| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /** \class TensorContraction |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor contraction class. |
| * |
| * |
| */ |
| namespace internal { |
| |
| template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType> |
| struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> > |
| { |
| // Type promotion to handle the case where the types of the lhs and the rhs are different. |
| typedef typename gebp_traits<std::remove_const_t<typename LhsXprType::Scalar>, |
| std::remove_const_t<typename RhsXprType::Scalar>>::ResScalar Scalar; |
| |
| typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind, |
| typename traits<RhsXprType>::StorageKind>::ret StorageKind; |
| typedef typename promote_index_type<typename traits<LhsXprType>::Index, |
| typename traits<RhsXprType>::Index>::type Index; |
| typedef typename LhsXprType::Nested LhsNested; |
| typedef typename RhsXprType::Nested RhsNested; |
| typedef std::remove_reference_t<LhsNested> LhsNested_; |
| typedef std::remove_reference_t<RhsNested> RhsNested_; |
| |
| // From NumDims below. |
| static constexpr int NumDimensions = traits<LhsXprType>::NumDimensions + traits<RhsXprType>::NumDimensions - 2 * array_size<Dimensions>::value; |
| static constexpr int Layout = traits<LhsXprType>::Layout; |
| typedef std::conditional_t<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val, |
| typename traits<LhsXprType>::PointerType, |
| typename traits<RhsXprType>::PointerType> |
| PointerType; |
| |
| enum { |
| Flags = 0 |
| }; |
| }; |
| |
| template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType> |
| struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, Eigen::Dense> |
| { |
| typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>& type; |
| }; |
| |
| template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType> |
| struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type> |
| { |
| typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> type; |
| }; |
| |
| template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename OutputKernelType_, typename Device_> |
| struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > { |
| typedef Indices_ Indices; |
| typedef LeftArgType_ LeftArgType; |
| typedef RightArgType_ RightArgType; |
| typedef OutputKernelType_ OutputKernelType; |
| typedef Device_ Device; |
| |
| // From NumDims below. |
| static constexpr int NumDimensions = traits<LeftArgType_>::NumDimensions + traits<RightArgType_>::NumDimensions - 2 * array_size<Indices_>::value; |
| }; |
| |
| // Helper class to allocate and deallocate temporary memory for packed buffers. |
| template <typename LhsScalar, typename RhsScalar> |
| struct TensorContractionBlockMemAllocator { |
| typedef void* BlockMemHandle; |
| |
| template <typename Device> |
| EIGEN_DEVICE_FUNC static BlockMemHandle allocate(Device& d, const Index bm, |
| const Index bk, |
| const Index bn, |
| LhsScalar** lhs_block, |
| RhsScalar** rhs_block) { |
| eigen_assert(lhs_block); |
| eigen_assert(rhs_block); |
| BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn); |
| char* block_mem = static_cast<char*>(d.allocate(sz.lhs_size + sz.rhs_size)); |
| eigen_assert(block_mem); |
| *lhs_block = reinterpret_cast<LhsScalar*>(block_mem); |
| *rhs_block = reinterpret_cast<RhsScalar*>(block_mem + sz.lhs_size); |
| return block_mem; |
| } |
| |
| template <typename Device> |
| EIGEN_DEVICE_FUNC static BlockMemHandle allocateSlices( |
| Device& d, const Index bm, const Index bk, const Index bn, |
| const Index num_lhs, const Index num_rhs, const Index num_slices, |
| std::vector<LhsScalar*>* lhs_blocks, |
| std::vector<RhsScalar*>* rhs_blocks) { |
| eigen_assert(num_slices > 0); |
| eigen_assert(num_lhs >= 0 && num_rhs >= 0); |
| eigen_assert(num_lhs == 0 || lhs_blocks); |
| eigen_assert(num_rhs == 0 || rhs_blocks); |
| BlockSizes sz = ComputeLhsRhsBlockSizes(bm, bk, bn); |
| void* block_mem = d.allocate( |
| (num_lhs * sz.lhs_size + num_rhs * sz.rhs_size) * num_slices); |
| eigen_assert(block_mem); |
| char* mem = static_cast<char*>(block_mem); |
| |
| for (Index x = 0; x < num_slices; x++) { |
| if (num_lhs > 0) lhs_blocks[x].resize(num_lhs); |
| for (Index m = 0; m < num_lhs; m++) { |
| lhs_blocks[x][m] = reinterpret_cast<LhsScalar*>(mem); |
| mem += sz.lhs_size; |
| } |
| if (num_rhs > 0) rhs_blocks[x].resize(num_rhs); |
| for (Index n = 0; n < num_rhs; n++) { |
| rhs_blocks[x][n] = reinterpret_cast<RhsScalar*>(mem); |
| mem += sz.rhs_size; |
| } |
| } |
| |
| return block_mem; |
| } |
| |
| template <typename Device> |
| EIGEN_DEVICE_FUNC static void deallocate(Device& d, BlockMemHandle handle) { |
| d.deallocate(handle); |
| } |
| |
| private: |
| struct BlockSizes { |
| Index lhs_size; |
| Index rhs_size; |
| }; |
| EIGEN_DEVICE_FUNC static BlockSizes ComputeLhsRhsBlockSizes(const Index bm, |
