| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename T, typename U> |
| bool check_if_equal_or_nans(const T& actual, const U& expected) { |
| return (numext::equal_strict(actual, expected) || ((numext::isnan)(actual) && (numext::isnan)(expected))); |
| } |
| |
| template<typename T, typename U> |
| bool check_if_equal_or_nans(const std::complex<T>& actual, const std::complex<U>& expected) { |
| return check_if_equal_or_nans(numext::real(actual), numext::real(expected)) |
| && check_if_equal_or_nans(numext::imag(actual), numext::imag(expected)); |
| } |
| |
| template<typename T, typename U> |
| bool test_is_equal_or_nans(const T& actual, const U& expected) |
| { |
| if (check_if_equal_or_nans(actual, expected)) { |
| return true; |
| } |
| |
| // false: |
| std::cerr |
| << "\n actual = " << actual |
| << "\n expected = " << expected << "\n\n"; |
| return false; |
| } |
| |
| #define VERIFY_IS_EQUAL_OR_NANS(a, b) VERIFY(test_is_equal_or_nans(a, b)) |
| |
| template<typename T> |
| void check_abs() { |
| typedef typename NumTraits<T>::Real Real; |
| Real zero(0); |
| |
| if(NumTraits<T>::IsSigned) |
| VERIFY_IS_EQUAL(numext::abs(-T(1)), T(1)); |
| VERIFY_IS_EQUAL(numext::abs(T(0)), T(0)); |
| VERIFY_IS_EQUAL(numext::abs(T(1)), T(1)); |
| |
| for(int k=0; k<100; ++k) |
| { |
| T x = internal::random<T>(); |
| if(!internal::is_same<T,bool>::value) |
| x = x/Real(2); |
| if(NumTraits<T>::IsSigned) |
| { |
| VERIFY_IS_EQUAL(numext::abs(x), numext::abs(-x)); |
| VERIFY( numext::abs(-x) >= zero ); |
| } |
| VERIFY( numext::abs(x) >= zero ); |
| VERIFY_IS_APPROX( numext::abs2(x), numext::abs2(numext::abs(x)) ); |
| } |
| } |
| |
| template<typename T> |
| void check_arg() { |
| typedef typename NumTraits<T>::Real Real; |
| VERIFY_IS_EQUAL(numext::abs(T(0)), T(0)); |
| VERIFY_IS_EQUAL(numext::abs(T(1)), T(1)); |
| |
| for(int k=0; k<100; ++k) |
| { |
| T x = internal::random<T>(); |
| Real y = numext::arg(x); |
| VERIFY_IS_APPROX( y, std::arg(x) ); |
| } |
| } |
| |
| template<typename T> |
| struct check_sqrt_impl { |
| static void run() { |
| for (int i=0; i<1000; ++i) { |
| const T x = numext::abs(internal::random<T>()); |
| const T sqrtx = numext::sqrt(x); |
| VERIFY_IS_APPROX(sqrtx*sqrtx, x); |
| } |
| |
| // Corner cases. |
| const T zero = T(0); |
| const T one = T(1); |
| const T inf = std::numeric_limits<T>::infinity(); |
| const T nan = std::numeric_limits<T>::quiet_NaN(); |
| VERIFY_IS_EQUAL(numext::sqrt(zero), zero); |
| VERIFY_IS_EQUAL(numext::sqrt(inf), inf); |
| VERIFY((numext::isnan)(numext::sqrt(nan))); |
| VERIFY((numext::isnan)(numext::sqrt(-one))); |
| } |
| }; |
| |
| template<typename T> |
| struct check_sqrt_impl<std::complex<T> > { |
| static void run() { |
| typedef typename std::complex<T> ComplexT; |
| |
| for (int i=0; i<1000; ++i) { |
| const ComplexT x = internal::random<ComplexT>(); |
| const ComplexT sqrtx = numext::sqrt(x); |
| VERIFY_IS_APPROX(sqrtx*sqrtx, x); |
