| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| namespace internal { |
| |
| |
| #if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) |
| // Full reducers for GPU, don't vectorize for now |
| |
| // Reducer function that enables multiple gpu thread to safely accumulate at the same |
| // output address. It basically reads the current value of the output variable, and |
| // attempts to update it with the new value. If in the meantime another gpu thread |
| // updated the content of the output address it will try again. |
| template <typename T, typename R> |
| __device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) { |
| #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) |
| if (sizeof(T) == 4) |
| { |
| unsigned int oldval = *reinterpret_cast<unsigned int*>(output); |
| unsigned int newval = oldval; |
| reducer.reduce(accum, reinterpret_cast<T*>(&newval)); |
| if (newval == oldval) { |
| return; |
| } |
| unsigned int readback; |
| while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { |
| oldval = readback; |
| newval = oldval; |
| reducer.reduce(accum, reinterpret_cast<T*>(&newval)); |
| if (newval == oldval) { |
| return; |
| } |
| } |
| } |
| else if (sizeof(T) == 8) { |
| unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output); |
| unsigned long long newval = oldval; |
| reducer.reduce(accum, reinterpret_cast<T*>(&newval)); |
| if (newval == oldval) { |
| return; |
| } |
| unsigned long long readback; |
| while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) { |
| oldval = readback; |
| newval = oldval; |
| reducer.reduce(accum, reinterpret_cast<T*>(&newval)); |
| if (newval == oldval) { |
| return; |
| } |
| } |
| } |
| else { |
| gpu_assert(0 && "Wordsize not supported"); |
| } |
| #else // EIGEN_CUDA_ARCH >= 300 |
| gpu_assert(0 && "Shouldn't be called on unsupported device"); |
| #endif // EIGEN_CUDA_ARCH >= 300 |
| } |
| |
| // We extend atomicExch to support extra data types |
| template <typename Type> |
| __device__ inline Type atomicExchCustom(Type* address, Type val) { |
| return atomicExch(address, val); |
| } |
| |
| template <> |
| __device__ inline double atomicExchCustom(double* address, double val) { |
| unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address); |
| return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val))); |
| } |
| |
| #ifdef EIGEN_HAS_GPU_FP16 |
| template <typename R> |
| __device__ inline void atomicReduce(half2* output, half2 accum, R& reducer) { |
| unsigned int oldval = *reinterpret_cast<unsigned int*>(output); |
| unsigned int newval = oldval; |
| reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval)); |
| if (newval == oldval) { |
| return; |
| } |
| unsigned int readback; |
| while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) { |
| oldval = readback; |
| newval = oldval; |
| reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval)); |
| if (newval == oldval) { |
| return; |
| } |
| } |
| } |
| #ifdef EIGEN_GPU_COMPILE_PHASE |
| // reduction should be associative since reduction is not atomic in wide vector but atomic in half2 operations |
| template <typename R> |
| __device__ inline void atomicReduce(Packet4h2* output, Packet4h2 accum, R& reducer) { |
| half2* houtput=reinterpret_cast<half2*>(output); |
| half2* haccum=reinterpret_cast<half2*>(&accum); |
| for(int i=0;i<4;++i){ |
| atomicReduce(houtput+i,*(haccum+i),reducer); |
| } |
| } |
| #endif // EIGEN_GPU_COMPILE_PHASE |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| template <> |
| __device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) { |
| #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) |
| atomicAdd(output, accum); |
| #else // EIGEN_CUDA_ARCH >= 300 |
| gpu_assert(0 && "Shouldn't be called on unsupported device"); |
| #endif // EIGEN_CUDA_ARCH >= 300 |
| } |
| |
| |
| template <typename CoeffType, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) { |
| const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; |
| const Index num_threads = blockDim.x * gridDim.x; |
| for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { |
| output[i] = val; |
| } |
| } |
| |
| |
| template <int BlockSize, int NumPerThread, typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs, |
| typename Self::CoeffReturnType* output, unsigned int* semaphore) { |
| #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) |
| // Initialize the output value |
| const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x; |
| if (gridDim.x == 1) { |
| if (first_index == 0) { |
| *output = reducer.initialize(); |
| } |
| } |
| else { |
| if (threadIdx.x == 0) { |
| unsigned int block = atomicCAS(semaphore, 0u, 1u); |
| if (block == 0) { |
| // We're the first block to run, initialize the output value |
| atomicExchCustom(output, reducer.initialize()); |
| __threadfence(); |
| atomicExch(semaphore, 2u); |
| } |
| else { |
| // Wait for the first block to initialize the output value. |
| // Use atomicCAS here to ensure that the reads aren't cached |
| unsigned int val; |
| do { |
| val = atomicCAS(semaphore, 2u, 2u); |
| } |
| while (val < 2u); |
| } |
| } |
| } |
| |
| __syncthreads(); |
| |
| eigen_assert(gridDim.x == 1 || *semaphore >= 2u); |
| |
| typename Self::CoeffReturnType accum = reducer.initialize(); |
| Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize); |
| for (Index i = 0; i < max_iter; i+=BlockSize) { |
| const Index index = first_index + i; |
| eigen_assert(index < num_coeffs); |
| typename Self::CoeffReturnType val = input.m_impl.coeff(index); |
| reducer.reduce(val, &accum); |
| } |
| |
| #pragma unroll |
| for (int offset = warpSize/2; offset > 0; offset /= 2) { |
| #if defined(EIGEN_HIPCC) |
| // use std::is_floating_point to determine the type of reduced_val |
| // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error |
| // and list the float and int versions of __shfl_down as the candidate functions. |
| if (std::is_floating_point<typename Self::CoeffReturnType>::value) { |
| reducer.reduce(__shfl_down(static_cast<float>(accum), offset, warpSize), &accum); |
| } else { |
| reducer.reduce(__shfl_down(static_cast<int>(accum), offset, warpSize), &accum); |
| } |
| #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 |
| reducer.reduce(__shfl_down(accum, offset, warpSize), &accum); |
| #else |
| reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum); |
| #endif |
| } |
| |
| if ((threadIdx.x & (warpSize - 1)) == 0) { |
| atomicReduce(output, accum, reducer); |
| } |
| |
| if (gridDim.x > 1 && threadIdx.x == 0) { |
| // Let the last block reset the semaphore |
| atomicInc(semaphore, gridDim.x + 1); |
| #if defined(EIGEN_HIPCC) |
| __threadfence_system(); |
| #endif |
| } |
| #else // EIGEN_CUDA_ARCH >= 300 |
| gpu_assert(0 && "Shouldn't be called on unsupported device"); |
| #endif // EIGEN_CUDA_ARCH >= 300 |
| } |
| |
| |
| #ifdef EIGEN_HAS_GPU_FP16 |
| template <typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitFullReduxKernelHalfFloat( |
| Reducer reducer, const Self input, Index num_coeffs, half* scratch) { |
| eigen_assert(blockDim.x == 1); |
| eigen_assert(gridDim.x == 1); |
| typedef packet_traits<Eigen::half>::type packet_type; |
| Index packet_remainder = |
| num_coeffs % Index(unpacket_traits<packet_type>::size); |
| if (packet_remainder != 0) { |
| half2* h2scratch = reinterpret_cast<half2*>(scratch); |
| for (Index i = num_coeffs - packet_remainder; i + 2 <= num_coeffs; i += 2) { |
| *h2scratch = |
| __halves2half2(input.coeff(i), input.coeff(i + 1)); |
| h2scratch++; |
| } |
| if ((num_coeffs & 1) != 0) { |
| half lastCoeff = input.coeff(num_coeffs - 1); |
| *h2scratch = __halves2half2(lastCoeff, reducer.initialize()); |
| } |
| } else { |
| packet_type reduce = reducer.template initializePacket<packet_type>(); |
| internal::pstoreu(scratch, reduce); |
| } |
| } |
| |
| template <typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) { |
| const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; |
| const Index num_threads = blockDim.x * gridDim.x; |
| typedef typename packet_traits<Eigen::half>::type PacketType; |
| |
| const Index num_packets = |
| num_coeffs / Index(unpacket_traits<PacketType>::size); |
| PacketType* p_output = reinterpret_cast<PacketType*>(output); |
| for (Index i = thread_id; i < num_packets; i += num_threads) { |
| p_output[i] = reducer.template initializePacket<PacketType>(); |
| } |
| Index packet_remainder = |
| num_coeffs % Index(unpacket_traits<PacketType>::size); |
| if (thread_id < packet_remainder) { |
| output[num_coeffs - packet_remainder + thread_id] = reducer.initialize(); |
| } |
| } |
| |
| template <int BlockSize, int NumPerThread, typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void FullReductionKernelHalfFloat( |
| Reducer reducer, const Self input, Index num_coeffs, |
| half* output, half* scratch) { |
| typedef typename packet_traits<Eigen::half>::type PacketType; |
| const int packet_width = unpacket_traits<PacketType>::size; |
| eigen_assert(NumPerThread % packet_width == 0); |
| const Index first_index = |
| blockIdx.x * BlockSize * NumPerThread + packet_width * threadIdx.x; |
| |
| // Initialize the output value if it wasn't initialized by the ReductionInitKernel |
| |
| if (gridDim.x == 1) { |
| if (first_index == 0) { |
| int rem = num_coeffs % packet_width; |
| if (rem != 0) { |
| half2* p_scratch = reinterpret_cast<half2*>(scratch); |
| pstoreu(scratch, reducer.template initializePacket<PacketType>()); |
| for (int i = 0; i < rem / 2; i++) { |
| *p_scratch = __halves2half2( |
| input.coeff(num_coeffs - packet_width + 2 * i), |
| input.coeff(num_coeffs - packet_width + 2 * i + 1)); |
| p_scratch++; |
| } |
| if ((num_coeffs & 1) != 0) { |
| half last = input.coeff(num_coeffs - 1); |
| *p_scratch = __halves2half2(last, reducer.initialize()); |
| } |
| } else { |
| PacketType reduce = reducer.template initializePacket<PacketType>(); |
| pstoreu(scratch, reduce); |
| } |
| } |
| __syncthreads(); |
| } |
| |
| PacketType accum = reducer.template initializePacket<PacketType>(); |
| const Index max_iter = |
| numext::mini<Index>((num_coeffs - first_index) / packet_width, |
| NumPerThread * BlockSize / packet_width); |
| for (Index i = 0; i < max_iter; i += BlockSize) { |
| const Index index = first_index + packet_width * i; |
| eigen_assert(index + packet_width < num_coeffs); |
| PacketType val = input.template packet<Unaligned>(index); |
| reducer.reducePacket(val, &accum); |
| } |
| |
| #pragma unroll |
| for (int offset = warpSize/2; offset > 0; offset /= 2) { |
| #if defined(EIGEN_HIPCC) |
| PacketType r1; |
| half2* hr = reinterpret_cast<half2*>(&r1); |
| half2* hacc = reinterpret_cast<half2*>(&accum); |
| for (int i = 0; i < packet_width / 2; i++) { |
| // FIXME : remove this workaround once we have native half/half2 support for __shfl_down |
| union { int i; half2 h; } wka_in, wka_out; |
| wka_in.h = hacc[i]; |
| wka_out.i = __shfl_down(wka_in.i, offset, warpSize); |
| hr[i] = wka_out.h; |
| } |
| reducer.reducePacket(r1, &accum); |
| #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 |
| PacketType r1; |
| half2* hr = reinterpret_cast<half2*>(&r1); |
| half2* hacc = reinterpret_cast<half2*>(&accum); |
| for (int i = 0; i < packet_width / 2; i++) { |
| hr[i] = __shfl_down(hacc[i], offset, warpSize); |
| } |
| reducer.reducePacket(r1, &accum); |
| #else |
| PacketType r1; |
| half2* hr = reinterpret_cast<half2*>(&r1); |
| half2* hacc = reinterpret_cast<half2*>(&accum); |
| for (int i = 0; i < packet_width / 2; i++) { |
| hr[i] = __shfl_down_sync(0xFFFFFFFF, hacc[i], (unsigned)offset, warpSize); |
| } |
| reducer.reducePacket(r1, &accum); |
| |
| #endif |
| } |
| |
| if ((threadIdx.x & (warpSize - 1)) == 0) { |
| atomicReduce(reinterpret_cast<PacketType*>(scratch), accum, reducer); |
| } |
| |
| __syncthreads(); |
| half2* rv1 = reinterpret_cast<half2*>(scratch); |
| if (packet_width > 2) { |
| reducer.reducePacket(rv1[2], rv1); |
| reducer.reducePacket(rv1[3], rv1 + 1); |
| reducer.reducePacket(rv1[1], rv1); |
| } |
| if (gridDim.x == 1) { |
| if (first_index == 0) { |
| half tmp = __low2half(*rv1); |
| reducer.reduce(__high2half(*rv1), &tmp); |
| *output = tmp; |
| } |
| } |
| } |
| |
| template <typename Op> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void ReductionCleanupKernelHalfFloat(Op reducer, half* output, half* scratch) { |
| eigen_assert(threadIdx.x == 1); |
| typedef packet_traits<Eigen::half>::type packet_type; |
| if (unpacket_traits<packet_type>::size == 1) { |
| *output = *scratch; |
| } else { |
| half2* pscratch = reinterpret_cast<half2*>(scratch); |
| half tmp = __float2half(0.f); |
| for (int i = 0; i < unpacket_traits<packet_type>::size; i += 2) { |
| reducer.reduce(__low2half(*pscratch), &tmp); |
| reducer.reduce(__high2half(*pscratch), &tmp); |
| pscratch++; |
| } |
| *output = tmp; |
| } |
| } |
| |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void> |
| struct FullReductionLauncher { |
| static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) { |
| gpu_assert(false && "Should only be called on doubles, floats and half floats"); |
| } |
| }; |
| |
| // Specialization for float and double |
| template <typename Self, typename Op, typename OutputType, bool PacketAccess> |
| struct FullReductionLauncher< |
| Self, Op, OutputType, PacketAccess, |
| std::enable_if_t< |