| const Index bk, |
| const Index bn) { |
| Index align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1); |
| BlockSizes sz; |
| sz.lhs_size = divup<Index>(bm * bk * sizeof(LhsScalar), align) * align; |
| sz.rhs_size = divup<Index>(bn * bk * sizeof(RhsScalar), align) * align; |
| return sz; |
| } |
| }; |
| |
| // WARNING: In this code we assume that Lhs and Rhs tensor expressions are in |
| // ColMajor storage order. This property is guaranteed by the |
| // TensorContractionOp evaluator. TensorContractionKernel specifies how we pack |
| // blocks of Lhs and Rhs tensor expressions, and how we invoke matrix |
| // multiplication for these blocks. Default tensor contraction uses |
| // gemm_pack_rhs, gemm_pack_lhs and gebp_kernel from Eigen Core (see |
| // GeneralBlocPanelKernel.h for details). |
| // |
| // By specializing contraction kernels we can use other low level libraries to |
| // perform matrix multiplication, and still rely on Eigen contraction evaluator. |
| // This also includes full support in TensorContractionThreadPool, assuming that |
| // underlying gemm do not use it's own threading. |
| // |
| // - ResScalar/LhsScalar/RhsScalar - scalar type for the result of |
| // multiplication, lhs tensor and rhs tensor respectively. |
| // |
| // - StorageIndex - index type for the tensor expressions. In practice almost |
| // always is Eigen::Index. |
| // |
| // - OutputMapper provides access to the memory of the output matrix. In |
| // practice it's always column major blas_data_mapper (it must be of ResScalar |
| // type). |
| // |
| // - LhsMapper/RhsMapper similarly to blas_data_mapper provide a two dimensional |
| // view into the Lhs/Rhs tensor expressions. In practice it's |
| // TensorContractionInputMapper, or some specialization of it based on the |
| // type of tensor expression (e.g. TensorImagePatchOp has optimized input |
| // mapper). |
| template <typename ResScalar, typename LhsScalar, typename RhsScalar, |
| typename StorageIndex, typename OutputMapper, typename LhsMapper, |
| typename RhsMapper> |
| struct TensorContractionKernel { |
| // True if `invoke()` supports `beta` in `C <- alpha * A * B + beta * C` |
| // (otherwise beta should be always equal to 1). |
| enum { HasBeta = false }; |
| |
| EIGEN_DEVICE_FUNC |
| TensorContractionKernel(StorageIndex m_, StorageIndex k_, StorageIndex n_, |
| StorageIndex bm_, StorageIndex bk_, StorageIndex bn_) |
| : m(m_), k(k_), n(n_), bm(bm_), bk(bk_), bn(bn_) {} |
| |
| // Pack blocks of Lhs and Rhs into contiguous blocks in memory. |
| typedef LhsScalar* LhsBlock; |
| typedef RhsScalar* RhsBlock; |
| |
| // Packed Lhs/Rhs block memory allocator. |
| typedef TensorContractionBlockMemAllocator<LhsScalar, RhsScalar> |
| BlockMemAllocator; |
| typedef typename BlockMemAllocator::BlockMemHandle BlockMemHandle; |
| |
| typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits; |
| |
| typedef internal::gemm_pack_lhs< |
| LhsScalar, StorageIndex, typename LhsMapper::SubMapper, Traits::mr, |
| Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> |
| LhsPacker; |
| |
| typedef internal::gemm_pack_rhs<RhsScalar, StorageIndex, |
| typename RhsMapper::SubMapper, Traits::nr, |
| ColMajor> |
| RhsPacker; |
| |
| typedef internal::gebp_kernel<LhsScalar, RhsScalar, StorageIndex, |
| OutputMapper, Traits::mr, Traits::nr, |
| /*ConjugateLhs*/ false, /*ConjugateRhs*/ false> |
| GebpKernel; |
| |
| template <typename Device> |
| EIGEN_DEVICE_FUNC BlockMemHandle allocate(Device& d, LhsBlock* lhs_block, |
| RhsBlock* rhs_block) { |
| return BlockMemAllocator::allocate(d, bm, bk, bn, lhs_block, rhs_block); |
| } |
| |
| template <typename Device> |
| EIGEN_DEVICE_FUNC BlockMemHandle allocateSlices( |
| Device& d, const StorageIndex num_lhs, const StorageIndex num_rhs, |
| const StorageIndex num_slices, std::vector<LhsBlock>* lhs_blocks, |
| std::vector<RhsBlock>* rhs_blocks) { |
| return BlockMemAllocator::allocateSlices( |
| d, bm, bk, bn, num_lhs, num_rhs, num_slices, lhs_blocks, rhs_blocks); |
| } |
| |
| template <typename Device> |
| EIGEN_DEVICE_FUNC static void deallocate(Device& d, BlockMemHandle handle) { |
| BlockMemAllocator::deallocate(d, handle); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packLhs( |
| LhsBlock* lhsBlock, const typename LhsMapper::SubMapper& data_mapper, |
| const StorageIndex depth, const StorageIndex rows) { |
| LhsPacker()(*lhsBlock, data_mapper, depth, rows, /*stride*/ 0, |
| /*offset*/ 0); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void packRhs( |
| RhsBlock* rhsBlock, const typename RhsMapper::SubMapper& data_mapper, |
| const StorageIndex depth, const StorageIndex cols) { |
| RhsPacker()(*rhsBlock, data_mapper, depth, cols); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_DONT_INLINE void invoke( |
| const OutputMapper& output_mapper, const LhsBlock& lhsBlock, |