| } |
| |
| // Corner cases. |
| const T zero = T(0); |
| const T one = T(1); |
| const T inf = std::numeric_limits<T>::infinity(); |
| const T nan = std::numeric_limits<T>::quiet_NaN(); |
| |
| // Set of corner cases from https://en.cppreference.com/w/cpp/numeric/complex/sqrt |
| const int kNumCorners = 20; |
| const ComplexT corners[kNumCorners][2] = { |
| {ComplexT(zero, zero), ComplexT(zero, zero)}, |
| {ComplexT(-zero, zero), ComplexT(zero, zero)}, |
| {ComplexT(zero, -zero), ComplexT(zero, zero)}, |
| {ComplexT(-zero, -zero), ComplexT(zero, zero)}, |
| {ComplexT(one, inf), ComplexT(inf, inf)}, |
| {ComplexT(nan, inf), ComplexT(inf, inf)}, |
| {ComplexT(one, -inf), ComplexT(inf, -inf)}, |
| {ComplexT(nan, -inf), ComplexT(inf, -inf)}, |
| {ComplexT(-inf, one), ComplexT(zero, inf)}, |
| {ComplexT(inf, one), ComplexT(inf, zero)}, |
| {ComplexT(-inf, -one), ComplexT(zero, -inf)}, |
| {ComplexT(inf, -one), ComplexT(inf, -zero)}, |
| {ComplexT(-inf, nan), ComplexT(nan, inf)}, |
| {ComplexT(inf, nan), ComplexT(inf, nan)}, |
| {ComplexT(zero, nan), ComplexT(nan, nan)}, |
| {ComplexT(one, nan), ComplexT(nan, nan)}, |
| {ComplexT(nan, zero), ComplexT(nan, nan)}, |
| {ComplexT(nan, one), ComplexT(nan, nan)}, |
| {ComplexT(nan, -one), ComplexT(nan, nan)}, |
| {ComplexT(nan, nan), ComplexT(nan, nan)}, |
| }; |
| |
| for (int i=0; i<kNumCorners; ++i) { |
| const ComplexT& x = corners[i][0]; |
| const ComplexT sqrtx = corners[i][1]; |
| VERIFY_IS_EQUAL_OR_NANS(numext::sqrt(x), sqrtx); |
| } |
| } |
| }; |
| |
| template<typename T> |
| void check_sqrt() { |
| check_sqrt_impl<T>::run(); |
| } |
| |
| template<typename T> |
| struct check_rsqrt_impl { |
| static void run() { |
| const T zero = T(0); |
| const T one = T(1); |
| const T inf = std::numeric_limits<T>::infinity(); |
| const T nan = std::numeric_limits<T>::quiet_NaN(); |
| |
| for (int i=0; i<1000; ++i) { |
| const T x = numext::abs(internal::random<T>()); |
| const T rsqrtx = numext::rsqrt(x); |
| const T invx = one / x; |
| VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx); |
| } |
| |
| // Corner cases. |
| VERIFY_IS_EQUAL(numext::rsqrt(zero), inf); |
| VERIFY_IS_EQUAL(numext::rsqrt(inf), zero); |
| VERIFY((numext::isnan)(numext::rsqrt(nan))); |
| VERIFY((numext::isnan)(numext::rsqrt(-one))); |
| } |
| }; |
| |
| template<typename T> |
| struct check_rsqrt_impl<std::complex<T> > { |
| static void run() { |
| typedef typename std::complex<T> ComplexT; |
| const T zero = T(0); |
| const T one = T(1); |
| const T inf = std::numeric_limits<T>::infinity(); |
| const T nan = std::numeric_limits<T>::quiet_NaN(); |
| |
| for (int i=0; i<1000; ++i) { |
| const ComplexT x = internal::random<ComplexT>(); |
| const ComplexT invx = ComplexT(one, zero) / x; |
| const ComplexT rsqrtx = numext::rsqrt(x); |
| VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx); |
| } |
| |
| // GCC and MSVC differ in their treatment of 1/(0 + 0i) |