| internal::is_same<float, OutputType>::value || |
| internal::is_same<double, OutputType>::value, |
| void>> { |
| static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) { |
| |
| typedef typename Self::Index Index; |
| const int block_size = 256; |
| const int num_per_thread = 128; |
| const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread); |
| |
| unsigned int* semaphore = NULL; |
| if (num_blocks > 1) { |
| semaphore = device.semaphore(); |
| } |
| |
| LAUNCH_GPU_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>), |
| num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore); |
| } |
| }; |
| |
| #ifdef EIGEN_HAS_GPU_FP16 |
| template <typename Self, typename Op> |
| struct FullReductionLauncher<Self, Op, Eigen::half, false> { |
| static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) { |
| gpu_assert(false && "Should not be called since there is no packet accessor"); |
| } |
| }; |
| |
| template <typename Self, typename Op> |
| struct FullReductionLauncher<Self, Op, Eigen::half, true> { |
| static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) { |
| typedef typename Self::Index Index; |
| |
| const int block_size = 256; |
| const int num_per_thread = 128; |
| const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread); |
| half* scratch = static_cast<half*>(device.scratchpad()); |
| |
| if (num_blocks > 1) { |
| // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there |
| // won't be a race conditions between multiple thread blocks. |
| LAUNCH_GPU_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>), |
| 1, 1, 0, device, reducer, self, num_coeffs, scratch); |
| } |
| |
| LAUNCH_GPU_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>), |
| num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch); |
| |
| if (num_blocks > 1) { |
| LAUNCH_GPU_KERNEL((ReductionCleanupKernelHalfFloat<Op>), |
| 1, 1, 0, device, reducer, output, scratch); |
| } |
| } |
| }; |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| |
| template <typename Self, typename Op, bool Vectorizable> |
| struct FullReducer<Self, Op, GpuDevice, Vectorizable> { |
| // Unfortunately nvidia doesn't support well exotic types such as complex, |
| // so reduce the scope of the optimized version of the code to the simple cases |
| // of doubles, floats and half floats |
| #ifdef EIGEN_HAS_GPU_FP16 |
| static constexpr bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && |
| (internal::is_same<typename Self::CoeffReturnType, float>::value || |
| internal::is_same<typename Self::CoeffReturnType, double>::value || |
| (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess)); |
| #else // EIGEN_HAS_GPU_FP16 |
| static constexpr bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && |
| (internal::is_same<typename Self::CoeffReturnType, float>::value || |
| internal::is_same<typename Self::CoeffReturnType, double>::value); |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| template <typename OutputType> |
| static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) { |
| gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats"); |
| const Index num_coeffs = array_prod(self.m_impl.dimensions()); |
| // Don't crash when we're called with an input tensor of size 0. |
| if (num_coeffs == 0) { |
| return; |
| } |
| |
| FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs); |
| } |
| }; |
| |
| |
| template <int NumPerThread, typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, |
| typename Self::CoeffReturnType* output) { |
| #if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300) |
| typedef typename Self::CoeffReturnType Type; |
| eigen_assert(blockDim.y == 1); |
| eigen_assert(blockDim.z == 1); |
| eigen_assert(gridDim.y == 1); |
| eigen_assert(gridDim.z == 1); |
| |
| const int unroll_times = 16; |
| eigen_assert(NumPerThread % unroll_times == 0); |
| |
| const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread); |
| const Index num_input_blocks = input_col_blocks * num_preserved_coeffs; |
| |
| const Index num_threads = blockDim.x * gridDim.x; |
| const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; |
| |
| // Initialize the output values if they weren't initialized by the ReductionInitKernel |
| if (gridDim.x == 1) { |
| for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { |
| output[i] = reducer.initialize(); |
| } |
| __syncthreads(); |
| } |
| |
| for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { |
| const Index row = i / input_col_blocks; |