| const RhsBlock& rhsBlock, const StorageIndex rows, |
| const StorageIndex depth, const StorageIndex cols, |
| const ResScalar alpha, const ResScalar beta) { |
| // Default GEBP kernel does not support beta. |
| eigen_assert(beta == ResScalar(1)); |
| static const int kComputeStrideFromBlockDimensions = -1; |
| GebpKernel()(output_mapper, lhsBlock, rhsBlock, rows, depth, cols, alpha, |
| /*strideA*/ kComputeStrideFromBlockDimensions, |
| /*strideB*/ kComputeStrideFromBlockDimensions, |
| /*offsetA*/ 0, /*offsetB*/ 0); |
| } |
| |
| private: |
| // These are dimensions of the original Tensors, and selected block sizes. The |
| // actual block sizes passed to all function above might be smaller because of |
| // the partial blocks at the end. |
| const StorageIndex m; |
| const StorageIndex k; |
| const StorageIndex n; |
| const StorageIndex bm; |
| const StorageIndex bk; |
| const StorageIndex bn; |
| }; |
| |
| } // end namespace internal |
| |
| // Tensor contraction params that should enable to get from output matrix |
| // 2-dimensional coordinates to the output tensor dimensions. |
| struct TensorContractionParams { |
| // TensorContraction evaluator assumes that both tensors are in ColMajor |
| // layout, if tensors are in RowMajor evaluator swap lhs with rhs. |
| bool swapped_arguments; |
| }; |
| |
| // Output kernel allows to fuse operations into the tensor contraction. |
| // |
| // Examples: |
| // 1. Elementwise Relu transformation following Conv2D. |
| // 2. AddBias to the Conv2D output channels dimension. |
| // |
| // The NoOpOutputKernel implements an output kernel that does absolutely nothing. |
| struct NoOpOutputKernel { |
| /** |
| * Tensor contraction evaluator calls this kernel after finishing each block |
| * of output matrix. Output blocks belong to the 2-dimensional output tensor. |
| * |
| * TensorContractionParams contains contraction dimensions information |
| * required to map output 2-d space into the expected output tensor space |
| * (potentially higher dimensional). |
| * |
| * \param[in] output_mapper Access to output tensor memory |
| * \param[in] params Tensor contraction parameters |
| * \param[in] i Index of a first row available through output_mapper |
| * \param[in] j Index of a first column available through output_mapper |
| * \param[in] num_rows Number of available rows |
| * \param[in] num_cols Number of available columns |
| */ |
| template <typename Index, typename Scalar> |
| EIGEN_ALWAYS_INLINE void operator()( |
| const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper, |
| const TensorContractionParams& params, Index i, |
| Index j, Index num_rows, Index num_cols) const { |
| EIGEN_UNUSED_VARIABLE(output_mapper); |
| EIGEN_UNUSED_VARIABLE(params); |
| EIGEN_UNUSED_VARIABLE(i); |
| EIGEN_UNUSED_VARIABLE(j); |
| EIGEN_UNUSED_VARIABLE(num_rows); |
| EIGEN_UNUSED_VARIABLE(num_cols); |
| } |
| }; |
| |
| template<typename Indices, typename LhsXprType, typename RhsXprType, typename OutputKernelType = const NoOpOutputKernel> |
| class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors> |
| { |
| public: |
| typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar; |
| typedef typename internal::gebp_traits<typename LhsXprType::CoeffReturnType, |
| typename RhsXprType::CoeffReturnType>::ResScalar CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorContractionOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorContractionOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp( |
| const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims, |
| const OutputKernelType& output_kernel = OutputKernelType()) |
| : m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims), |
| m_output_kernel(output_kernel) {} |
| |
| EIGEN_DEVICE_FUNC |
| const Indices& indices() const { return m_indices; } |
| |
| /** \returns the nested expressions */ |
| EIGEN_DEVICE_FUNC |
| const internal::remove_all_t<typename LhsXprType::Nested>& |
| lhsExpression() const { return m_lhs_xpr; } |
| |
| EIGEN_DEVICE_FUNC |
| const internal::remove_all_t<typename RhsXprType::Nested>& |
| rhsExpression() const { return m_rhs_xpr; } |
| |
| EIGEN_DEVICE_FUNC |
| const OutputKernelType& outputKernel() const { return m_output_kernel; } |
| |
| protected: |
| typename LhsXprType::Nested m_lhs_xpr; |
| typename RhsXprType::Nested m_rhs_xpr; |
| const Indices m_indices; |
| const OutputKernelType m_output_kernel; |
| }; |
| |
| |
| template<typename Derived> |
| struct TensorContractionEvaluatorBase : internal::no_assignment_operator |
| { |
| typedef typename internal::traits<Derived>::Indices Indices; |
| typedef typename internal::traits<Derived>::LeftArgType LeftArgType; |
| typedef typename internal::traits<Derived>::RightArgType RightArgType; |
| typedef typename internal::traits<Derived>::OutputKernelType OutputKernelType; |
