blob: 6ef6bf4083430fa71a120c99c7b1dbc18a4ace46 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
// Copyright (C) 2009 Gael Guennebaud <>
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at
#include "./InternalHeaderCheck.h"
namespace Eigen
template<typename Functor> class AutoDiffJacobian : public Functor
AutoDiffJacobian() : Functor() {}
AutoDiffJacobian(const Functor& f) : Functor(f) {}
// forward constructors
template<typename... T>
AutoDiffJacobian(const T& ...Values) : Functor(Values...) {}
typedef typename Functor::InputType InputType;
typedef typename Functor::ValueType ValueType;
typedef typename ValueType::Scalar Scalar;
enum {
InputsAtCompileTime = InputType::RowsAtCompileTime,
ValuesAtCompileTime = ValueType::RowsAtCompileTime
typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType;
typedef typename JacobianType::Index Index;
typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType;
typedef AutoDiffScalar<DerivativeType> ActiveScalar;
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
// Some compilers don't accept variadic parameters after a default parameter,
// i.e., we can't just write _jac=0 but we need to overload operator():
void operator() (const InputType& x, ValueType* v) const
this->operator()(x, v, 0);
template<typename... ParamsType>
void operator() (const InputType& x, ValueType* v, JacobianType* _jac,
const ParamsType&... Params) const
if (!_jac)
Functor::operator()(x, v, Params...);
JacobianType& jac = *_jac;
ActiveInput ax = x.template cast<ActiveScalar>();
ActiveValue av(jac.rows());
for (Index j=0; j<jac.rows(); j++)
for (Index i=0; i<jac.cols(); i++)
ax[i].derivatives() = DerivativeType::Unit(x.rows(),i);
Functor::operator()(ax, &av, Params...);
for (Index i=0; i<jac.rows(); i++)
(*v)[i] = av[i].value();
jac.row(i) = av[i].derivatives();