| |
| if (row < num_preserved_coeffs) { |
| const Index col_block = i % input_col_blocks; |
| const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x; |
| |
| Type reduced_val = reducer.initialize(); |
| |
| for (Index j = 0; j < NumPerThread; j += unroll_times) { |
| const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1); |
| if (last_col >= num_coeffs_to_reduce) { |
| for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) { |
| const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col); |
| reducer.reduce(val, &reduced_val); |
| } |
| break; |
| } else { |
| // Faster version of the loop with no branches after unrolling. |
| #pragma unroll |
| for (int k = 0; k < unroll_times; ++k) { |
| const Index col = col_begin + blockDim.x * (j + k); |
| reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val); |
| } |
| } |
| } |
| |
| #pragma unroll |
| for (int offset = warpSize/2; offset > 0; offset /= 2) { |
| #if defined(EIGEN_HIPCC) |
| // use std::is_floating_point to determine the type of reduced_val |
| // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error |
| // and list the float and int versions of __shfl_down as the candidate functions. |
| if (std::is_floating_point<Type>::value) { |
| reducer.reduce(__shfl_down(static_cast<float>(reduced_val), offset), &reduced_val); |
| } else { |
| reducer.reduce(__shfl_down(static_cast<int>(reduced_val), offset), &reduced_val); |
| } |
| #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 |
| reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val); |
| #else |
| reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val); |
| #endif |
| } |
| |
| if ((threadIdx.x & (warpSize - 1)) == 0) { |
| atomicReduce(&(output[row]), reduced_val, reducer); |
| } |
| } |
| } |
| #else // EIGEN_CUDA_ARCH >= 300 |
| gpu_assert(0 && "Shouldn't be called on unsupported device"); |
| #endif // EIGEN_CUDA_ARCH >= 300 |
| } |
| |
| #ifdef EIGEN_HAS_GPU_FP16 |
| |
| template <int NumPerThread, typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, |
| half* output) { |
| eigen_assert(blockDim.y == 1); |
| eigen_assert(blockDim.z == 1); |
| eigen_assert(gridDim.y == 1); |
| eigen_assert(gridDim.z == 1); |
| |
| typedef typename packet_traits<Eigen::half>::type PacketType; |
| const int packet_width = unpacket_traits<PacketType>::size; |
| const int unroll_times = 16 / packet_width; |
| eigen_assert(NumPerThread % unroll_times == 0); |
| eigen_assert(unroll_times % 2 == 0); |
| |
| const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2); |
| const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2); |
| |
| const Index num_threads = blockDim.x * gridDim.x; |
| const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; |
| |
| // Initialize the output values if they weren't initialized by the ReductionInitKernel |
| if (gridDim.x == 1) { |
| Index i = packet_width * thread_id; |
| for (; i + packet_width <= num_preserved_coeffs; |
| i += packet_width * num_threads) { |
| PacketType* poutput = reinterpret_cast<PacketType*>(output + i); |
| *poutput = reducer.template initializePacket<PacketType>(); |
| } |
| if (i < num_preserved_coeffs) { |
| output[i] = reducer.initialize(); |
| } |
| __syncthreads(); |
| } |
| |
| for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { |
| const Index row = 2 * (i / input_col_blocks); // everybody takes 2 rows |
| |
| if (row + 1 < num_preserved_coeffs) { |
| const Index col_block = i % input_col_blocks; |
| const Index col_begin = |
| packet_width * (col_block * blockDim.x * NumPerThread + threadIdx.x); |
| |
| PacketType reduced_val1 = reducer.template initializePacket<PacketType>(); |
| PacketType reduced_val2 = reducer.template initializePacket<PacketType>(); |
| |
| for (Index j = 0; j < NumPerThread; j += unroll_times) { |
| const Index last_col = |
| col_begin + blockDim.x * (j + unroll_times - 1) * packet_width; |
| if (last_col >= num_coeffs_to_reduce) { |
| Index col = col_begin + blockDim.x * j; |
| for (; col + packet_width <= num_coeffs_to_reduce; |
| col += blockDim.x) { |
| const PacketType val1 = input.m_impl.template packet<Unaligned>( |
| row * num_coeffs_to_reduce + col); |
| reducer.reducePacket(val1, &reduced_val1); |
| const PacketType val2 = input.m_impl.template packet<Unaligned>( |
| (row + 1) * num_coeffs_to_reduce + col); |
| reducer.reducePacket(val2, &reduced_val2); |
| } |
| if (col < num_coeffs_to_reduce) { |