| typedef typename internal::traits<Derived>::Device Device; |
| |
| typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; |
| typedef std::remove_const_t<typename XprType::Scalar> Scalar; |
| typedef typename XprType::Index Index; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| typedef StorageMemory<Scalar, Device> Storage; |
| typedef typename Storage::Type EvaluatorPointerType; |
| |
| static constexpr int Layout = TensorEvaluator<LeftArgType, Device>::Layout; |
| enum { |
| IsAligned = true, |
| PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1), |
| BlockAccess = false, |
| PreferBlockAccess = false, |
| CoordAccess = false, // to be implemented |
| RawAccess = true |
| }; |
| |
| //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===// |
| typedef internal::TensorBlockNotImplemented TensorBlock; |
| //===--------------------------------------------------------------------===// |
| |
| // Most of the code is assuming that both input tensors are ColMajor. If the |
| // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: |
| // If we want to compute A * B = C, where A is LHS and B is RHS, the code |
| // will pretend B is LHS and A is RHS. |
| typedef std::conditional_t< |
| static_cast<int>(Layout) == static_cast<int>(ColMajor), LeftArgType, RightArgType> EvalLeftArgType; |
| typedef std::conditional_t< |
| static_cast<int>(Layout) == static_cast<int>(ColMajor), RightArgType, LeftArgType> EvalRightArgType; |
| |
| typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluatorType; |
| typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluatorType; |
| |
| static constexpr int LDims = |
| internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; |
| static constexpr int RDims = |
| internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; |
| static constexpr int ContractDims = internal::array_size<Indices>::value; |
| static constexpr int NumDims = LDims + RDims - 2 * ContractDims; |
| |
| typedef array<Index, ContractDims> contract_t; |
| typedef array<Index, LDims - ContractDims> left_nocontract_t; |
| typedef array<Index, RDims - ContractDims> right_nocontract_t; |
| |
| typedef DSizes<Index, NumDims> Dimensions; |
| |
| EIGEN_STRONG_INLINE |
| TensorContractionEvaluatorBase(const XprType& op, const Device& device) |
| : m_leftImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), |
| op.lhsExpression(), op.rhsExpression()), device), |
| m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(), |
| op.rhsExpression(), op.lhsExpression()), device), |
| m_device(device), |
| m_output_kernel(op.outputKernel()), |
| m_result(NULL) { |
| EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == |
| static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), |
| YOU_MADE_A_PROGRAMMING_MISTAKE); |
| |
| |
| DSizes<Index, LDims> eval_left_dims; |
| DSizes<Index, RDims> eval_right_dims; |
| array<IndexPair<Index>, ContractDims> eval_op_indices; |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| // For ColMajor, we keep using the existing dimensions |
| for (int i = 0; i < LDims; i++) { |
| eval_left_dims[i] = m_leftImpl.dimensions()[i]; |
| } |
| for (int i = 0; i < RDims; i++) { |
| eval_right_dims[i] = m_rightImpl.dimensions()[i]; |
| } |
| // We keep the pairs of contracting indices. |
| for (int i = 0; i < ContractDims; i++) { |
| eval_op_indices[i].first = op.indices()[i].first; |
| eval_op_indices[i].second = op.indices()[i].second; |
| } |
| } else { |
| // For RowMajor, we need to reverse the existing dimensions |
| for (int i = 0; i < LDims; i++) { |
| eval_left_dims[i] = m_leftImpl.dimensions()[LDims - i - 1]; |
| } |
| for (int i = 0; i < RDims; i++) { |
| eval_right_dims[i] = m_rightImpl.dimensions()[RDims - i - 1]; |
| } |
| // We need to flip all the pairs of contracting indices as well as |
| // reversing the dimensions. |
| for (int i = 0; i < ContractDims; i++) { |
| eval_op_indices[i].first = LDims - 1 - op.indices()[ContractDims - 1 - i].second; |
| eval_op_indices[i].second = RDims - 1 - op.indices()[ContractDims - 1 - i].first; |
| } |
| } |
| |
| // Check for duplicate axes and make sure the first index in eval_op_indices |
| // is increasing. Using O(n^2) sorting is OK since ContractDims is small |
| for (int i = 0; i < ContractDims; i++) { |
| for (int j = i + 1; j < ContractDims; j++) { |
| eigen_assert(eval_op_indices[j].first != eval_op_indices[i].first && |
| eval_op_indices[j].second != eval_op_indices[i].second && |
| "contraction axes should be unique"); |
| if (eval_op_indices[j].first < eval_op_indices[i].first) { |
| numext::swap(eval_op_indices[j], eval_op_indices[i]); |
| } |
| } |
| } |
| |
| array<Index, LDims> lhs_strides; |
| lhs_strides[0] = 1; |
| for (int i = 0; i < LDims-1; ++i) { |
| lhs_strides[i+1] = lhs_strides[i] * eval_left_dims[i]; |
| } |
| |
| array<Index, RDims> rhs_strides; |
| rhs_strides[0] = 1; |