| // GCC/clang = (inf, nan) |
| // MSVC = (nan, nan) |
| // and 1 / (x + inf i) |
| // GCC/clang = (0, 0) |
| // MSVC = (nan, nan) |
| #if (EIGEN_COMP_GNUC) |
| { |
| const int kNumCorners = 20; |
| const ComplexT corners[kNumCorners][2] = { |
| // Only consistent across GCC, clang |
| {ComplexT(zero, zero), ComplexT(zero, zero)}, |
| {ComplexT(-zero, zero), ComplexT(zero, zero)}, |
| {ComplexT(zero, -zero), ComplexT(zero, zero)}, |
| {ComplexT(-zero, -zero), ComplexT(zero, zero)}, |
| {ComplexT(one, inf), ComplexT(inf, inf)}, |
| {ComplexT(nan, inf), ComplexT(inf, inf)}, |
| {ComplexT(one, -inf), ComplexT(inf, -inf)}, |
| {ComplexT(nan, -inf), ComplexT(inf, -inf)}, |
| // Consistent across GCC, clang, MSVC |
| {ComplexT(-inf, one), ComplexT(zero, inf)}, |
| {ComplexT(inf, one), ComplexT(inf, zero)}, |
| {ComplexT(-inf, -one), ComplexT(zero, -inf)}, |
| {ComplexT(inf, -one), ComplexT(inf, -zero)}, |
| {ComplexT(-inf, nan), ComplexT(nan, inf)}, |
| {ComplexT(inf, nan), ComplexT(inf, nan)}, |
| {ComplexT(zero, nan), ComplexT(nan, nan)}, |
| {ComplexT(one, nan), ComplexT(nan, nan)}, |
| {ComplexT(nan, zero), ComplexT(nan, nan)}, |
| {ComplexT(nan, one), ComplexT(nan, nan)}, |
| {ComplexT(nan, -one), ComplexT(nan, nan)}, |
| {ComplexT(nan, nan), ComplexT(nan, nan)}, |
| }; |
| |
| for (int i=0; i<kNumCorners; ++i) { |
| const ComplexT& x = corners[i][0]; |
| const ComplexT rsqrtx = ComplexT(one, zero) / corners[i][1]; |
| VERIFY_IS_EQUAL_OR_NANS(numext::rsqrt(x), rsqrtx); |
| } |
| } |
| #endif |
| } |
| }; |
| |
| template<typename T> |
| void check_rsqrt() { |
| check_rsqrt_impl<T>::run(); |
| } |
| |
| EIGEN_DECLARE_TEST(numext) { |
| for(int k=0; k<g_repeat; ++k) |
| { |
| CALL_SUBTEST( check_abs<bool>() ); |
| CALL_SUBTEST( check_abs<signed char>() ); |
| CALL_SUBTEST( check_abs<unsigned char>() ); |
| CALL_SUBTEST( check_abs<short>() ); |
| CALL_SUBTEST( check_abs<unsigned short>() ); |
| CALL_SUBTEST( check_abs<int>() ); |
| CALL_SUBTEST( check_abs<unsigned int>() ); |
| CALL_SUBTEST( check_abs<long>() ); |
| CALL_SUBTEST( check_abs<unsigned long>() ); |
| CALL_SUBTEST( check_abs<half>() ); |
| CALL_SUBTEST( check_abs<bfloat16>() ); |
| CALL_SUBTEST( check_abs<float>() ); |
| CALL_SUBTEST( check_abs<double>() ); |
| CALL_SUBTEST( check_abs<long double>() ); |
| CALL_SUBTEST( check_abs<std::complex<float> >() ); |
| CALL_SUBTEST( check_abs<std::complex<double> >() ); |
| |
| CALL_SUBTEST( check_arg<std::complex<float> >() ); |
| CALL_SUBTEST( check_arg<std::complex<double> >() ); |
| |
| CALL_SUBTEST( check_sqrt<float>() ); |
| CALL_SUBTEST( check_sqrt<double>() ); |
| CALL_SUBTEST( check_sqrt<std::complex<float> >() ); |
| CALL_SUBTEST( check_sqrt<std::complex<double> >() ); |
| |
| CALL_SUBTEST( check_rsqrt<float>() ); |
| CALL_SUBTEST( check_rsqrt<double>() ); |
| CALL_SUBTEST( check_rsqrt<std::complex<float> >() ); |
| CALL_SUBTEST( check_rsqrt<std::complex<double> >() ); |
| } |
| } |