| PacketType r1 = reducer.template initializePacket<PacketType>(); |
| PacketType r2 = reducer.template initializePacket<PacketType>(); |
| half2* hr1 = reinterpret_cast<half2*>(&r1); |
| half2* hr2 = reinterpret_cast<half2*>(&r2); |
| while (col + 1 < num_coeffs_to_reduce) { |
| *hr1 = __halves2half2( |
| input.m_impl.coeff(row * num_coeffs_to_reduce + col), |
| input.m_impl.coeff(row * num_coeffs_to_reduce + col + 1)); |
| *hr2 = __halves2half2( |
| input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col), |
| input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col + |
| 1)); |
| hr1++; |
| hr2++; |
| col += 2; |
| } |
| if (col < num_coeffs_to_reduce) { |
| // Peel; |
| const half last1 = |
| input.m_impl.coeff(row * num_coeffs_to_reduce + col); |
| *hr1 = __halves2half2(last1, reducer.initialize()); |
| const half last2 = |
| input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col); |
| *hr2 = __halves2half2(last2, reducer.initialize()); |
| } |
| reducer.reducePacket(r1, &reduced_val1); |
| reducer.reducePacket(r2, &reduced_val2); |
| } |
| break; |
| } else { |
| // Faster version of the loop with no branches after unrolling. |
| #pragma unroll |
| for (int k = 0; k < unroll_times; ++k) { |
| const Index col = col_begin + blockDim.x * (j + k) * packet_width; |
| reducer.reducePacket(input.m_impl.template packet<Unaligned>( |
| row * num_coeffs_to_reduce + col), |
| &reduced_val1); |
| reducer.reducePacket(input.m_impl.template packet<Unaligned>( |
| (row + 1) * num_coeffs_to_reduce + col), |
| &reduced_val2); |
| } |
| } |
| } |
| |
| #pragma unroll |
| for (int offset = warpSize/2; offset > 0; offset /= 2) { |
| #if defined(EIGEN_HIPCC) |
| PacketType r1; |
| PacketType r2; |
| half2* hr1 = reinterpret_cast<half2*>(&r1); |
| half2* hr2 = reinterpret_cast<half2*>(&r2); |
| half2* rv1 = reinterpret_cast<half2*>(&reduced_val1); |
| half2* rv2 = reinterpret_cast<half2*>(&reduced_val2); |
| for (int i = 0; i < packet_width / 2; i++) { |
| // FIXME : remove this workaround once we have native half/half2 support for __shfl_down |
| union { int i; half2 h; } wka_in1, wka_out1; |
| wka_in1.h = rv1[i]; |
| wka_out1.i = __shfl_down(wka_in1.i, offset, warpSize); |
| hr1[i] = wka_out1.h; |
| |
| union { int i; half2 h; } wka_in2, wka_out2; |
| wka_in2.h = rv2[i]; |
| wka_out2.i = __shfl_down(wka_in2.i, offset, warpSize); |
| hr2[i] = wka_out2.h; |
| } |
| reducer.reducePacket(r1, &reduced_val1); |
| reducer.reducePacket(r2, &reduced_val2); |
| #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 |
| PacketType r1; |
| PacketType r2; |
| half2* hr1 = reinterpret_cast<half2*>(&r1); |
| half2* hr2 = reinterpret_cast<half2*>(&r2); |
| half2* rv1 = reinterpret_cast<half2*>(&reduced_val1); |
| half2* rv2 = reinterpret_cast<half2*>(&reduced_val2); |
| for (int i = 0; i < packet_width / 2; i++) { |
| hr1[i] = __shfl_down(rv1[i], offset, warpSize); |
| hr2[i] = __shfl_down(rv2[i], offset, warpSize); |
| } |
| reducer.reducePacket(r1, &reduced_val1); |
| reducer.reducePacket(r2, &reduced_val2); |
| #else |
| PacketType r1; |
| PacketType r2; |
| half2* hr1 = reinterpret_cast<half2*>(&r1); |
| half2* hr2 = reinterpret_cast<half2*>(&r2); |
| half2* rr1 = reinterpret_cast<half2*>(&reduced_val1); |
| half2* rr2 = reinterpret_cast<half2*>(&reduced_val2); |
| for (int i = 0; i < packet_width / 2; i++) { |
| hr1[i] = |
| __shfl_down_sync(0xFFFFFFFF, rr1[i], (unsigned)offset, warpSize); |
| hr2[i] = |
| __shfl_down_sync(0xFFFFFFFF, rr2[i], (unsigned)offset, warpSize); |
| } |
| reducer.reducePacket(r1, &reduced_val1); |
| reducer.reducePacket(r2, &reduced_val2); |
| |
| #endif |
| } |
| half2* rv1 = reinterpret_cast<half2*>(&reduced_val1); |
| half2* rv2 = reinterpret_cast<half2*>(&reduced_val2); |
| half2 val; |
| if (packet_width > 2) { |
| reducer.reducePacket(rv1[2], rv1); |
| reducer.reducePacket(rv1[3], rv1 + 1); |
| reducer.reducePacket(rv1[1], rv1); |
| reducer.reducePacket(rv2[2], rv2); |
| reducer.reducePacket(rv2[3], rv2 + 1); |
| reducer.reducePacket(rv2[1], rv2); |
| } |
| half val1 = __low2half(*rv1); |
| reducer.reduce(__high2half(*rv1), &val1); |
| half val2 = __low2half(*rv2); |
| reducer.reduce(__high2half(*rv2), &val2); |
| val = __halves2half2(val1, val2); |
| if ((threadIdx.x & (warpSize - 1)) == 0) { |
| half* loc = output + row; |
| atomicReduce((half2*)loc, val, reducer); |
| } |
| } |
| } |
| } |
| |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void> |
| struct InnerReductionLauncher { |