| for (int i = 0; i < RDims-1; ++i) { |
| rhs_strides[i+1] = rhs_strides[i] * eval_right_dims[i]; |
| } |
| |
| if (m_i_strides.size() > 0) m_i_strides[0] = 1; |
| if (m_j_strides.size() > 0) m_j_strides[0] = 1; |
| if (m_k_strides.size() > 0) m_k_strides[0] = 1; |
| |
| m_i_size = 1; |
| m_j_size = 1; |
| m_k_size = 1; |
| |
| // To compute the dimension, we simply concatenate the non-contracting |
| // dimensions of the left and then the right tensor. Additionally, we also |
| // compute the strides corresponding to the left non-contracting |
| // dimensions and right non-contracting dimensions. |
| m_lhs_inner_dim_contiguous = true; |
| int dim_idx = 0; |
| Index nocontract_idx = 0; |
| |
| for (int i = 0; i < LDims; i++) { |
| // find if we are contracting on index i of left tensor |
| bool contracting = false; |
| for (int j = 0; j < ContractDims; j++) { |
| if (eval_op_indices[j].first == i) { |
| contracting = true; |
| break; |
| } |
| } |
| if (!contracting) { |
| // add dimension size to output dimensions |
| m_dimensions[dim_idx] = eval_left_dims[i]; |
| m_left_nocontract_strides[nocontract_idx] = lhs_strides[i]; |
| if (dim_idx != i) { |
| m_lhs_inner_dim_contiguous = false; |
| } |
| if (nocontract_idx+1 < internal::array_size<left_nocontract_t>::value) { |
| m_i_strides[nocontract_idx+1] = |
| m_i_strides[nocontract_idx] * eval_left_dims[i]; |
| } else { |
| m_i_size = m_i_strides[nocontract_idx] * eval_left_dims[i]; |
| } |
| dim_idx++; |
| nocontract_idx++; |
| } |
| } |
| |
| nocontract_idx = 0; |
| for (int i = 0; i < RDims; i++) { |
| bool contracting = false; |
| // find if we are contracting on index i of right tensor |
| for (int j = 0; j < ContractDims; j++) { |
| if (eval_op_indices[j].second == i) { |
| contracting = true; |
| break; |
| } |
| } |
| if (!contracting) { |
| m_dimensions[dim_idx] = eval_right_dims[i]; |
| if (nocontract_idx+1 < internal::array_size<right_nocontract_t>::value) { |
| m_j_strides[nocontract_idx+1] = |
| m_j_strides[nocontract_idx] * eval_right_dims[i]; |
| } else { |
| m_j_size = m_j_strides[nocontract_idx] * eval_right_dims[i]; |
| } |
| m_right_nocontract_strides[nocontract_idx] = rhs_strides[i]; |
| dim_idx++; |
| nocontract_idx++; |
| } |
| } |
| |
| // Now compute the strides corresponding to the contracting dimensions. We |
| // assumed above that non-contracting axes are represented in the same order |
| // in the matrix as they are in the tensor. This is not the case for |
| // contracting axes. As the contracting axes must be of the same size in |
| // each tensor, we'll only look at the first tensor here. |
| m_rhs_inner_dim_contiguous = true; |
| m_rhs_inner_dim_reordered = false; |
| for (int i = 0; i < ContractDims; i++) { |
| Index left = eval_op_indices[i].first; |
| Index right = eval_op_indices[i].second; |
| |
| Index size = eval_left_dims[left]; |
| eigen_assert(size == eval_right_dims[right] && |
| "Contraction axes must be same size"); |
| |
| if (i+1 < static_cast<int>(internal::array_size<contract_t>::value)) { |
| m_k_strides[i+1] = m_k_strides[i] * size; |
| } else { |
| m_k_size = m_k_strides[i] * size; |
| } |
| m_left_contracting_strides[i] = lhs_strides[left]; |
| m_right_contracting_strides[i] = rhs_strides[right]; |
| |
| if (i > 0 && right < eval_op_indices[i-1].second) { |
| m_rhs_inner_dim_reordered = true; |
| } |
| if (right != i) { |
| m_rhs_inner_dim_contiguous = false; |
| } |
| } |
| |
| // If the layout is RowMajor, we need to reverse the m_dimensions |
| if (static_cast<int>(Layout) == static_cast<int>(RowMajor)) { |
| for (int i = 0, j = NumDims - 1; i < j; i++, j--) { |
| numext::swap(m_dimensions[i], m_dimensions[j]); |
| } |
| } |
| |
| // A set of parameters that will allow output kernel to get from output |
| // tensor dimensions (i, j) into the original tensor dimensions. |
| // TODO(ezhulenev): Add parameters required to infer output tensor index for |
| // more complex contractions than 2x2 on internal dimension. |
| m_tensor_contraction_params.swapped_arguments = static_cast<int>(Layout) == RowMajor; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } |
| |
| EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) { |
| m_leftImpl.evalSubExprsIfNeeded(NULL); |
| m_rightImpl.evalSubExprsIfNeeded(NULL); |
| if (data) { |
| evalTo(data); |
| return false; |
| } else { |
| m_result = static_cast<EvaluatorPointerType>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); |
| evalTo(m_result); |
| return true; |
| } |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalSubExprsCallback> |
| EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync( |
| EvaluatorPointerType dest, EvalSubExprsCallback done) { |
| m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) { |
| m_rightImpl.evalSubExprsIfNeededAsync(nullptr, [this, done, dest](bool) { |
| if (dest) { |
| evalToAsync(dest, [done]() { done(false); }); |
