
| lu.setThreshold(RealScalar(0.01)); |
| lu.compute(m1); |
| |
| MatrixType u(rows,cols); |
| u = lu.matrixLU().template triangularView<Upper>(); |
| RMatrixType l = RMatrixType::Identity(rows,rows); |
| l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>() |
| = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols)); |
| |
| VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u); |
| |
| KernelMatrixType m1kernel = lu.kernel(); |
| ImageMatrixType m1image = lu.image(m1); |
| |
| VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); |
| VERIFY(rank == lu.rank()); |
| VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); |
| VERIFY(!lu.isInjective()); |
| VERIFY(!lu.isInvertible()); |
| VERIFY(!lu.isSurjective()); |
| VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1); |
| VERIFY(m1image.fullPivLu().rank() == rank); |
| VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image); |
| |
| check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2); |
| |
| m2 = CMatrixType::Random(cols,cols2); |
| m3 = m1*m2; |
| m2 = CMatrixType::Random(cols,cols2); |
| // test that the code, which does resize(), may be applied to an xpr |
| m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3); |
| VERIFY_IS_APPROX(m3, m1*m2); |
| } |
| |
| template<typename MatrixType> void lu_invertible() |
| { |
| /* this test covers the following files: |
| FullPivLU.h |
| */ |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| Index size = MatrixType::RowsAtCompileTime; |
| if( size==Dynamic) |
| size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE); |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| FullPivLU<MatrixType> lu; |
| lu.setThreshold(RealScalar(0.01)); |
| do { |
| m1 = MatrixType::Random(size,size); |
| lu.compute(m1); |
| } while(!lu.isInvertible()); |
| |
| VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); |
| VERIFY(0 == lu.dimensionOfKernel()); |
| VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector |
| VERIFY(size == lu.rank()); |
| VERIFY(lu.isInjective()); |
| VERIFY(lu.isSurjective()); |
| VERIFY(lu.isInvertible()); |
| VERIFY(lu.image(m1).fullPivLu().isInvertible()); |
| |
| check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size); |
| |
| MatrixType m1_inverse = lu.inverse(); |
| m3 = MatrixType::Random(size,size); |
| m2 = lu.solve(m3); |
| VERIFY_IS_APPROX(m2, m1_inverse*m3); |
| |
| RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse); |
| const RealScalar rcond_est = lu.rcond(); |
| // Verify that the estimated condition number is within a factor of 10 of the |
| // truth. |
| VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); |
| |
| // Regression test for Bug 302 |
| MatrixType m4 = MatrixType::Random(size,size); |
| VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4); |
| } |
| |
| template<typename MatrixType> void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime) |
| { |
| /* this test covers the following files: |
| PartialPivLU.h |
| */ |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| m1.setRandom(); |
| PartialPivLU<MatrixType> plu(m1); |
| |
| STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value )); |
| |
| VERIFY_IS_APPROX(m1, plu.reconstructedMatrix()); |
| |
| check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size); |
| |
| MatrixType m1_inverse = plu.inverse(); |
| m3 = MatrixType::Random(size,size); |
| m2 = plu.solve(m3); |
| VERIFY_IS_APPROX(m2, m1_inverse*m3); |
| |
| RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse); |
| const RealScalar rcond_est = plu.rcond(); |
| // Verify that the estimate is within a factor of 10 of the truth. |
| VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); |
| } |
| |
| template<typename MatrixType> void lu_verify_assert() |
| { |
| MatrixType tmp; |
| |
| FullPivLU<MatrixType> lu; |
| VERIFY_RAISES_ASSERT(lu.matrixLU()) |
| VERIFY_RAISES_ASSERT(lu.permutationP()) |
| VERIFY_RAISES_ASSERT(lu.permutationQ()) |
| VERIFY_RAISES_ASSERT(lu.kernel()) |
| VERIFY_RAISES_ASSERT(lu.image(tmp)) |
| VERIFY_RAISES_ASSERT(lu.solve(tmp)) |
| VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(lu.determinant()) |
| VERIFY_RAISES_ASSERT(lu.rank()) |
| VERIFY_RAISES_ASSERT(lu.dimensionOfKernel()) |
| VERIFY_RAISES_ASSERT(lu.isInjective()) |
| VERIFY_RAISES_ASSERT(lu.isSurjective()) |
| VERIFY_RAISES_ASSERT(lu.isInvertible()) |
| VERIFY_RAISES_ASSERT(lu.inverse()) |
| |
| PartialPivLU<MatrixType> plu; |
| VERIFY_RAISES_ASSERT(plu.matrixLU()) |
| VERIFY_RAISES_ASSERT(plu.permutationP()) |
| VERIFY_RAISES_ASSERT(plu.solve(tmp)) |
| VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(plu.determinant()) |
| VERIFY_RAISES_ASSERT(plu.inverse()) |
| } |
| |
| EIGEN_DECLARE_TEST(lu) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() ); |
| CALL_SUBTEST_1( lu_invertible<Matrix3f>() ); |
| CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() ); |
| CALL_SUBTEST_1( lu_partial_piv<Matrix3f>() ); |
| |
| CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) ); |
| CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) ); |
| CALL_SUBTEST_2( lu_partial_piv<Matrix2d>() ); |
| CALL_SUBTEST_2( lu_partial_piv<Matrix4d>() ); |
| CALL_SUBTEST_2( (lu_partial_piv<Matrix<double,6,6> >()) ); |
| |
| CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() ); |
| CALL_SUBTEST_3( lu_invertible<MatrixXf>() ); |
| CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() ); |
| |
| CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() ); |
| CALL_SUBTEST_4( lu_invertible<MatrixXd>() ); |
| CALL_SUBTEST_4( lu_partial_piv<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ); |
| CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() ); |
| |
| CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() ); |
| CALL_SUBTEST_5( lu_invertible<MatrixXcf>() ); |
| CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() ); |
| |
| CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() ); |
| CALL_SUBTEST_6( lu_invertible<MatrixXcd>() ); |
| CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ); |
| CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() ); |
| |
| CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() )); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) ); |
| CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); ); |
| } |
| } |