| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_RUNTIME_NO_MALLOC |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template<typename MatrixType> void real_qz(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| RealQZ.h |
| */ |
| using std::abs; |
| |
| Index dim = m.cols(); |
| |
| MatrixType A = MatrixType::Random(dim,dim), |
| B = MatrixType::Random(dim,dim); |
| |
| |
| // Regression test for bug 985: Randomly set rows or columns to zero |
| Index k=internal::random<Index>(0, dim-1); |
| switch(internal::random<int>(0,10)) { |
| case 0: |
| A.row(k).setZero(); break; |
| case 1: |
| A.col(k).setZero(); break; |
| case 2: |
| B.row(k).setZero(); break; |
| case 3: |
| B.col(k).setZero(); break; |
| default: |
| break; |
| } |
| |
| RealQZ<MatrixType> qz(dim); |
| // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition |
| //Eigen::internal::set_is_malloc_allowed(false); |
| qz.compute(A,B); |
| //Eigen::internal::set_is_malloc_allowed(true); |
| |
| VERIFY_IS_EQUAL(qz.info(), Success); |
| // check for zeros |
| bool all_zeros = true; |
| for (Index i=0; i<A.cols(); i++) |
| for (Index j=0; j<i; j++) { |
| if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j)))) |
| { |
| std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl; |
| all_zeros = false; |
| } |
| if (j<i-1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j)))) |
| { |
| std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl; |
| all_zeros = false; |
| } |
| if (j==i-1 && j>0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) && |
| !numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1)))) |
| { |
| std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl; |
| all_zeros = false; |
| } |
| } |
| VERIFY_IS_EQUAL(all_zeros, true); |
| VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A); |
| VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); |
| VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim)); |
| VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim)); |
| } |
| |
| EIGEN_DECLARE_TEST(real_qz) |
| { |
| int s = 0; |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( real_qz(Matrix4f()) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) ); |
| |
| // some trivial but implementation-wise tricky cases |
| CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) ); |
| CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) ); |
| CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) ); |
| CALL_SUBTEST_4( real_qz(Matrix2d()) ); |
| } |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |