blob: 0634be89b8fb320950aac602a72baf6c3121d5e1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
#define EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
/** \class TensorCustomUnaryOp
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor custom class.
*
*
*/
namespace internal {
template<typename CustomUnaryFunc, typename XprType>
struct traits<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
{
typedef typename XprType::Scalar Scalar;
typedef typename XprType::StorageKind StorageKind;
typedef typename XprType::Index Index;
typedef typename XprType::Nested Nested;
typedef std::remove_reference_t<Nested> Nested_;
static constexpr int NumDimensions = traits<XprType>::NumDimensions;
static constexpr int Layout = traits<XprType>::Layout;
typedef typename traits<XprType>::PointerType PointerType;
};
template<typename CustomUnaryFunc, typename XprType>
struct eval<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Eigen::Dense>
{
typedef const TensorCustomUnaryOp<CustomUnaryFunc, XprType>EIGEN_DEVICE_REF type;
};
template<typename CustomUnaryFunc, typename XprType>
struct nested<TensorCustomUnaryOp<CustomUnaryFunc, XprType> >
{
typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> type;
};
} // end namespace internal
template<typename CustomUnaryFunc, typename XprType>
class TensorCustomUnaryOp : public TensorBase<TensorCustomUnaryOp<CustomUnaryFunc, XprType>, ReadOnlyAccessors>
{
public:
typedef typename internal::traits<TensorCustomUnaryOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename internal::nested<TensorCustomUnaryOp>::type Nested;
typedef typename internal::traits<TensorCustomUnaryOp>::StorageKind StorageKind;
typedef typename internal::traits<TensorCustomUnaryOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomUnaryOp(const XprType& expr, const CustomUnaryFunc& func)
: m_expr(expr), m_func(func) {}
EIGEN_DEVICE_FUNC
const CustomUnaryFunc& func() const { return m_func; }
EIGEN_DEVICE_FUNC
const internal::remove_all_t<typename XprType::Nested>&
expression() const { return m_expr; }
protected:
typename XprType::Nested m_expr;
const CustomUnaryFunc m_func;
};
// Eval as rvalue
template<typename CustomUnaryFunc, typename XprType, typename Device>
struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Device>
{
typedef TensorCustomUnaryOp<CustomUnaryFunc, XprType> ArgType;
typedef typename internal::traits<ArgType>::Index Index;
static constexpr int NumDims = internal::traits<ArgType>::NumDimensions;
typedef DSizes<Index, NumDims> Dimensions;
typedef std::remove_const_t<typename ArgType::Scalar> Scalar;
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<XprType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = false,
PreferBlockAccess = false,
CoordAccess = false, // to be implemented
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const ArgType& op, const Device& device)
: m_op(op), m_device(device), m_result(NULL)
{
m_dimensions = op.func().dimensions(op.expression());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<EvaluatorPointerType>(m_device.get( (CoeffReturnType*)
m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar))));
evalTo(m_result);
return true;
}
}
EIGEN_STRONG_INLINE void cleanup() {
if (m_result) {
m_device.deallocate_temp(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
// TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; }
#ifdef EIGEN_USE_SYCL
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
m_result.bind(cgh);
}
#endif
protected:
void evalTo(EvaluatorPointerType data) {
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(m_device.get(data), m_dimensions);
m_op.func().eval(m_op.expression(), result, m_device);
}
Dimensions m_dimensions;
const ArgType m_op;
const Device EIGEN_DEVICE_REF m_device;
EvaluatorPointerType m_result;
};
/** \class TensorCustomBinaryOp
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor custom class.