| } else { |
| m_result = static_cast<EvaluatorPointerType>( |
| m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); |
| evalToAsync(m_result, [done]() { done(true); }); |
| } |
| }); |
| }); |
| } |
| #endif // EIGEN_USE_THREADS |
| |
| #ifndef TENSOR_CONTRACTION_DISPATCH |
| #define TENSOR_CONTRACTION_DISPATCH(METHOD, ALIGNMENT, ARGS) \ |
| if (this->m_lhs_inner_dim_contiguous) { \ |
| if (this->m_rhs_inner_dim_contiguous) { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| METHOD<true, true, true, ALIGNMENT> ARGS; \ |
| } else { \ |
| METHOD<true, true, false, ALIGNMENT> ARGS; \ |
| } \ |
| } else { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| METHOD<true, false, true, ALIGNMENT> ARGS; \ |
| } else { \ |
| METHOD<true, false, false, ALIGNMENT> ARGS; \ |
| } \ |
| } \ |
| } else { \ |
| if (this->m_rhs_inner_dim_contiguous) { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| METHOD<false, true, true, ALIGNMENT> ARGS; \ |
| } else { \ |
| METHOD<false, true, false, ALIGNMENT> ARGS; \ |
| } \ |
| } else { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| METHOD<false, false, true, ALIGNMENT> ARGS; \ |
| } else { \ |
| METHOD<false, false, false, ALIGNMENT> ARGS; \ |
| } \ |
| } \ |
| } |
| #endif |
| |
| #ifndef TENSOR_CONTRACTION_ASYNC_DISPATCH |
| #define TENSOR_CONTRACTION_ASYNC_DISPATCH(METHOD, DONE, ALIGNMENT, ARGS, FN) \ |
| if (this->m_lhs_inner_dim_contiguous) { \ |
| if (this->m_rhs_inner_dim_contiguous) { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| (new METHOD<DONE, true, true, true, ALIGNMENT> ARGS)->FN; \ |
| } else { \ |
| (new METHOD<DONE, true, true, false, ALIGNMENT> ARGS)->FN; \ |
| } \ |
| } else { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| (new METHOD<DONE, true, false, true, ALIGNMENT> ARGS)->FN; \ |
| } else { \ |
| (new METHOD<DONE, true, false, false, ALIGNMENT> ARGS)->FN; \ |
| } \ |
| } \ |
| } else { \ |
| if (this->m_rhs_inner_dim_contiguous) { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| (new METHOD<DONE, false, true, true, ALIGNMENT> ARGS)->FN; \ |
| } else { \ |
| (new METHOD<DONE, false, true, false, ALIGNMENT> ARGS)->FN; \ |
| } \ |
| } else { \ |
| if (this->m_rhs_inner_dim_reordered) { \ |
| (new METHOD<DONE, false, false, true, ALIGNMENT> ARGS)->FN; \ |
| } else { \ |
| (new METHOD<DONE, false, false, false, ALIGNMENT> ARGS)->FN; \ |
| } \ |
| } \ |
| } |
| #endif |
| |
| EIGEN_DEVICE_FUNC void evalTo(Scalar* buffer) const { |
| static_cast<const Derived*>(this)->template evalProduct<Unaligned>(buffer); |
| } |
| |
| #ifdef EIGEN_USE_THREADS |
| template <typename EvalToCallback> |
| void evalToAsync(Scalar* buffer, EvalToCallback done) const { |
| static_cast<const Derived*>(this) |
| ->template evalProductAsync<EvalToCallback, Unaligned>(buffer, |
| std::move(done)); |
| } |
| #endif // EIGEN_USE_THREADS |
| |
| template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, |
| bool rhs_inner_dim_reordered, int Alignment> |
| void evalProductSequential(Scalar* buffer) const { |
| if (this->m_j_size == 1) { |
| this->template evalGemv<lhs_inner_dim_contiguous, |
| rhs_inner_dim_contiguous, rhs_inner_dim_reordered, |
| Alignment>(buffer); |
| } else { |
| this->template evalGemm<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, |
| rhs_inner_dim_reordered, Alignment>(buffer); |
| } |
| } |
| |
| template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> |
| #if !defined(EIGEN_HIPCC) |
| EIGEN_DEVICE_FUNC |
| #endif |
| void evalGemv(Scalar* buffer) const { |
| const Index rows = m_i_size; |
| const Index cols = m_k_size; |
| |
| typedef std::remove_const_t<typename EvalLeftArgType::Scalar> LhsScalar; |
| typedef std::remove_const_t<typename EvalRightArgType::Scalar> RhsScalar; |
| typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; |
| typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; |
| const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; |
| const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; |
| const int lhs_alignment = LeftEvaluator::IsAligned ? Aligned : Unaligned; |
| const int rhs_alignment = RightEvaluator::IsAligned ? Aligned : Unaligned; |
| typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, |
| LeftEvaluator, left_nocontract_t, |
| contract_t, lhs_packet_size, |
| lhs_inner_dim_contiguous, |
| false, lhs_alignment> LhsMapper; |
| |
| typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, |
| RightEvaluator, right_nocontract_t, |
| contract_t, rhs_packet_size, |
| rhs_inner_dim_contiguous, |
| rhs_inner_dim_reordered, rhs_alignment> RhsMapper; |
| |
| LhsMapper lhs(m_leftImpl, m_left_nocontract_strides, m_i_strides, |
| m_left_contracting_strides, m_k_strides); |
| RhsMapper rhs(m_rightImpl, m_right_nocontract_strides, m_j_strides, |
| m_right_contracting_strides, m_k_strides); |
| |
| const Scalar alpha(1); |