| static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) { |
| gpu_assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device"); |
| return true; |
| } |
| }; |
| |
| // Specialization for float and double |
| template <typename Self, typename Op, typename OutputType, bool PacketAccess> |
| struct InnerReductionLauncher< |
| Self, Op, OutputType, PacketAccess, |
| std::enable_if_t< |
| internal::is_same<float, OutputType>::value || |
| internal::is_same<double, OutputType>::value, |
| void>> { |
| static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { |
| typedef typename Self::Index Index; |
| |
| const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; |
| const int block_size = 256; |
| const int num_per_thread = 128; |
| const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); |
| const int max_blocks = device.getNumGpuMultiProcessors() * |
| device.maxGpuThreadsPerMultiProcessor() / block_size; |
| const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); |
| |
| if (num_blocks > 1) { |
| // We initialize the outputs outside the reduction kernel when we can't be sure that there |
| // won't be a race conditions between multiple thread blocks. |
| const int dyn_blocks = divup<int>(num_preserved_vals, 1024); |
| const int max_blocks = device.getNumGpuMultiProcessors() * |
| device.maxGpuThreadsPerMultiProcessor() / 1024; |
| const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); |
| LAUNCH_GPU_KERNEL((ReductionInitKernel<OutputType, Index>), |
| num_blocks, 1024, 0, device, reducer.initialize(), |
| num_preserved_vals, output); |
| } |
| |
| LAUNCH_GPU_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>), |
| num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); |
| |
| return false; |
| } |
| }; |
| |
| #ifdef EIGEN_HAS_GPU_FP16 |
| template <typename Self, typename Op> |
| struct InnerReductionLauncher<Self, Op, Eigen::half, false> { |
| static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) { |
| gpu_assert(false && "Should not be called since there is no packet accessor"); |
| return true; |
| } |
| }; |
| |
| template <typename Self, typename Op> |
| struct InnerReductionLauncher<Self, Op, Eigen::half, true> { |
| static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { |
| typedef typename Self::Index Index; |
| |
| if (num_preserved_vals % 2 != 0) { |
| // Not supported yet, revert to the slower code path |
| return true; |
| } |
| |
| const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; |
| const int block_size = /*256*/128; |
| const int num_per_thread = /*128*/64; |
| const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); |
| const int max_blocks = device.getNumGpuMultiProcessors() * |
| device.maxGpuThreadsPerMultiProcessor() / block_size; |
| const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); |
| |
| if (num_blocks > 1) { |
| // We initialize the outputs outside the reduction kernel when we can't be sure that there |
| // won't be a race conditions between multiple thread blocks. |
| LAUNCH_GPU_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>), |
| 1, 1, 0, device, reducer, self, num_preserved_vals, output); |
| } |
| |
| LAUNCH_GPU_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>), |
| num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); |
| |
| return false; |
| } |
| }; |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| |
| template <typename Self, typename Op> |
| struct InnerReducer<Self, Op, GpuDevice> { |
| // Unfortunately nvidia doesn't support well exotic types such as complex, |
| // so reduce the scope of the optimized version of the code to the simple case |
| // of floats and half floats. |
| #ifdef EIGEN_HAS_GPU_FP16 |
| static constexpr bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && |
| (internal::is_same<typename Self::CoeffReturnType, float>::value || |
| internal::is_same<typename Self::CoeffReturnType, double>::value || |
| (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess)); |
| #else // EIGEN_HAS_GPU_FP16 |
| static constexpr bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && |
| (internal::is_same<typename Self::CoeffReturnType, float>::value || |
| internal::is_same<typename Self::CoeffReturnType, double>::value); |
| #endif // EIGEN_HAS_GPU_FP16 |
| |
| template <typename OutputType> |
| static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { |
| gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats"); |
