| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <typeinfo> |
| |
| #if defined __GNUC__ && __GNUC__>=6 |
| #pragma GCC diagnostic ignored "-Wignored-attributes" |
| #endif |
| // using namespace Eigen; |
| |
| bool g_first_pass = true; |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template<typename T> T negate(const T& x) { return -x; } |
| |
| template<typename T> |
| Map<const Array<unsigned char,sizeof(T),1> > |
| bits(const T& x) { |
| return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x)); |
| } |
| |
| // The following implement bitwise operations on floating point types |
| template<typename T,typename Bits,typename Func> |
| T apply_bit_op(Bits a, Bits b, Func f) { |
| Array<unsigned char,sizeof(T),1> data; |
| T res; |
| for(Index i = 0; i < data.size(); ++i) |
| data[i] = f(a[i], b[i]); |
| // Note: The reinterpret_cast works around GCC's class-memaccess warnings: |
| std::memcpy(reinterpret_cast<unsigned char*>(&res), data.data(), sizeof(T)); |
| return res; |
| } |
| |
| #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \ |
| template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \ |
| return apply_bit_op<T>(bits(a),bits(b),FUNC); \ |
| } |
| |
| #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,bfloat16) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>) |
| |
| EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>()) |
| EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>()) |
| EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>()) |
| struct bit_andnot{ |
| template<typename T> T |
| operator()(T a, T b) const { return a & (~b); } |
| }; |
| EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot()) |
| template<typename T> |
| bool biteq(T a, T b) { |
| return (bits(a) == bits(b)).all(); |
| } |
| |
| } |
| |
| namespace test { |
| |
| // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. |
| template<typename Scalar> EIGEN_DONT_INLINE |
| bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) |
| { |
| return internal::isMuchSmallerThan(a-b, refvalue); |
| } |
| |
| template<typename Scalar> |
| inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) { |
| std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(ref,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(vec,size) << "]\n"; |
| } |
| |
| template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) |
| { |
| for (int i=0; i<size; ++i) |
| { |
| if (!isApproxAbs(a[i],b[i],refvalue)) |
| { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) |
| { |
| for (int i=0; i<size; ++i) |
| { |
| if ( numext::not_equal_strict(a[i], b[i]) && !internal::isApprox(a[i],b[i]) |
| && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) ) |
| { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template<typename Scalar> bool areEqual(const Scalar* a, const Scalar* b, int size) |
| { |
| for (int i=0; i<size; ++i) |
| { |
| if ( numext::not_equal_strict(a[i], b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) ) |
| { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #define CHECK_CWISE1(REFOP, POP) { \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i]); \ |
| internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| // Checks component-wise for input of size N. All of data1, data2, and ref |
| // should have size at least ceil(N/PacketSize)*PacketSize to avoid memory |
| // access errors. |
| #define CHECK_CWISE1_N(REFOP, POP, N) { \ |
| for (int i=0; i<N; ++i) \ |
| ref[i] = REFOP(data1[i]); \ |
| for (int j=0; j<N; j+=PacketSize) \ |
| internal::pstore(data2 + j, POP(internal::pload<Packet>(data1 + j))); \ |
| VERIFY(test::areApprox(ref, data2, N) && #POP); \ |
| } |
| |
| template<bool Cond,typename Packet> |
| struct packet_helper |
| { |
| template<typename T> |
| inline Packet load(const T* from) const { return internal::pload<Packet>(from); } |
| |
| template<typename T> |
| inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); } |
| |
| template<typename T> |
| inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); } |
| |
| template<typename T> |
| inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } |
| |
| template<typename T> |
| inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); } |
| |
| template<typename T> |
| inline Packet& forward_reference(Packet& packet, T& /*scalar*/) const { return packet; } |
| }; |
| |
| template<typename Packet> |
| struct packet_helper<false,Packet> |
| { |
| template<typename T> |
| inline T load(const T* from) const { return *from; } |
| |
| template<typename T> |
| inline T loadu(const T* from) const { return *from; } |
| |
| template<typename T> |
| inline T load(const T* from, unsigned long long) const { return *from; } |
| |
| template<typename T> |
| inline void store(T* to, const T& x) const { *to = x; } |
| |
| template<typename T> |
| inline void store(T* to, const T& x, unsigned long long) const { *to = x; } |
| |
| template<typename T> |
| inline T& forward_reference(Packet& /*packet*/, T& scalar) const { return scalar; } |
| }; |
| |
| #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ |
| test::packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = Scalar(REFOP(data1[i])); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE1_EXACT_IF(COND, REFOP, POP) if(COND) { \ |
| test::packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = Scalar(REFOP(data1[i])); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(test::areEqual(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \ |
| test::packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = Scalar(REFOP(data1[i], data1[i+PacketSize])); \ |
| h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| // One input, one output by reference. |
| #define CHECK_CWISE1_BYREF1_IF(COND, REFOP, POP) if(COND) { \ |
| test::packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = Scalar(REFOP(data1[i], ref[i+PacketSize])); \ |
| Packet pout; \ |
| Scalar sout; \ |
| h.store(data2, POP(h.load(data1), h.forward_reference(pout, sout))); \ |
| h.store(data2+PacketSize, h.forward_reference(pout, sout)); \ |
| VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) \ |
| ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize], \ |
| data1[i + 2 * PacketSize])); \ |
| h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \ |
| h.load(data1 + 2 * PacketSize))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| // Specialize the runall struct in your test file by defining run(). |
| template< |
| typename Scalar, |
| typename PacketType, |
| bool IsComplex = NumTraits<Scalar>::IsComplex, |
| bool IsInteger = NumTraits<Scalar>::IsInteger> |
| struct runall; |
| |
| template< |
| typename Scalar, |
| typename PacketType = typename internal::packet_traits<Scalar>::type, |
| bool Vectorized = internal::packet_traits<Scalar>::Vectorizable, |
| bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value > |
| struct runner; |
| |
| template<typename Scalar,typename PacketType> |
| struct runner<Scalar,PacketType,true,true> |
| { |
| static void run() { |
| runall<Scalar,PacketType>::run(); |
| runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run(); |
| } |
| }; |
| |
| template<typename Scalar,typename PacketType> |
| struct runner<Scalar,PacketType,true,false> |
| { |
| static void run() { |
| runall<Scalar,PacketType>::run(); |
| } |
| }; |
| |
| template<typename Scalar,typename PacketType> |
| struct runner<Scalar,PacketType,false,false> |
| { |
| static void run() { |
| runall<Scalar,PacketType>::run(); |
| } |
| }; |
| |
| } |
| } |