| const Index resIncr(1); |
| |
| // zero out the result buffer (which must be of size at least rows * sizeof(Scalar) |
| m_device.fill(buffer, buffer + rows, Scalar(0)); |
| |
| internal::general_matrix_vector_product<Index,LhsScalar,LhsMapper,ColMajor,false,RhsScalar,RhsMapper,false>::run( |
| rows, cols, lhs, rhs, |
| buffer, resIncr, alpha); |
| |
| typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; |
| m_output_kernel(OutputMapper(buffer, rows), m_tensor_contraction_params, |
| static_cast<Index>(0), static_cast<Index>(0), rows, |
| static_cast<Index>(1)); |
| } |
| |
| template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment> |
| #if !defined(EIGEN_HIPCC) |
| EIGEN_DEVICE_FUNC |
| #endif |
| void evalGemm(Scalar* buffer) const { |
| // columns in left side, rows in right side |
| const Index k = this->m_k_size; |
| this->template evalGemmPartial<lhs_inner_dim_contiguous, |
| rhs_inner_dim_contiguous, |
| rhs_inner_dim_reordered, |
| Alignment, true>(buffer, 0, k, 1); |
| } |
| |
| template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, |
| bool rhs_inner_dim_reordered, int Alignment> |
| EIGEN_DEVICE_FUNC void evalGemmPartialWithoutOutputKernel( |
| Scalar* buffer, Index k_start, Index k_end, int num_threads) const { |
| evalGemmPartial<lhs_inner_dim_contiguous, rhs_inner_dim_contiguous, |
| rhs_inner_dim_reordered, Alignment, |
| /*use_output_kernel*/ false>(buffer, k_start, k_end, |
| num_threads); |
| } |
| |
| template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment, bool use_output_kernel> |
| EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const { |
| eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= this->m_k_size); |
| // columns in slice on left side, rows on right side |
| const Index k_slice = k_end - k_start; |
| |
| // rows in left side |
| const Index m = this->m_i_size; |
| |
| // columns in right side |
| const Index n = this->m_j_size; |
| |
| // define data mappers for Lhs and Rhs |
| typedef std::remove_const_t<typename EvalLeftArgType::Scalar> LhsScalar; |
| typedef std::remove_const_t<typename EvalRightArgType::Scalar> RhsScalar; |
| |
| typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator; |
| typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator; |
| |
| const Index lhs_packet_size = internal::unpacket_traits<typename LeftEvaluator::PacketReturnType>::size; |
| const Index rhs_packet_size = internal::unpacket_traits<typename RightEvaluator::PacketReturnType>::size; |
| |
| typedef internal::TensorContractionInputMapper<LhsScalar, Index, internal::Lhs, |
| LeftEvaluator, left_nocontract_t, |
| contract_t, lhs_packet_size, |
| lhs_inner_dim_contiguous, |
| false, Unaligned> LhsMapper; |
| |
| typedef internal::TensorContractionInputMapper<RhsScalar, Index, internal::Rhs, |
| RightEvaluator, right_nocontract_t, |
| contract_t, rhs_packet_size, |
| rhs_inner_dim_contiguous, |
| rhs_inner_dim_reordered, Unaligned> RhsMapper; |
| |
| typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper; |
| |
| typedef internal::TensorContractionKernel< |
| Scalar, LhsScalar, RhsScalar, Index, OutputMapper, LhsMapper, RhsMapper> |
| TensorContractionKernel; |
| |
| // initialize data mappers |
| LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides, this->m_i_strides, |
| this->m_left_contracting_strides, this->m_k_strides); |
| |
| RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides, this->m_j_strides, |
| this->m_right_contracting_strides, this->m_k_strides); |
| |
| OutputMapper output(buffer, m); |
| |
| // Sizes of the blocks to load in cache. See the Goto paper for details. |
| internal::TensorContractionBlocking<Scalar, LhsScalar, RhsScalar, |
| Index, internal::ShardByCol> |
| blocking(k_slice, m, n, num_threads); |
| const Index kc = blocking.kc(); |
| const Index mc = numext::mini(m, blocking.mc()); |
| const Index nc = numext::mini(n, blocking.nc()); |
| |
| typedef typename TensorContractionKernel::LhsBlock LhsBlock; |
| typedef typename TensorContractionKernel::RhsBlock RhsBlock; |
| |
| LhsBlock blockA; |
| RhsBlock blockB; |
| |
| TensorContractionKernel kernel(m, k_slice, n, mc, kc, nc); |
| |
| typedef typename TensorContractionKernel::BlockMemHandle BlockMemHandle; |
| const BlockMemHandle packed_mem = |
| kernel.allocate(this->m_device, &blockA, &blockB); |
| |
| // If a contraction kernel does not support beta, explicitly initialize |
| // output buffer with zeroes. |
| if (!TensorContractionKernel::HasBeta) { |
| this->m_device.fill(buffer, buffer + m * n, Scalar(0)); |
| } |
| |
| for(Index i2=0; i2<m; i2+=mc) |
| { |
| const Index actual_mc = numext::mini(i2+mc,m)-i2; |
| for (Index k2 = k_start; k2 < k_end; k2 += kc) { |
| // make sure we don't overshoot right edge of left matrix, then pack vertical panel |
| const Index actual_kc = numext::mini(k2 + kc, k_end) - k2; |