| const Index num_coeffs = array_prod(self.m_impl.dimensions()); |
| // Don't crash when we're called with an input tensor of size 0. |
| if (num_coeffs == 0) { |
| return true; |
| } |
| // It's faster to use the usual code. |
| if (num_coeffs_to_reduce <= 128) { |
| return true; |
| } |
| |
| return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals); |
| } |
| }; |
| |
| template <int NumPerThread, typename Self, |
| typename Reducer, typename Index> |
| __global__ EIGEN_HIP_LAUNCH_BOUNDS_1024 void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, |
| typename Self::CoeffReturnType* output) { |
| const Index num_threads = blockDim.x * gridDim.x; |
| const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; |
| // Initialize the output values if they weren't initialized by the ReductionInitKernel |
| if (gridDim.x == 1) { |
| for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) { |
| output[i] = reducer.initialize(); |
| } |
| __syncthreads(); |
| } |
| |
| // Do the reduction. |
| const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread); |
| for (Index i = thread_id; i < max_iter; i += num_threads) { |
| const Index input_col = i % num_preserved_coeffs; |
| const Index input_row = (i / num_preserved_coeffs) * NumPerThread; |
| typename Self::CoeffReturnType reduced_val = reducer.initialize(); |
| const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce); |
| for (Index j = input_row; j < max_row; j++) { |
| typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col); |
| reducer.reduce(val, &reduced_val); |
| } |
| atomicReduce(&(output[input_col]), reduced_val, reducer); |
| } |
| } |
| |
| |
| template <typename Self, typename Op> |
| struct OuterReducer<Self, Op, GpuDevice> { |
| // Unfortunately nvidia doesn't support well exotic types such as complex, |
| // so reduce the scope of the optimized version of the code to the simple case |
| // of floats. |
| static constexpr bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful && |
| (internal::is_same<typename Self::CoeffReturnType, float>::value || |
| internal::is_same<typename Self::CoeffReturnType, double>::value); |
| template <typename Device, typename OutputType> |
| static |
| #if !defined(EIGEN_HIPCC) |
| // FIXME : leaving this EIGEN_DEVICE_FUNC in, results in the following runtime error |
| // (in the cxx11_tensor_reduction_gpu test) |
| // |
| // terminate called after throwing an instance of 'std::runtime_error' |
| // what(): No device code available for function: _ZN5Eigen8internal20OuterReductionKernelIL... |
| // |
| // don't know why this happens (and why is it a runtime error instead of a compile time error) |
| // |
| // this will be fixed by HIP PR#457 |
| EIGEN_DEVICE_FUNC |
| #endif |
| bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) { |
| gpu_assert(false && "Should only be called to reduce doubles or floats on a gpu device"); |
| return true; |
| } |
| |
| static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { |
| typedef typename Self::Index Index; |
| |
| // It's faster to use the usual code. |
| if (num_coeffs_to_reduce <= 32) { |
| return true; |
| } |
| |
| const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; |
| const int block_size = 256; |
| const int num_per_thread = 16; |
| const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread); |
| const int max_blocks = device.getNumGpuMultiProcessors() * |
| device.maxGpuThreadsPerMultiProcessor() / block_size; |
| const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); |
| |
| if (num_blocks > 1) { |
| // We initialize the outputs in the reduction kernel itself when we don't have to worry |
| // about race conditions between multiple thread blocks. |
| const int dyn_blocks = divup<int>(num_preserved_vals, 1024); |
| const int max_blocks = device.getNumGpuMultiProcessors() * |
| device.maxGpuThreadsPerMultiProcessor() / 1024; |
| const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks); |
| LAUNCH_GPU_KERNEL((ReductionInitKernel<float, Index>), |
| num_blocks, 1024, 0, device, reducer.initialize(), |
| num_preserved_vals, output); |
| } |
| |
| LAUNCH_GPU_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>), |
| num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output); |
| |
| return false; |
| } |
| }; |
| |
| #endif // defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC) |
| |
| |
| } // end namespace internal |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H |