*
*
*/
namespace internal {
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
struct traits<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
{
typedef typename internal::promote_storage_type<typename LhsXprType::Scalar,
typename RhsXprType::Scalar>::ret Scalar;
typedef typename internal::promote_storage_type<typename LhsXprType::CoeffReturnType,
typename RhsXprType::CoeffReturnType>::ret CoeffReturnType;
typedef typename promote_storage_type<typename traits<LhsXprType>::StorageKind,
typename traits<RhsXprType>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<LhsXprType>::Index,
typename traits<RhsXprType>::Index>::type Index;
typedef typename LhsXprType::Nested LhsNested;
typedef typename RhsXprType::Nested RhsNested;
typedef std::remove_reference_t<LhsNested> LhsNested_;
typedef std::remove_reference_t<RhsNested> RhsNested_;
static constexpr int NumDimensions = traits<LhsXprType>::NumDimensions;
static constexpr int Layout = traits<LhsXprType>::Layout;
typedef std::conditional_t<Pointer_type_promotion<typename LhsXprType::Scalar, Scalar>::val,
typename traits<LhsXprType>::PointerType, typename traits<RhsXprType>::PointerType> PointerType;
};
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
struct eval<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Eigen::Dense>
{
typedef const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>& type;
};
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
struct nested<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> >
{
typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> type;
};
} // end namespace internal
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType>
class TensorCustomBinaryOp : public TensorBase<TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, ReadOnlyAccessors>
{
public:
typedef typename internal::traits<TensorCustomBinaryOp>::Scalar Scalar;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::traits<TensorCustomBinaryOp>::CoeffReturnType CoeffReturnType;
typedef typename internal::nested<TensorCustomBinaryOp>::type Nested;
typedef typename internal::traits<TensorCustomBinaryOp>::StorageKind StorageKind;
typedef typename internal::traits<TensorCustomBinaryOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorCustomBinaryOp(const LhsXprType& lhs, const RhsXprType& rhs, const CustomBinaryFunc& func)
: m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_func(func) {}
EIGEN_DEVICE_FUNC
const CustomBinaryFunc& func() const { return m_func; }
EIGEN_DEVICE_FUNC
const internal::remove_all_t<typename LhsXprType::Nested>&
lhsExpression() const { return m_lhs_xpr; }
EIGEN_DEVICE_FUNC
const internal::remove_all_t<typename RhsXprType::Nested>&
rhsExpression() const { return m_rhs_xpr; }
protected:
typename LhsXprType::Nested m_lhs_xpr;
typename RhsXprType::Nested m_rhs_xpr;
const CustomBinaryFunc m_func;
};
// Eval as rvalue
template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType, typename Device>
struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType>, Device>
{
typedef TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType, RhsXprType> XprType;
typedef typename internal::traits<XprType>::Index Index;
static constexpr int NumDims = internal::traits<XprType>::NumDimensions;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename XprType::Scalar Scalar;
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
static constexpr int PacketSize = PacketType<CoeffReturnType, Device>::size;
typedef typename Eigen::internal::traits<XprType>::PointerType TensorPointerType;
typedef StorageMemory<CoeffReturnType, Device> Storage;
typedef typename Storage::Type EvaluatorPointerType;
static constexpr int Layout = TensorEvaluator<LhsXprType, Device>::Layout;
enum {
IsAligned = false,
PacketAccess = (PacketType<CoeffReturnType, Device>::size > 1),
BlockAccess = false,
PreferBlockAccess = false,
CoordAccess = false, // to be implemented
RawAccess = false
};
//===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
typedef internal::TensorBlockNotImplemented TensorBlock;
//===--------------------------------------------------------------------===//
EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_op(op), m_device(device), m_result(NULL)
{
m_dimensions = op.func().dimensions(op.lhsExpression(), op.rhsExpression());
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
if (data) {
evalTo(data);
return false;
} else {
m_result = static_cast<EvaluatorPointerType>(m_device.get( (CoeffReturnType*)
m_device.allocate_temp(dimensions().TotalSize() * sizeof(CoeffReturnType))));
evalTo(m_result);
return true;
}
}
EIGEN_STRONG_INLINE void cleanup() {
if (m_result != NULL) {
m_device.deallocate_temp(m_result);
m_result = NULL;
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
return m_result[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const {
return internal::ploadt<PacketReturnType, LoadMode>(m_result + index);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
// TODO(rmlarsen): Extend CustomOp API to return its cost estimate.
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_result; }
#ifdef EIGEN_USE_SYCL
// binding placeholder accessors to a command group handler for SYCL
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
m_result.bind(cgh);
}
#endif
protected:
void evalTo(EvaluatorPointerType data) {
TensorMap<Tensor<CoeffReturnType, NumDims, Layout> > result(m_device.get(data), m_dimensions);
m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
}
Dimensions m_dimensions;
const XprType m_op;
const Device EIGEN_DEVICE_REF m_device;
EvaluatorPointerType m_result;
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CUSTOM_OP_H