| kernel.packLhs(&blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); |
| |
| // If kernel supports beta, there is no need to initialize output |
| // buffer with zeroes. |
| const Scalar alpha = Scalar(1); |
| const Scalar beta = (TensorContractionKernel::HasBeta && k2 == k_start) |
| ? Scalar(0) |
| : Scalar(1); |
| |
| // series of horizontal blocks |
| for (Index j2 = 0; j2 < n; j2 += nc) { |
| // make sure we don't overshoot right edge of right matrix, then pack block |
| const Index actual_nc = numext::mini(j2 + nc, n) - j2; |
| kernel.packRhs(&blockB, rhs.getSubMapper(k2, j2), actual_kc, |
| actual_nc); |
| |
| // call gebp (matrix kernel) |
| // The parameters here are copied from Eigen's GEMM implementation |
| const OutputMapper output_mapper = output.getSubMapper(i2, j2); |
| kernel.invoke(output_mapper, blockA, blockB, actual_mc, actual_kc, |
| actual_nc, alpha, beta); |
| |
| // We are done with this [i2, j2] output block. |
| if (use_output_kernel && k2 + kc >= k_end) { |
| m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2, |
| actual_mc, actual_nc); |
| } |
| } |
| } |
| } |
| |
| kernel.deallocate(this->m_device, packed_mem); |
| } |
| |
| EIGEN_STRONG_INLINE void cleanup() { |
| m_leftImpl.cleanup(); |
| m_rightImpl.cleanup(); |
| |
| if (m_result != NULL) { |
| m_device.deallocate(m_result); |
| m_result = NULL; |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { |
| return m_result[index]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool) const { |
| return TensorOpCost(sizeof(CoeffReturnType), 0, 0); |
| } |
| |
| template<int LoadMode> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { |
| return internal::ploadt<PacketReturnType, LoadMode>(m_result + index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return m_result; } |
| |
| protected: |
| Dimensions m_dimensions; |
| |
| contract_t m_k_strides; |
| contract_t m_left_contracting_strides; |
| contract_t m_right_contracting_strides; |
| |
| bool m_lhs_inner_dim_contiguous; |
| bool m_rhs_inner_dim_contiguous; |
| bool m_rhs_inner_dim_reordered; |
| |
| left_nocontract_t m_i_strides; |
| right_nocontract_t m_j_strides; |
| left_nocontract_t m_left_nocontract_strides; |
| right_nocontract_t m_right_nocontract_strides; |
| |
| Index m_i_size; |
| Index m_j_size; |
| Index m_k_size; |
| |
| TensorContractionParams m_tensor_contraction_params; |
| |
| TensorEvaluator<EvalLeftArgType, Device> m_leftImpl; |
| TensorEvaluator<EvalRightArgType, Device> m_rightImpl; |
| const Device EIGEN_DEVICE_REF m_device; |
| OutputKernelType m_output_kernel; |
| EvaluatorPointerType m_result; |
| }; |
| |
| |
| // evaluator for default device |
| template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType, typename Device> |
| struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> : |
| public TensorContractionEvaluatorBase< |
| TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > { |
| typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self; |
| typedef TensorContractionEvaluatorBase<Self> Base; |
| |
| typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType; |
| typedef std::remove_const_t<typename XprType::Scalar> Scalar; |
| typedef typename XprType::Index Index; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| |
| static constexpr int Layout = TensorEvaluator<LeftArgType, Device>::Layout; |
| |
| // Most of the code is assuming that both input tensors are ColMajor. If the |
| // inputs are RowMajor, we will "cheat" by swapping the LHS and RHS: |
| // If we want to compute A * B = C, where A is LHS and B is RHS, the code |
| // will pretend B is LHS and A is RHS. |
| typedef std::conditional_t<Layout == static_cast<int>(ColMajor), LeftArgType, RightArgType> EvalLeftArgType; |
| typedef std::conditional_t<Layout == static_cast<int>(ColMajor), RightArgType, LeftArgType> EvalRightArgType; |
| |
| static constexpr int LDims = |
| internal::array_size<typename TensorEvaluator<EvalLeftArgType, Device>::Dimensions>::value; |
| static constexpr int RDims = |
| internal::array_size<typename TensorEvaluator<EvalRightArgType, Device>::Dimensions>::value; |
| static constexpr int ContractDims = internal::array_size<Indices>::value; |
| |
| typedef array<Index, ContractDims> contract_t; |
| typedef array<Index, LDims - ContractDims> left_nocontract_t; |
| typedef array<Index, RDims - ContractDims> right_nocontract_t; |
| |
| static constexpr int NumDims = LDims + RDims - 2 * ContractDims; |
| |
| // Could we use NumDimensions here? |
| typedef DSizes<Index, NumDims> Dimensions; |
| |
| TensorEvaluator(const XprType& op, const Device& device) : |
| Base(op, device) { } |
| |
| template <int Alignment> |
| void evalProduct(Scalar* buffer) const { |
| TENSOR_CONTRACTION_DISPATCH(this->template evalProductSequential, Alignment, (buffer)); |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_H |